2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "exec/memory.h"
18 #include "exec/address-spaces.h"
19 #include "exec/ioport.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qom/object.h"
26 #include "exec/memory-internal.h"
27 #include "exec/ram_addr.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/sysemu.h"
31 //#define DEBUG_UNASSIGNED
33 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
35 static unsigned memory_region_transaction_depth
;
36 static bool memory_region_update_pending
;
37 static bool ioeventfd_update_pending
;
38 static bool global_dirty_log
= false;
40 static QTAILQ_HEAD(memory_listeners
, MemoryListener
) memory_listeners
41 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
43 static QTAILQ_HEAD(, AddressSpace
) address_spaces
44 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
46 typedef struct AddrRange AddrRange
;
49 * Note that signed integers are needed for negative offsetting in aliases
50 * (large MemoryRegion::alias_offset).
57 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
59 return (AddrRange
) { start
, size
};
62 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
64 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
67 static Int128
addrrange_end(AddrRange r
)
69 return int128_add(r
.start
, r
.size
);
72 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
74 int128_addto(&range
.start
, delta
);
78 static bool addrrange_contains(AddrRange range
, Int128 addr
)
80 return int128_ge(addr
, range
.start
)
81 && int128_lt(addr
, addrrange_end(range
));
84 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
86 return addrrange_contains(r1
, r2
.start
)
87 || addrrange_contains(r2
, r1
.start
);
90 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
92 Int128 start
= int128_max(r1
.start
, r2
.start
);
93 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
94 return addrrange_make(start
, int128_sub(end
, start
));
97 enum ListenerDirection
{ Forward
, Reverse
};
99 static bool memory_listener_match(MemoryListener
*listener
,
100 MemoryRegionSection
*section
)
102 return !listener
->address_space_filter
103 || listener
->address_space_filter
== section
->address_space
;
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 MemoryListener *_listener; \
110 switch (_direction) { \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
120 memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
131 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
133 MemoryListener *_listener; \
135 switch (_direction) { \
137 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
138 if (_listener->_callback \
139 && memory_listener_match(_listener, _section)) { \
140 _listener->_callback(_listener, _section, ##_args); \
145 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
146 memory_listeners, link) { \
147 if (_listener->_callback \
148 && memory_listener_match(_listener, _section)) { \
149 _listener->_callback(_listener, _section, ##_args); \
158 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
159 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
160 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
162 .address_space = (as), \
163 .offset_within_region = (fr)->offset_in_region, \
164 .size = (fr)->addr.size, \
165 .offset_within_address_space = int128_get64((fr)->addr.start), \
166 .readonly = (fr)->readonly, \
169 struct CoalescedMemoryRange
{
171 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
174 struct MemoryRegionIoeventfd
{
181 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a
,
182 MemoryRegionIoeventfd b
)
184 if (int128_lt(a
.addr
.start
, b
.addr
.start
)) {
186 } else if (int128_gt(a
.addr
.start
, b
.addr
.start
)) {
188 } else if (int128_lt(a
.addr
.size
, b
.addr
.size
)) {
190 } else if (int128_gt(a
.addr
.size
, b
.addr
.size
)) {
192 } else if (a
.match_data
< b
.match_data
) {
194 } else if (a
.match_data
> b
.match_data
) {
196 } else if (a
.match_data
) {
197 if (a
.data
< b
.data
) {
199 } else if (a
.data
> b
.data
) {
205 } else if (a
.e
> b
.e
) {
211 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a
,
212 MemoryRegionIoeventfd b
)
214 return !memory_region_ioeventfd_before(a
, b
)
215 && !memory_region_ioeventfd_before(b
, a
);
218 typedef struct FlatRange FlatRange
;
219 typedef struct FlatView FlatView
;
221 /* Range of memory in the global map. Addresses are absolute. */
224 hwaddr offset_in_region
;
226 uint8_t dirty_log_mask
;
231 /* Flattened global view of current active memory hierarchy. Kept in sorted
239 unsigned nr_allocated
;
242 typedef struct AddressSpaceOps AddressSpaceOps
;
244 #define FOR_EACH_FLAT_RANGE(var, view) \
245 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
247 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
249 return a
->mr
== b
->mr
250 && addrrange_equal(a
->addr
, b
->addr
)
251 && a
->offset_in_region
== b
->offset_in_region
252 && a
->romd_mode
== b
->romd_mode
253 && a
->readonly
== b
->readonly
;
256 static void flatview_init(FlatView
*view
)
261 view
->nr_allocated
= 0;
264 /* Insert a range into a given position. Caller is responsible for maintaining
267 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
269 if (view
->nr
== view
->nr_allocated
) {
270 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
271 view
->ranges
= g_realloc(view
->ranges
,
272 view
->nr_allocated
* sizeof(*view
->ranges
));
274 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
275 (view
->nr
- pos
) * sizeof(FlatRange
));
276 view
->ranges
[pos
] = *range
;
277 memory_region_ref(range
->mr
);
281 static void flatview_destroy(FlatView
*view
)
285 for (i
= 0; i
< view
->nr
; i
++) {
286 memory_region_unref(view
->ranges
[i
].mr
);
288 g_free(view
->ranges
);
292 static void flatview_ref(FlatView
*view
)
294 atomic_inc(&view
->ref
);
297 static void flatview_unref(FlatView
*view
)
299 if (atomic_fetch_dec(&view
->ref
) == 1) {
300 flatview_destroy(view
);
304 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
306 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
308 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
310 int128_make64(r2
->offset_in_region
))
311 && r1
->dirty_log_mask
== r2
->dirty_log_mask
312 && r1
->romd_mode
== r2
->romd_mode
313 && r1
->readonly
== r2
->readonly
;
316 /* Attempt to simplify a view by merging adjacent ranges */
317 static void flatview_simplify(FlatView
*view
)
322 while (i
< view
->nr
) {
325 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
326 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
330 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
331 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
336 static bool memory_region_big_endian(MemoryRegion
*mr
)
338 #ifdef TARGET_WORDS_BIGENDIAN
339 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
341 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
345 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
350 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
354 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
356 if (memory_region_wrong_endianness(mr
)) {
361 *data
= bswap16(*data
);
364 *data
= bswap32(*data
);
367 *data
= bswap64(*data
);
375 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
378 hwaddr abs_addr
= offset
;
380 abs_addr
+= mr
->addr
;
381 for (root
= mr
; root
->container
; ) {
382 root
= root
->container
;
383 abs_addr
+= root
->addr
;
389 static int get_cpu_index(void)
392 return current_cpu
->cpu_index
;
397 static MemTxResult
memory_region_oldmmio_read_accessor(MemoryRegion
*mr
,
407 tmp
= mr
->ops
->old_mmio
.read
[ctz32(size
)](mr
->opaque
, addr
);
409 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
410 } else if (mr
== &io_mem_notdirty
) {
411 /* Accesses to code which has previously been translated into a TB show
412 * up in the MMIO path, as accesses to the io_mem_notdirty
414 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
415 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
416 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
417 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
419 *value
|= (tmp
& mask
) << shift
;
423 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
433 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
435 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
436 } else if (mr
== &io_mem_notdirty
) {
437 /* Accesses to code which has previously been translated into a TB show
438 * up in the MMIO path, as accesses to the io_mem_notdirty
440 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
441 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
442 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
443 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
445 *value
|= (tmp
& mask
) << shift
;
449 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
460 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
462 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
463 } else if (mr
== &io_mem_notdirty
) {
464 /* Accesses to code which has previously been translated into a TB show
465 * up in the MMIO path, as accesses to the io_mem_notdirty
467 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
468 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
469 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
470 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
472 *value
|= (tmp
& mask
) << shift
;
476 static MemTxResult
memory_region_oldmmio_write_accessor(MemoryRegion
*mr
,
486 tmp
= (*value
>> shift
) & mask
;
488 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
489 } else if (mr
== &io_mem_notdirty
) {
490 /* Accesses to code which has previously been translated into a TB show
491 * up in the MMIO path, as accesses to the io_mem_notdirty
493 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
494 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
495 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
496 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
498 mr
->ops
->old_mmio
.write
[ctz32(size
)](mr
->opaque
, addr
, tmp
);
502 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
512 tmp
= (*value
>> shift
) & mask
;
514 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
515 } else if (mr
== &io_mem_notdirty
) {
516 /* Accesses to code which has previously been translated into a TB show
517 * up in the MMIO path, as accesses to the io_mem_notdirty
519 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
520 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
521 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
522 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
524 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
528 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
538 tmp
= (*value
>> shift
) & mask
;
540 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
541 } else if (mr
== &io_mem_notdirty
) {
542 /* Accesses to code which has previously been translated into a TB show
543 * up in the MMIO path, as accesses to the io_mem_notdirty
545 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
546 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
547 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
548 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
550 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
553 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
556 unsigned access_size_min
,
557 unsigned access_size_max
,
558 MemTxResult (*access
)(MemoryRegion
*mr
,
568 uint64_t access_mask
;
569 unsigned access_size
;
571 MemTxResult r
= MEMTX_OK
;
573 if (!access_size_min
) {
576 if (!access_size_max
) {
580 /* FIXME: support unaligned access? */
581 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
582 access_mask
= -1ULL >> (64 - access_size
* 8);
583 if (memory_region_big_endian(mr
)) {
584 for (i
= 0; i
< size
; i
+= access_size
) {
585 r
|= access(mr
, addr
+ i
, value
, access_size
,
586 (size
- access_size
- i
) * 8, access_mask
, attrs
);
589 for (i
= 0; i
< size
; i
+= access_size
) {
590 r
|= access(mr
, addr
+ i
, value
, access_size
, i
* 8,
597 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
601 while (mr
->container
) {
604 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
605 if (mr
== as
->root
) {
612 /* Render a memory region into the global view. Ranges in @view obscure
615 static void render_memory_region(FlatView
*view
,
621 MemoryRegion
*subregion
;
623 hwaddr offset_in_region
;
633 int128_addto(&base
, int128_make64(mr
->addr
));
634 readonly
|= mr
->readonly
;
636 tmp
= addrrange_make(base
, mr
->size
);
638 if (!addrrange_intersects(tmp
, clip
)) {
642 clip
= addrrange_intersection(tmp
, clip
);
645 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
646 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
647 render_memory_region(view
, mr
->alias
, base
, clip
, readonly
);
651 /* Render subregions in priority order. */
652 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
653 render_memory_region(view
, subregion
, base
, clip
, readonly
);
656 if (!mr
->terminates
) {
660 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
665 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
666 fr
.romd_mode
= mr
->romd_mode
;
667 fr
.readonly
= readonly
;
669 /* Render the region itself into any gaps left by the current view. */
670 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
671 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
674 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
675 now
= int128_min(remain
,
676 int128_sub(view
->ranges
[i
].addr
.start
, base
));
677 fr
.offset_in_region
= offset_in_region
;
678 fr
.addr
= addrrange_make(base
, now
);
679 flatview_insert(view
, i
, &fr
);
681 int128_addto(&base
, now
);
682 offset_in_region
+= int128_get64(now
);
683 int128_subfrom(&remain
, now
);
685 now
= int128_sub(int128_min(int128_add(base
, remain
),
686 addrrange_end(view
->ranges
[i
].addr
)),
688 int128_addto(&base
, now
);
689 offset_in_region
+= int128_get64(now
);
690 int128_subfrom(&remain
, now
);
692 if (int128_nz(remain
)) {
693 fr
.offset_in_region
= offset_in_region
;
694 fr
.addr
= addrrange_make(base
, remain
);
695 flatview_insert(view
, i
, &fr
);
699 /* Render a memory topology into a list of disjoint absolute ranges. */
700 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
704 view
= g_new(FlatView
, 1);
708 render_memory_region(view
, mr
, int128_zero(),
709 addrrange_make(int128_zero(), int128_2_64()), false);
711 flatview_simplify(view
);
716 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
717 MemoryRegionIoeventfd
*fds_new
,
719 MemoryRegionIoeventfd
*fds_old
,
723 MemoryRegionIoeventfd
*fd
;
724 MemoryRegionSection section
;
726 /* Generate a symmetric difference of the old and new fd sets, adding
727 * and deleting as necessary.
731 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
732 if (iold
< fds_old_nb
733 && (inew
== fds_new_nb
734 || memory_region_ioeventfd_before(fds_old
[iold
],
737 section
= (MemoryRegionSection
) {
739 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
740 .size
= fd
->addr
.size
,
742 MEMORY_LISTENER_CALL(eventfd_del
, Forward
, §ion
,
743 fd
->match_data
, fd
->data
, fd
->e
);
745 } else if (inew
< fds_new_nb
746 && (iold
== fds_old_nb
747 || memory_region_ioeventfd_before(fds_new
[inew
],
750 section
= (MemoryRegionSection
) {
752 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
753 .size
= fd
->addr
.size
,
755 MEMORY_LISTENER_CALL(eventfd_add
, Reverse
, §ion
,
756 fd
->match_data
, fd
->data
, fd
->e
);
765 static FlatView
*address_space_get_flatview(AddressSpace
*as
)
770 view
= atomic_rcu_read(&as
->current_map
);
776 static void address_space_update_ioeventfds(AddressSpace
*as
)
780 unsigned ioeventfd_nb
= 0;
781 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
785 view
= address_space_get_flatview(as
);
786 FOR_EACH_FLAT_RANGE(fr
, view
) {
787 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
788 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
789 int128_sub(fr
->addr
.start
,
790 int128_make64(fr
->offset_in_region
)));
791 if (addrrange_intersects(fr
->addr
, tmp
)) {
793 ioeventfds
= g_realloc(ioeventfds
,
794 ioeventfd_nb
* sizeof(*ioeventfds
));
795 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
796 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
801 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
802 as
->ioeventfds
, as
->ioeventfd_nb
);
804 g_free(as
->ioeventfds
);
805 as
->ioeventfds
= ioeventfds
;
806 as
->ioeventfd_nb
= ioeventfd_nb
;
807 flatview_unref(view
);
810 static void address_space_update_topology_pass(AddressSpace
*as
,
811 const FlatView
*old_view
,
812 const FlatView
*new_view
,
816 FlatRange
*frold
, *frnew
;
818 /* Generate a symmetric difference of the old and new memory maps.
819 * Kill ranges in the old map, and instantiate ranges in the new map.
822 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
823 if (iold
< old_view
->nr
) {
824 frold
= &old_view
->ranges
[iold
];
828 if (inew
< new_view
->nr
) {
829 frnew
= &new_view
->ranges
[inew
];
836 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
837 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
838 && !flatrange_equal(frold
, frnew
)))) {
839 /* In old but not in new, or in both but attributes changed. */
842 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
846 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
847 /* In both and unchanged (except logging may have changed) */
850 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
851 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
852 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
853 frold
->dirty_log_mask
,
854 frnew
->dirty_log_mask
);
856 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
857 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
858 frold
->dirty_log_mask
,
859 frnew
->dirty_log_mask
);
869 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
878 static void address_space_update_topology(AddressSpace
*as
)
880 FlatView
*old_view
= address_space_get_flatview(as
);
881 FlatView
*new_view
= generate_memory_topology(as
->root
);
883 address_space_update_topology_pass(as
, old_view
, new_view
, false);
884 address_space_update_topology_pass(as
, old_view
, new_view
, true);
886 /* Writes are protected by the BQL. */
887 atomic_rcu_set(&as
->current_map
, new_view
);
888 call_rcu(old_view
, flatview_unref
, rcu
);
890 /* Note that all the old MemoryRegions are still alive up to this
891 * point. This relieves most MemoryListeners from the need to
892 * ref/unref the MemoryRegions they get---unless they use them
893 * outside the iothread mutex, in which case precise reference
894 * counting is necessary.
896 flatview_unref(old_view
);
898 address_space_update_ioeventfds(as
);
901 void memory_region_transaction_begin(void)
903 qemu_flush_coalesced_mmio_buffer();
904 ++memory_region_transaction_depth
;
907 static void memory_region_clear_pending(void)
909 memory_region_update_pending
= false;
910 ioeventfd_update_pending
= false;
913 void memory_region_transaction_commit(void)
917 assert(memory_region_transaction_depth
);
918 --memory_region_transaction_depth
;
919 if (!memory_region_transaction_depth
) {
920 if (memory_region_update_pending
) {
921 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
923 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
924 address_space_update_topology(as
);
927 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
928 } else if (ioeventfd_update_pending
) {
929 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
930 address_space_update_ioeventfds(as
);
933 memory_region_clear_pending();
937 static void memory_region_destructor_none(MemoryRegion
*mr
)
941 static void memory_region_destructor_ram(MemoryRegion
*mr
)
943 qemu_ram_free(mr
->ram_block
);
946 static void memory_region_destructor_rom_device(MemoryRegion
*mr
)
948 qemu_ram_free(mr
->ram_block
);
951 static bool memory_region_need_escape(char c
)
953 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
956 static char *memory_region_escape_name(const char *name
)
963 for (p
= name
; *p
; p
++) {
964 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
966 if (bytes
== p
- name
) {
967 return g_memdup(name
, bytes
+ 1);
970 escaped
= g_malloc(bytes
+ 1);
971 for (p
= name
, q
= escaped
; *p
; p
++) {
973 if (unlikely(memory_region_need_escape(c
))) {
976 *q
++ = "0123456789abcdef"[c
>> 4];
977 c
= "0123456789abcdef"[c
& 15];
985 void memory_region_init(MemoryRegion
*mr
,
990 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
991 mr
->size
= int128_make64(size
);
992 if (size
== UINT64_MAX
) {
993 mr
->size
= int128_2_64();
995 mr
->name
= g_strdup(name
);
997 mr
->ram_block
= NULL
;
1000 char *escaped_name
= memory_region_escape_name(name
);
1001 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1004 owner
= container_get(qdev_get_machine(), "/unattached");
1007 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1008 object_unref(OBJECT(mr
));
1010 g_free(escaped_name
);
1014 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1015 void *opaque
, Error
**errp
)
1017 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1018 uint64_t value
= mr
->addr
;
1020 visit_type_uint64(v
, name
, &value
, errp
);
1023 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1024 const char *name
, void *opaque
,
1027 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1028 gchar
*path
= (gchar
*)"";
1030 if (mr
->container
) {
1031 path
= object_get_canonical_path(OBJECT(mr
->container
));
1033 visit_type_str(v
, name
, &path
, errp
);
1034 if (mr
->container
) {
1039 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1042 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1044 return OBJECT(mr
->container
);
1047 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1048 const char *name
, void *opaque
,
1051 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1052 int32_t value
= mr
->priority
;
1054 visit_type_int32(v
, name
, &value
, errp
);
1057 static bool memory_region_get_may_overlap(Object
*obj
, Error
**errp
)
1059 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1061 return mr
->may_overlap
;
1064 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1065 void *opaque
, Error
**errp
)
1067 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1068 uint64_t value
= memory_region_size(mr
);
1070 visit_type_uint64(v
, name
, &value
, errp
);
1073 static void memory_region_initfn(Object
*obj
)
1075 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1078 mr
->ops
= &unassigned_mem_ops
;
1080 mr
->romd_mode
= true;
1081 mr
->global_locking
= true;
1082 mr
->destructor
= memory_region_destructor_none
;
1083 QTAILQ_INIT(&mr
->subregions
);
1084 QTAILQ_INIT(&mr
->coalesced
);
1086 op
= object_property_add(OBJECT(mr
), "container",
1087 "link<" TYPE_MEMORY_REGION
">",
1088 memory_region_get_container
,
1089 NULL
, /* memory_region_set_container */
1090 NULL
, NULL
, &error_abort
);
1091 op
->resolve
= memory_region_resolve_container
;
1093 object_property_add(OBJECT(mr
), "addr", "uint64",
1094 memory_region_get_addr
,
1095 NULL
, /* memory_region_set_addr */
1096 NULL
, NULL
, &error_abort
);
1097 object_property_add(OBJECT(mr
), "priority", "uint32",
1098 memory_region_get_priority
,
1099 NULL
, /* memory_region_set_priority */
1100 NULL
, NULL
, &error_abort
);
1101 object_property_add_bool(OBJECT(mr
), "may-overlap",
1102 memory_region_get_may_overlap
,
1103 NULL
, /* memory_region_set_may_overlap */
1105 object_property_add(OBJECT(mr
), "size", "uint64",
1106 memory_region_get_size
,
1107 NULL
, /* memory_region_set_size, */
1108 NULL
, NULL
, &error_abort
);
1111 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1114 #ifdef DEBUG_UNASSIGNED
1115 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1117 if (current_cpu
!= NULL
) {
1118 cpu_unassigned_access(current_cpu
, addr
, false, false, 0, size
);
1123 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1124 uint64_t val
, unsigned size
)
1126 #ifdef DEBUG_UNASSIGNED
1127 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1129 if (current_cpu
!= NULL
) {
1130 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1134 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1135 unsigned size
, bool is_write
)
1140 const MemoryRegionOps unassigned_mem_ops
= {
1141 .valid
.accepts
= unassigned_mem_accepts
,
1142 .endianness
= DEVICE_NATIVE_ENDIAN
,
1145 bool memory_region_access_valid(MemoryRegion
*mr
,
1150 int access_size_min
, access_size_max
;
1153 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1157 if (!mr
->ops
->valid
.accepts
) {
1161 access_size_min
= mr
->ops
->valid
.min_access_size
;
1162 if (!mr
->ops
->valid
.min_access_size
) {
1163 access_size_min
= 1;
1166 access_size_max
= mr
->ops
->valid
.max_access_size
;
1167 if (!mr
->ops
->valid
.max_access_size
) {
1168 access_size_max
= 4;
1171 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1172 for (i
= 0; i
< size
; i
+= access_size
) {
1173 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1182 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1190 if (mr
->ops
->read
) {
1191 return access_with_adjusted_size(addr
, pval
, size
,
1192 mr
->ops
->impl
.min_access_size
,
1193 mr
->ops
->impl
.max_access_size
,
1194 memory_region_read_accessor
,
1196 } else if (mr
->ops
->read_with_attrs
) {
1197 return access_with_adjusted_size(addr
, pval
, size
,
1198 mr
->ops
->impl
.min_access_size
,
1199 mr
->ops
->impl
.max_access_size
,
1200 memory_region_read_with_attrs_accessor
,
1203 return access_with_adjusted_size(addr
, pval
, size
, 1, 4,
1204 memory_region_oldmmio_read_accessor
,
1209 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1217 if (!memory_region_access_valid(mr
, addr
, size
, false)) {
1218 *pval
= unassigned_mem_read(mr
, addr
, size
);
1219 return MEMTX_DECODE_ERROR
;
1222 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1223 adjust_endianness(mr
, pval
, size
);
1227 /* Return true if an eventfd was signalled */
1228 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1234 MemoryRegionIoeventfd ioeventfd
= {
1235 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1240 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1241 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1242 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1244 if (memory_region_ioeventfd_equal(ioeventfd
, mr
->ioeventfds
[i
])) {
1245 event_notifier_set(ioeventfd
.e
);
1253 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1259 if (!memory_region_access_valid(mr
, addr
, size
, true)) {
1260 unassigned_mem_write(mr
, addr
, data
, size
);
1261 return MEMTX_DECODE_ERROR
;
1264 adjust_endianness(mr
, &data
, size
);
1266 if ((!kvm_eventfds_enabled()) &&
1267 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1271 if (mr
->ops
->write
) {
1272 return access_with_adjusted_size(addr
, &data
, size
,
1273 mr
->ops
->impl
.min_access_size
,
1274 mr
->ops
->impl
.max_access_size
,
1275 memory_region_write_accessor
, mr
,
1277 } else if (mr
->ops
->write_with_attrs
) {
1279 access_with_adjusted_size(addr
, &data
, size
,
1280 mr
->ops
->impl
.min_access_size
,
1281 mr
->ops
->impl
.max_access_size
,
1282 memory_region_write_with_attrs_accessor
,
1285 return access_with_adjusted_size(addr
, &data
, size
, 1, 4,
1286 memory_region_oldmmio_write_accessor
,
1291 void memory_region_init_io(MemoryRegion
*mr
,
1293 const MemoryRegionOps
*ops
,
1298 memory_region_init(mr
, owner
, name
, size
);
1299 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1300 mr
->opaque
= opaque
;
1301 mr
->terminates
= true;
1304 void memory_region_init_ram(MemoryRegion
*mr
,
1310 memory_region_init(mr
, owner
, name
, size
);
1312 mr
->terminates
= true;
1313 mr
->destructor
= memory_region_destructor_ram
;
1314 mr
->ram_block
= qemu_ram_alloc(size
, mr
, errp
);
1315 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1318 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1323 void (*resized
)(const char*,
1328 memory_region_init(mr
, owner
, name
, size
);
1330 mr
->terminates
= true;
1331 mr
->destructor
= memory_region_destructor_ram
;
1332 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1334 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1338 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1339 struct Object
*owner
,
1346 memory_region_init(mr
, owner
, name
, size
);
1348 mr
->terminates
= true;
1349 mr
->destructor
= memory_region_destructor_ram
;
1350 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, share
, path
, errp
);
1351 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1355 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1361 memory_region_init(mr
, owner
, name
, size
);
1363 mr
->terminates
= true;
1364 mr
->destructor
= memory_region_destructor_ram
;
1365 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1367 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1368 assert(ptr
!= NULL
);
1369 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1372 void memory_region_set_skip_dump(MemoryRegion
*mr
)
1374 mr
->skip_dump
= true;
1377 void memory_region_init_alias(MemoryRegion
*mr
,
1384 memory_region_init(mr
, owner
, name
, size
);
1386 mr
->alias_offset
= offset
;
1389 void memory_region_init_rom_device(MemoryRegion
*mr
,
1391 const MemoryRegionOps
*ops
,
1397 memory_region_init(mr
, owner
, name
, size
);
1399 mr
->opaque
= opaque
;
1400 mr
->terminates
= true;
1401 mr
->rom_device
= true;
1402 mr
->destructor
= memory_region_destructor_rom_device
;
1403 mr
->ram_block
= qemu_ram_alloc(size
, mr
, errp
);
1406 void memory_region_init_iommu(MemoryRegion
*mr
,
1408 const MemoryRegionIOMMUOps
*ops
,
1412 memory_region_init(mr
, owner
, name
, size
);
1413 mr
->iommu_ops
= ops
,
1414 mr
->terminates
= true; /* then re-forwards */
1415 notifier_list_init(&mr
->iommu_notify
);
1418 static void memory_region_finalize(Object
*obj
)
1420 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1422 assert(!mr
->container
);
1424 /* We know the region is not visible in any address space (it
1425 * does not have a container and cannot be a root either because
1426 * it has no references, so we can blindly clear mr->enabled.
1427 * memory_region_set_enabled instead could trigger a transaction
1428 * and cause an infinite loop.
1430 mr
->enabled
= false;
1431 memory_region_transaction_begin();
1432 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1433 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1434 memory_region_del_subregion(mr
, subregion
);
1436 memory_region_transaction_commit();
1439 memory_region_clear_coalescing(mr
);
1440 g_free((char *)mr
->name
);
1441 g_free(mr
->ioeventfds
);
1444 Object
*memory_region_owner(MemoryRegion
*mr
)
1446 Object
*obj
= OBJECT(mr
);
1450 void memory_region_ref(MemoryRegion
*mr
)
1452 /* MMIO callbacks most likely will access data that belongs
1453 * to the owner, hence the need to ref/unref the owner whenever
1454 * the memory region is in use.
1456 * The memory region is a child of its owner. As long as the
1457 * owner doesn't call unparent itself on the memory region,
1458 * ref-ing the owner will also keep the memory region alive.
1459 * Memory regions without an owner are supposed to never go away;
1460 * we do not ref/unref them because it slows down DMA sensibly.
1462 if (mr
&& mr
->owner
) {
1463 object_ref(mr
->owner
);
1467 void memory_region_unref(MemoryRegion
*mr
)
1469 if (mr
&& mr
->owner
) {
1470 object_unref(mr
->owner
);
1474 uint64_t memory_region_size(MemoryRegion
*mr
)
1476 if (int128_eq(mr
->size
, int128_2_64())) {
1479 return int128_get64(mr
->size
);
1482 const char *memory_region_name(const MemoryRegion
*mr
)
1485 ((MemoryRegion
*)mr
)->name
=
1486 object_get_canonical_path_component(OBJECT(mr
));
1491 bool memory_region_is_skip_dump(MemoryRegion
*mr
)
1493 return mr
->skip_dump
;
1496 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1498 uint8_t mask
= mr
->dirty_log_mask
;
1499 if (global_dirty_log
) {
1500 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1505 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1507 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1510 void memory_region_register_iommu_notifier(MemoryRegion
*mr
, Notifier
*n
)
1512 notifier_list_add(&mr
->iommu_notify
, n
);
1515 void memory_region_iommu_replay(MemoryRegion
*mr
, Notifier
*n
,
1516 hwaddr granularity
, bool is_write
)
1519 IOMMUTLBEntry iotlb
;
1521 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1522 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
1523 if (iotlb
.perm
!= IOMMU_NONE
) {
1524 n
->notify(n
, &iotlb
);
1527 /* if (2^64 - MR size) < granularity, it's possible to get an
1528 * infinite loop here. This should catch such a wraparound */
1529 if ((addr
+ granularity
) < addr
) {
1535 void memory_region_unregister_iommu_notifier(Notifier
*n
)
1540 void memory_region_notify_iommu(MemoryRegion
*mr
,
1541 IOMMUTLBEntry entry
)
1543 assert(memory_region_is_iommu(mr
));
1544 notifier_list_notify(&mr
->iommu_notify
, &entry
);
1547 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1549 uint8_t mask
= 1 << client
;
1550 uint8_t old_logging
;
1552 assert(client
== DIRTY_MEMORY_VGA
);
1553 old_logging
= mr
->vga_logging_count
;
1554 mr
->vga_logging_count
+= log
? 1 : -1;
1555 if (!!old_logging
== !!mr
->vga_logging_count
) {
1559 memory_region_transaction_begin();
1560 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1561 memory_region_update_pending
|= mr
->enabled
;
1562 memory_region_transaction_commit();
1565 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1566 hwaddr size
, unsigned client
)
1568 assert(mr
->ram_block
);
1569 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
1573 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1576 assert(mr
->ram_block
);
1577 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
1579 memory_region_get_dirty_log_mask(mr
));
1582 bool memory_region_test_and_clear_dirty(MemoryRegion
*mr
, hwaddr addr
,
1583 hwaddr size
, unsigned client
)
1585 assert(mr
->ram_block
);
1586 return cpu_physical_memory_test_and_clear_dirty(
1587 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
1591 void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
1596 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1597 FlatView
*view
= address_space_get_flatview(as
);
1598 FOR_EACH_FLAT_RANGE(fr
, view
) {
1600 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, log_sync
);
1603 flatview_unref(view
);
1607 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
1609 if (mr
->readonly
!= readonly
) {
1610 memory_region_transaction_begin();
1611 mr
->readonly
= readonly
;
1612 memory_region_update_pending
|= mr
->enabled
;
1613 memory_region_transaction_commit();
1617 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
1619 if (mr
->romd_mode
!= romd_mode
) {
1620 memory_region_transaction_begin();
1621 mr
->romd_mode
= romd_mode
;
1622 memory_region_update_pending
|= mr
->enabled
;
1623 memory_region_transaction_commit();
1627 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
1628 hwaddr size
, unsigned client
)
1630 assert(mr
->ram_block
);
1631 cpu_physical_memory_test_and_clear_dirty(
1632 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
1635 int memory_region_get_fd(MemoryRegion
*mr
)
1638 return memory_region_get_fd(mr
->alias
);
1641 assert(mr
->ram_block
);
1643 return qemu_get_ram_fd(memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
);
1646 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
1649 uint64_t offset
= 0;
1653 offset
+= mr
->alias_offset
;
1656 assert(mr
->ram_block
);
1657 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
1658 memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
);
1661 return ptr
+ offset
;
1664 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
1666 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
1669 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
1671 assert(mr
->ram_block
);
1673 qemu_ram_resize(memory_region_get_ram_addr(mr
), newsize
, errp
);
1676 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
1680 CoalescedMemoryRange
*cmr
;
1682 MemoryRegionSection section
;
1684 view
= address_space_get_flatview(as
);
1685 FOR_EACH_FLAT_RANGE(fr
, view
) {
1687 section
= (MemoryRegionSection
) {
1688 .address_space
= as
,
1689 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
1690 .size
= fr
->addr
.size
,
1693 MEMORY_LISTENER_CALL(coalesced_mmio_del
, Reverse
, §ion
,
1694 int128_get64(fr
->addr
.start
),
1695 int128_get64(fr
->addr
.size
));
1696 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
1697 tmp
= addrrange_shift(cmr
->addr
,
1698 int128_sub(fr
->addr
.start
,
1699 int128_make64(fr
->offset_in_region
)));
1700 if (!addrrange_intersects(tmp
, fr
->addr
)) {
1703 tmp
= addrrange_intersection(tmp
, fr
->addr
);
1704 MEMORY_LISTENER_CALL(coalesced_mmio_add
, Forward
, §ion
,
1705 int128_get64(tmp
.start
),
1706 int128_get64(tmp
.size
));
1710 flatview_unref(view
);
1713 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
1717 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1718 memory_region_update_coalesced_range_as(mr
, as
);
1722 void memory_region_set_coalescing(MemoryRegion
*mr
)
1724 memory_region_clear_coalescing(mr
);
1725 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
1728 void memory_region_add_coalescing(MemoryRegion
*mr
,
1732 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
1734 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
1735 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
1736 memory_region_update_coalesced_range(mr
);
1737 memory_region_set_flush_coalesced(mr
);
1740 void memory_region_clear_coalescing(MemoryRegion
*mr
)
1742 CoalescedMemoryRange
*cmr
;
1743 bool updated
= false;
1745 qemu_flush_coalesced_mmio_buffer();
1746 mr
->flush_coalesced_mmio
= false;
1748 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
1749 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
1750 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
1756 memory_region_update_coalesced_range(mr
);
1760 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
1762 mr
->flush_coalesced_mmio
= true;
1765 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
1767 qemu_flush_coalesced_mmio_buffer();
1768 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
1769 mr
->flush_coalesced_mmio
= false;
1773 void memory_region_set_global_locking(MemoryRegion
*mr
)
1775 mr
->global_locking
= true;
1778 void memory_region_clear_global_locking(MemoryRegion
*mr
)
1780 mr
->global_locking
= false;
1783 static bool userspace_eventfd_warning
;
1785 void memory_region_add_eventfd(MemoryRegion
*mr
,
1792 MemoryRegionIoeventfd mrfd
= {
1793 .addr
.start
= int128_make64(addr
),
1794 .addr
.size
= int128_make64(size
),
1795 .match_data
= match_data
,
1801 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1802 userspace_eventfd_warning
))) {
1803 userspace_eventfd_warning
= true;
1804 error_report("Using eventfd without MMIO binding in KVM. "
1805 "Suboptimal performance expected");
1809 adjust_endianness(mr
, &mrfd
.data
, size
);
1811 memory_region_transaction_begin();
1812 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
1813 if (memory_region_ioeventfd_before(mrfd
, mr
->ioeventfds
[i
])) {
1818 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
1819 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
1820 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
1821 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
1822 mr
->ioeventfds
[i
] = mrfd
;
1823 ioeventfd_update_pending
|= mr
->enabled
;
1824 memory_region_transaction_commit();
1827 void memory_region_del_eventfd(MemoryRegion
*mr
,
1834 MemoryRegionIoeventfd mrfd
= {
1835 .addr
.start
= int128_make64(addr
),
1836 .addr
.size
= int128_make64(size
),
1837 .match_data
= match_data
,
1844 adjust_endianness(mr
, &mrfd
.data
, size
);
1846 memory_region_transaction_begin();
1847 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
1848 if (memory_region_ioeventfd_equal(mrfd
, mr
->ioeventfds
[i
])) {
1852 assert(i
!= mr
->ioeventfd_nb
);
1853 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
1854 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
1856 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
1857 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
1858 ioeventfd_update_pending
|= mr
->enabled
;
1859 memory_region_transaction_commit();
1862 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
1864 hwaddr offset
= subregion
->addr
;
1865 MemoryRegion
*mr
= subregion
->container
;
1866 MemoryRegion
*other
;
1868 memory_region_transaction_begin();
1870 memory_region_ref(subregion
);
1871 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
1872 if (subregion
->may_overlap
|| other
->may_overlap
) {
1875 if (int128_ge(int128_make64(offset
),
1876 int128_add(int128_make64(other
->addr
), other
->size
))
1877 || int128_le(int128_add(int128_make64(offset
), subregion
->size
),
1878 int128_make64(other
->addr
))) {
1882 printf("warning: subregion collision %llx/%llx (%s) "
1883 "vs %llx/%llx (%s)\n",
1884 (unsigned long long)offset
,
1885 (unsigned long long)int128_get64(subregion
->size
),
1887 (unsigned long long)other
->addr
,
1888 (unsigned long long)int128_get64(other
->size
),
1892 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
1893 if (subregion
->priority
>= other
->priority
) {
1894 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
1898 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
1900 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
1901 memory_region_transaction_commit();
1904 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
1906 MemoryRegion
*subregion
)
1908 assert(!subregion
->container
);
1909 subregion
->container
= mr
;
1910 subregion
->addr
= offset
;
1911 memory_region_update_container_subregions(subregion
);
1914 void memory_region_add_subregion(MemoryRegion
*mr
,
1916 MemoryRegion
*subregion
)
1918 subregion
->may_overlap
= false;
1919 subregion
->priority
= 0;
1920 memory_region_add_subregion_common(mr
, offset
, subregion
);
1923 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
1925 MemoryRegion
*subregion
,
1928 subregion
->may_overlap
= true;
1929 subregion
->priority
= priority
;
1930 memory_region_add_subregion_common(mr
, offset
, subregion
);
1933 void memory_region_del_subregion(MemoryRegion
*mr
,
1934 MemoryRegion
*subregion
)
1936 memory_region_transaction_begin();
1937 assert(subregion
->container
== mr
);
1938 subregion
->container
= NULL
;
1939 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
1940 memory_region_unref(subregion
);
1941 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
1942 memory_region_transaction_commit();
1945 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
1947 if (enabled
== mr
->enabled
) {
1950 memory_region_transaction_begin();
1951 mr
->enabled
= enabled
;
1952 memory_region_update_pending
= true;
1953 memory_region_transaction_commit();
1956 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
1958 Int128 s
= int128_make64(size
);
1960 if (size
== UINT64_MAX
) {
1963 if (int128_eq(s
, mr
->size
)) {
1966 memory_region_transaction_begin();
1968 memory_region_update_pending
= true;
1969 memory_region_transaction_commit();
1972 static void memory_region_readd_subregion(MemoryRegion
*mr
)
1974 MemoryRegion
*container
= mr
->container
;
1977 memory_region_transaction_begin();
1978 memory_region_ref(mr
);
1979 memory_region_del_subregion(container
, mr
);
1980 mr
->container
= container
;
1981 memory_region_update_container_subregions(mr
);
1982 memory_region_unref(mr
);
1983 memory_region_transaction_commit();
1987 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
1989 if (addr
!= mr
->addr
) {
1991 memory_region_readd_subregion(mr
);
1995 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
1999 if (offset
== mr
->alias_offset
) {
2003 memory_region_transaction_begin();
2004 mr
->alias_offset
= offset
;
2005 memory_region_update_pending
|= mr
->enabled
;
2006 memory_region_transaction_commit();
2009 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2014 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2016 const AddrRange
*addr
= addr_
;
2017 const FlatRange
*fr
= fr_
;
2019 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2021 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2027 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2029 return bsearch(&addr
, view
->ranges
, view
->nr
,
2030 sizeof(FlatRange
), cmp_flatrange_addr
);
2033 bool memory_region_is_mapped(MemoryRegion
*mr
)
2035 return mr
->container
? true : false;
2038 /* Same as memory_region_find, but it does not add a reference to the
2039 * returned region. It must be called from an RCU critical section.
2041 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2042 hwaddr addr
, uint64_t size
)
2044 MemoryRegionSection ret
= { .mr
= NULL
};
2052 for (root
= mr
; root
->container
; ) {
2053 root
= root
->container
;
2057 as
= memory_region_to_address_space(root
);
2061 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2063 view
= atomic_rcu_read(&as
->current_map
);
2064 fr
= flatview_lookup(view
, range
);
2069 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2074 ret
.address_space
= as
;
2075 range
= addrrange_intersection(range
, fr
->addr
);
2076 ret
.offset_within_region
= fr
->offset_in_region
;
2077 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2079 ret
.size
= range
.size
;
2080 ret
.offset_within_address_space
= int128_get64(range
.start
);
2081 ret
.readonly
= fr
->readonly
;
2085 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2086 hwaddr addr
, uint64_t size
)
2088 MemoryRegionSection ret
;
2090 ret
= memory_region_find_rcu(mr
, addr
, size
);
2092 memory_region_ref(ret
.mr
);
2098 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2103 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2105 return mr
&& mr
!= container
;
2108 void address_space_sync_dirty_bitmap(AddressSpace
*as
)
2113 view
= address_space_get_flatview(as
);
2114 FOR_EACH_FLAT_RANGE(fr
, view
) {
2115 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, log_sync
);
2117 flatview_unref(view
);
2120 void memory_global_dirty_log_start(void)
2122 global_dirty_log
= true;
2124 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2126 /* Refresh DIRTY_LOG_MIGRATION bit. */
2127 memory_region_transaction_begin();
2128 memory_region_update_pending
= true;
2129 memory_region_transaction_commit();
2132 void memory_global_dirty_log_stop(void)
2134 global_dirty_log
= false;
2136 /* Refresh DIRTY_LOG_MIGRATION bit. */
2137 memory_region_transaction_begin();
2138 memory_region_update_pending
= true;
2139 memory_region_transaction_commit();
2141 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2144 static void listener_add_address_space(MemoryListener
*listener
,
2150 if (listener
->address_space_filter
2151 && listener
->address_space_filter
!= as
) {
2155 if (listener
->begin
) {
2156 listener
->begin(listener
);
2158 if (global_dirty_log
) {
2159 if (listener
->log_global_start
) {
2160 listener
->log_global_start(listener
);
2164 view
= address_space_get_flatview(as
);
2165 FOR_EACH_FLAT_RANGE(fr
, view
) {
2166 MemoryRegionSection section
= {
2168 .address_space
= as
,
2169 .offset_within_region
= fr
->offset_in_region
,
2170 .size
= fr
->addr
.size
,
2171 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
2172 .readonly
= fr
->readonly
,
2174 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2175 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2177 if (listener
->region_add
) {
2178 listener
->region_add(listener
, §ion
);
2181 if (listener
->commit
) {
2182 listener
->commit(listener
);
2184 flatview_unref(view
);
2187 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*filter
)
2189 MemoryListener
*other
= NULL
;
2192 listener
->address_space_filter
= filter
;
2193 if (QTAILQ_EMPTY(&memory_listeners
)
2194 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
,
2195 memory_listeners
)->priority
) {
2196 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2198 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2199 if (listener
->priority
< other
->priority
) {
2203 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2206 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2207 listener_add_address_space(listener
, as
);
2211 void memory_listener_unregister(MemoryListener
*listener
)
2213 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2216 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2218 memory_region_ref(root
);
2219 memory_region_transaction_begin();
2222 as
->malloced
= false;
2223 as
->current_map
= g_new(FlatView
, 1);
2224 flatview_init(as
->current_map
);
2225 as
->ioeventfd_nb
= 0;
2226 as
->ioeventfds
= NULL
;
2227 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2228 as
->name
= g_strdup(name
? name
: "anonymous");
2229 address_space_init_dispatch(as
);
2230 memory_region_update_pending
|= root
->enabled
;
2231 memory_region_transaction_commit();
2234 static void do_address_space_destroy(AddressSpace
*as
)
2236 MemoryListener
*listener
;
2237 bool do_free
= as
->malloced
;
2239 address_space_destroy_dispatch(as
);
2241 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2242 assert(listener
->address_space_filter
!= as
);
2245 flatview_unref(as
->current_map
);
2247 g_free(as
->ioeventfds
);
2248 memory_region_unref(as
->root
);
2254 AddressSpace
*address_space_init_shareable(MemoryRegion
*root
, const char *name
)
2258 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2259 if (root
== as
->root
&& as
->malloced
) {
2265 as
= g_malloc0(sizeof *as
);
2266 address_space_init(as
, root
, name
);
2267 as
->malloced
= true;
2271 void address_space_destroy(AddressSpace
*as
)
2273 MemoryRegion
*root
= as
->root
;
2276 if (as
->ref_count
) {
2279 /* Flush out anything from MemoryListeners listening in on this */
2280 memory_region_transaction_begin();
2282 memory_region_transaction_commit();
2283 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2284 address_space_unregister(as
);
2286 /* At this point, as->dispatch and as->current_map are dummy
2287 * entries that the guest should never use. Wait for the old
2288 * values to expire before freeing the data.
2291 call_rcu(as
, do_address_space_destroy
, rcu
);
2294 typedef struct MemoryRegionList MemoryRegionList
;
2296 struct MemoryRegionList
{
2297 const MemoryRegion
*mr
;
2298 QTAILQ_ENTRY(MemoryRegionList
) queue
;
2301 typedef QTAILQ_HEAD(queue
, MemoryRegionList
) MemoryRegionListHead
;
2303 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2304 const MemoryRegion
*mr
, unsigned int level
,
2306 MemoryRegionListHead
*alias_print_queue
)
2308 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2309 MemoryRegionListHead submr_print_queue
;
2310 const MemoryRegion
*submr
;
2317 for (i
= 0; i
< level
; i
++) {
2322 MemoryRegionList
*ml
;
2325 /* check if the alias is already in the queue */
2326 QTAILQ_FOREACH(ml
, alias_print_queue
, queue
) {
2327 if (ml
->mr
== mr
->alias
) {
2333 ml
= g_new(MemoryRegionList
, 1);
2335 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, queue
);
2337 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2338 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2339 "-" TARGET_FMT_plx
"%s\n",
2342 + (int128_nz(mr
->size
) ?
2343 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2344 int128_one())) : 0),
2346 mr
->romd_mode
? 'R' : '-',
2347 !mr
->readonly
&& !(mr
->rom_device
&& mr
->romd_mode
) ? 'W'
2349 memory_region_name(mr
),
2350 memory_region_name(mr
->alias
),
2353 + (int128_nz(mr
->size
) ?
2354 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2355 int128_one())) : 0),
2356 mr
->enabled
? "" : " [disabled]");
2359 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %c%c): %s%s\n",
2362 + (int128_nz(mr
->size
) ?
2363 (hwaddr
)int128_get64(int128_sub(mr
->size
,
2364 int128_one())) : 0),
2366 mr
->romd_mode
? 'R' : '-',
2367 !mr
->readonly
&& !(mr
->rom_device
&& mr
->romd_mode
) ? 'W'
2369 memory_region_name(mr
),
2370 mr
->enabled
? "" : " [disabled]");
2373 QTAILQ_INIT(&submr_print_queue
);
2375 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2376 new_ml
= g_new(MemoryRegionList
, 1);
2378 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2379 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2380 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2381 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2382 QTAILQ_INSERT_BEFORE(ml
, new_ml
, queue
);
2388 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, queue
);
2392 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2393 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, base
+ mr
->addr
,
2397 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, queue
, next_ml
) {
2402 void mtree_info(fprintf_function mon_printf
, void *f
)
2404 MemoryRegionListHead ml_head
;
2405 MemoryRegionList
*ml
, *ml2
;
2408 QTAILQ_INIT(&ml_head
);
2410 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2411 mon_printf(f
, "address-space: %s\n", as
->name
);
2412 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
);
2413 mon_printf(f
, "\n");
2416 /* print aliased regions */
2417 QTAILQ_FOREACH(ml
, &ml_head
, queue
) {
2418 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
2419 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
);
2420 mon_printf(f
, "\n");
2423 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, queue
, ml2
) {
2428 static const TypeInfo memory_region_info
= {
2429 .parent
= TYPE_OBJECT
,
2430 .name
= TYPE_MEMORY_REGION
,
2431 .instance_size
= sizeof(MemoryRegion
),
2432 .instance_init
= memory_region_initfn
,
2433 .instance_finalize
= memory_region_finalize
,
2436 static void memory_register_types(void)
2438 type_register_static(&memory_region_info
);
2441 type_init(memory_register_types
)