target: Include missing 'cpu.h'
[qemu/rayw.git] / block / io.c
blobefc011ce6572642576fe644e582151ee55b06b19
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
50 BdrvChild *c, *next;
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54 continue;
56 bdrv_parent_drained_begin_single(c, false);
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->klass->drained_end) {
66 c->klass->drained_end(c, drained_end_counter);
70 void bdrv_parent_drained_end_single(BdrvChild *c)
72 int drained_end_counter = 0;
73 IO_OR_GS_CODE();
74 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
75 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
78 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
79 bool ignore_bds_parents,
80 int *drained_end_counter)
82 BdrvChild *c;
84 QLIST_FOREACH(c, &bs->parents, next_parent) {
85 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
86 continue;
88 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
92 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 if (c->klass->drained_poll) {
95 return c->klass->drained_poll(c);
97 return false;
100 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
101 bool ignore_bds_parents)
103 BdrvChild *c, *next;
104 bool busy = false;
106 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
107 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
108 continue;
110 busy |= bdrv_parent_drained_poll_single(c);
113 return busy;
116 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
118 IO_OR_GS_CODE();
119 c->parent_quiesce_counter++;
120 if (c->klass->drained_begin) {
121 c->klass->drained_begin(c);
123 if (poll) {
124 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
128 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
130 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
131 src->pdiscard_alignment);
132 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
133 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
134 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
135 src->max_hw_transfer);
136 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
137 src->opt_mem_alignment);
138 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
139 src->min_mem_alignment);
140 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
141 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
144 typedef struct BdrvRefreshLimitsState {
145 BlockDriverState *bs;
146 BlockLimits old_bl;
147 } BdrvRefreshLimitsState;
149 static void bdrv_refresh_limits_abort(void *opaque)
151 BdrvRefreshLimitsState *s = opaque;
153 s->bs->bl = s->old_bl;
156 static TransactionActionDrv bdrv_refresh_limits_drv = {
157 .abort = bdrv_refresh_limits_abort,
158 .clean = g_free,
161 /* @tran is allowed to be NULL, in this case no rollback is possible. */
162 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
164 ERRP_GUARD();
165 BlockDriver *drv = bs->drv;
166 BdrvChild *c;
167 bool have_limits;
169 GLOBAL_STATE_CODE();
171 if (tran) {
172 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
173 *s = (BdrvRefreshLimitsState) {
174 .bs = bs,
175 .old_bl = bs->bl,
177 tran_add(tran, &bdrv_refresh_limits_drv, s);
180 memset(&bs->bl, 0, sizeof(bs->bl));
182 if (!drv) {
183 return;
186 /* Default alignment based on whether driver has byte interface */
187 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
188 drv->bdrv_aio_preadv ||
189 drv->bdrv_co_preadv_part) ? 1 : 512;
191 /* Take some limits from the children as a default */
192 have_limits = false;
193 QLIST_FOREACH(c, &bs->children, next) {
194 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
196 bdrv_merge_limits(&bs->bl, &c->bs->bl);
197 have_limits = true;
201 if (!have_limits) {
202 bs->bl.min_mem_alignment = 512;
203 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
205 /* Safe default since most protocols use readv()/writev()/etc */
206 bs->bl.max_iov = IOV_MAX;
209 /* Then let the driver override it */
210 if (drv->bdrv_refresh_limits) {
211 drv->bdrv_refresh_limits(bs, errp);
212 if (*errp) {
213 return;
217 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
218 error_setg(errp, "Driver requires too large request alignment");
223 * The copy-on-read flag is actually a reference count so multiple users may
224 * use the feature without worrying about clobbering its previous state.
225 * Copy-on-read stays enabled until all users have called to disable it.
227 void bdrv_enable_copy_on_read(BlockDriverState *bs)
229 IO_CODE();
230 qatomic_inc(&bs->copy_on_read);
233 void bdrv_disable_copy_on_read(BlockDriverState *bs)
235 int old = qatomic_fetch_dec(&bs->copy_on_read);
236 IO_CODE();
237 assert(old >= 1);
240 typedef struct {
241 Coroutine *co;
242 BlockDriverState *bs;
243 bool done;
244 bool begin;
245 bool recursive;
246 bool poll;
247 BdrvChild *parent;
248 bool ignore_bds_parents;
249 int *drained_end_counter;
250 } BdrvCoDrainData;
252 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
254 BdrvCoDrainData *data = opaque;
255 BlockDriverState *bs = data->bs;
257 if (data->begin) {
258 bs->drv->bdrv_co_drain_begin(bs);
259 } else {
260 bs->drv->bdrv_co_drain_end(bs);
263 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
264 qatomic_mb_set(&data->done, true);
265 if (!data->begin) {
266 qatomic_dec(data->drained_end_counter);
268 bdrv_dec_in_flight(bs);
270 g_free(data);
273 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
274 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
275 int *drained_end_counter)
277 BdrvCoDrainData *data;
279 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
280 (!begin && !bs->drv->bdrv_co_drain_end)) {
281 return;
284 data = g_new(BdrvCoDrainData, 1);
285 *data = (BdrvCoDrainData) {
286 .bs = bs,
287 .done = false,
288 .begin = begin,
289 .drained_end_counter = drained_end_counter,
292 if (!begin) {
293 qatomic_inc(drained_end_counter);
296 /* Make sure the driver callback completes during the polling phase for
297 * drain_begin. */
298 bdrv_inc_in_flight(bs);
299 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
300 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
303 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
304 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
305 BdrvChild *ignore_parent, bool ignore_bds_parents)
307 BdrvChild *child, *next;
308 IO_OR_GS_CODE();
310 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
311 return true;
314 if (qatomic_read(&bs->in_flight)) {
315 return true;
318 if (recursive) {
319 assert(!ignore_bds_parents);
320 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
321 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
322 return true;
327 return false;
330 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
331 BdrvChild *ignore_parent)
333 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
336 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
337 BdrvChild *parent, bool ignore_bds_parents,
338 bool poll);
339 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
340 BdrvChild *parent, bool ignore_bds_parents,
341 int *drained_end_counter);
343 static void bdrv_co_drain_bh_cb(void *opaque)
345 BdrvCoDrainData *data = opaque;
346 Coroutine *co = data->co;
347 BlockDriverState *bs = data->bs;
349 if (bs) {
350 AioContext *ctx = bdrv_get_aio_context(bs);
351 aio_context_acquire(ctx);
352 bdrv_dec_in_flight(bs);
353 if (data->begin) {
354 assert(!data->drained_end_counter);
355 bdrv_do_drained_begin(bs, data->recursive, data->parent,
356 data->ignore_bds_parents, data->poll);
357 } else {
358 assert(!data->poll);
359 bdrv_do_drained_end(bs, data->recursive, data->parent,
360 data->ignore_bds_parents,
361 data->drained_end_counter);
363 aio_context_release(ctx);
364 } else {
365 assert(data->begin);
366 bdrv_drain_all_begin();
369 data->done = true;
370 aio_co_wake(co);
373 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
374 bool begin, bool recursive,
375 BdrvChild *parent,
376 bool ignore_bds_parents,
377 bool poll,
378 int *drained_end_counter)
380 BdrvCoDrainData data;
381 Coroutine *self = qemu_coroutine_self();
382 AioContext *ctx = bdrv_get_aio_context(bs);
383 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
385 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
386 * other coroutines run if they were queued by aio_co_enter(). */
388 assert(qemu_in_coroutine());
389 data = (BdrvCoDrainData) {
390 .co = self,
391 .bs = bs,
392 .done = false,
393 .begin = begin,
394 .recursive = recursive,
395 .parent = parent,
396 .ignore_bds_parents = ignore_bds_parents,
397 .poll = poll,
398 .drained_end_counter = drained_end_counter,
401 if (bs) {
402 bdrv_inc_in_flight(bs);
406 * Temporarily drop the lock across yield or we would get deadlocks.
407 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
409 * When we yield below, the lock for the current context will be
410 * released, so if this is actually the lock that protects bs, don't drop
411 * it a second time.
413 if (ctx != co_ctx) {
414 aio_context_release(ctx);
416 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
418 qemu_coroutine_yield();
419 /* If we are resumed from some other event (such as an aio completion or a
420 * timer callback), it is a bug in the caller that should be fixed. */
421 assert(data.done);
423 /* Reaquire the AioContext of bs if we dropped it */
424 if (ctx != co_ctx) {
425 aio_context_acquire(ctx);
429 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
430 BdrvChild *parent, bool ignore_bds_parents)
432 IO_OR_GS_CODE();
433 assert(!qemu_in_coroutine());
435 /* Stop things in parent-to-child order */
436 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
437 aio_disable_external(bdrv_get_aio_context(bs));
440 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
441 bdrv_drain_invoke(bs, true, NULL);
444 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
445 BdrvChild *parent, bool ignore_bds_parents,
446 bool poll)
448 BdrvChild *child, *next;
450 if (qemu_in_coroutine()) {
451 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
452 poll, NULL);
453 return;
456 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
458 if (recursive) {
459 assert(!ignore_bds_parents);
460 bs->recursive_quiesce_counter++;
461 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
462 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
463 false);
468 * Wait for drained requests to finish.
470 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
471 * call is needed so things in this AioContext can make progress even
472 * though we don't return to the main AioContext loop - this automatically
473 * includes other nodes in the same AioContext and therefore all child
474 * nodes.
476 if (poll) {
477 assert(!ignore_bds_parents);
478 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
482 void bdrv_drained_begin(BlockDriverState *bs)
484 IO_OR_GS_CODE();
485 bdrv_do_drained_begin(bs, false, NULL, false, true);
488 void bdrv_subtree_drained_begin(BlockDriverState *bs)
490 IO_OR_GS_CODE();
491 bdrv_do_drained_begin(bs, true, NULL, false, true);
495 * This function does not poll, nor must any of its recursively called
496 * functions. The *drained_end_counter pointee will be incremented
497 * once for every background operation scheduled, and decremented once
498 * the operation settles. Therefore, the pointer must remain valid
499 * until the pointee reaches 0. That implies that whoever sets up the
500 * pointee has to poll until it is 0.
502 * We use atomic operations to access *drained_end_counter, because
503 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
504 * @bs may contain nodes in different AioContexts,
505 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
506 * regardless of which AioContext they are in.
508 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
509 BdrvChild *parent, bool ignore_bds_parents,
510 int *drained_end_counter)
512 BdrvChild *child;
513 int old_quiesce_counter;
515 assert(drained_end_counter != NULL);
517 if (qemu_in_coroutine()) {
518 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
519 false, drained_end_counter);
520 return;
522 assert(bs->quiesce_counter > 0);
524 /* Re-enable things in child-to-parent order */
525 bdrv_drain_invoke(bs, false, drained_end_counter);
526 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
527 drained_end_counter);
529 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
530 if (old_quiesce_counter == 1) {
531 aio_enable_external(bdrv_get_aio_context(bs));
534 if (recursive) {
535 assert(!ignore_bds_parents);
536 bs->recursive_quiesce_counter--;
537 QLIST_FOREACH(child, &bs->children, next) {
538 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
539 drained_end_counter);
544 void bdrv_drained_end(BlockDriverState *bs)
546 int drained_end_counter = 0;
547 IO_OR_GS_CODE();
548 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
549 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
552 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
554 IO_CODE();
555 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
558 void bdrv_subtree_drained_end(BlockDriverState *bs)
560 int drained_end_counter = 0;
561 IO_OR_GS_CODE();
562 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
563 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
566 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
568 int i;
569 IO_OR_GS_CODE();
571 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
572 bdrv_do_drained_begin(child->bs, true, child, false, true);
576 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
578 int drained_end_counter = 0;
579 int i;
580 IO_OR_GS_CODE();
582 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
583 bdrv_do_drained_end(child->bs, true, child, false,
584 &drained_end_counter);
587 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
591 * Wait for pending requests to complete on a single BlockDriverState subtree,
592 * and suspend block driver's internal I/O until next request arrives.
594 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
595 * AioContext.
597 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
599 IO_OR_GS_CODE();
600 assert(qemu_in_coroutine());
601 bdrv_drained_begin(bs);
602 bdrv_drained_end(bs);
605 void bdrv_drain(BlockDriverState *bs)
607 IO_OR_GS_CODE();
608 bdrv_drained_begin(bs);
609 bdrv_drained_end(bs);
612 static void bdrv_drain_assert_idle(BlockDriverState *bs)
614 BdrvChild *child, *next;
616 assert(qatomic_read(&bs->in_flight) == 0);
617 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
618 bdrv_drain_assert_idle(child->bs);
622 unsigned int bdrv_drain_all_count = 0;
624 static bool bdrv_drain_all_poll(void)
626 BlockDriverState *bs = NULL;
627 bool result = false;
628 GLOBAL_STATE_CODE();
630 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
631 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
632 while ((bs = bdrv_next_all_states(bs))) {
633 AioContext *aio_context = bdrv_get_aio_context(bs);
634 aio_context_acquire(aio_context);
635 result |= bdrv_drain_poll(bs, false, NULL, true);
636 aio_context_release(aio_context);
639 return result;
643 * Wait for pending requests to complete across all BlockDriverStates
645 * This function does not flush data to disk, use bdrv_flush_all() for that
646 * after calling this function.
648 * This pauses all block jobs and disables external clients. It must
649 * be paired with bdrv_drain_all_end().
651 * NOTE: no new block jobs or BlockDriverStates can be created between
652 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
654 void bdrv_drain_all_begin(void)
656 BlockDriverState *bs = NULL;
657 GLOBAL_STATE_CODE();
659 if (qemu_in_coroutine()) {
660 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
661 return;
665 * bdrv queue is managed by record/replay,
666 * waiting for finishing the I/O requests may
667 * be infinite
669 if (replay_events_enabled()) {
670 return;
673 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
674 * loop AioContext, so make sure we're in the main context. */
675 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
676 assert(bdrv_drain_all_count < INT_MAX);
677 bdrv_drain_all_count++;
679 /* Quiesce all nodes, without polling in-flight requests yet. The graph
680 * cannot change during this loop. */
681 while ((bs = bdrv_next_all_states(bs))) {
682 AioContext *aio_context = bdrv_get_aio_context(bs);
684 aio_context_acquire(aio_context);
685 bdrv_do_drained_begin(bs, false, NULL, true, false);
686 aio_context_release(aio_context);
689 /* Now poll the in-flight requests */
690 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
692 while ((bs = bdrv_next_all_states(bs))) {
693 bdrv_drain_assert_idle(bs);
697 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
699 int drained_end_counter = 0;
700 GLOBAL_STATE_CODE();
702 g_assert(bs->quiesce_counter > 0);
703 g_assert(!bs->refcnt);
705 while (bs->quiesce_counter) {
706 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
708 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
711 void bdrv_drain_all_end(void)
713 BlockDriverState *bs = NULL;
714 int drained_end_counter = 0;
715 GLOBAL_STATE_CODE();
718 * bdrv queue is managed by record/replay,
719 * waiting for finishing the I/O requests may
720 * be endless
722 if (replay_events_enabled()) {
723 return;
726 while ((bs = bdrv_next_all_states(bs))) {
727 AioContext *aio_context = bdrv_get_aio_context(bs);
729 aio_context_acquire(aio_context);
730 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
731 aio_context_release(aio_context);
734 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
735 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
737 assert(bdrv_drain_all_count > 0);
738 bdrv_drain_all_count--;
741 void bdrv_drain_all(void)
743 GLOBAL_STATE_CODE();
744 bdrv_drain_all_begin();
745 bdrv_drain_all_end();
749 * Remove an active request from the tracked requests list
751 * This function should be called when a tracked request is completing.
753 static void tracked_request_end(BdrvTrackedRequest *req)
755 if (req->serialising) {
756 qatomic_dec(&req->bs->serialising_in_flight);
759 qemu_co_mutex_lock(&req->bs->reqs_lock);
760 QLIST_REMOVE(req, list);
761 qemu_co_queue_restart_all(&req->wait_queue);
762 qemu_co_mutex_unlock(&req->bs->reqs_lock);
766 * Add an active request to the tracked requests list
768 static void tracked_request_begin(BdrvTrackedRequest *req,
769 BlockDriverState *bs,
770 int64_t offset,
771 int64_t bytes,
772 enum BdrvTrackedRequestType type)
774 bdrv_check_request(offset, bytes, &error_abort);
776 *req = (BdrvTrackedRequest){
777 .bs = bs,
778 .offset = offset,
779 .bytes = bytes,
780 .type = type,
781 .co = qemu_coroutine_self(),
782 .serialising = false,
783 .overlap_offset = offset,
784 .overlap_bytes = bytes,
787 qemu_co_queue_init(&req->wait_queue);
789 qemu_co_mutex_lock(&bs->reqs_lock);
790 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
791 qemu_co_mutex_unlock(&bs->reqs_lock);
794 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
795 int64_t offset, int64_t bytes)
797 bdrv_check_request(offset, bytes, &error_abort);
799 /* aaaa bbbb */
800 if (offset >= req->overlap_offset + req->overlap_bytes) {
801 return false;
803 /* bbbb aaaa */
804 if (req->overlap_offset >= offset + bytes) {
805 return false;
807 return true;
810 /* Called with self->bs->reqs_lock held */
811 static BdrvTrackedRequest *
812 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
814 BdrvTrackedRequest *req;
816 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
817 if (req == self || (!req->serialising && !self->serialising)) {
818 continue;
820 if (tracked_request_overlaps(req, self->overlap_offset,
821 self->overlap_bytes))
824 * Hitting this means there was a reentrant request, for
825 * example, a block driver issuing nested requests. This must
826 * never happen since it means deadlock.
828 assert(qemu_coroutine_self() != req->co);
831 * If the request is already (indirectly) waiting for us, or
832 * will wait for us as soon as it wakes up, then just go on
833 * (instead of producing a deadlock in the former case).
835 if (!req->waiting_for) {
836 return req;
841 return NULL;
844 /* Called with self->bs->reqs_lock held */
845 static bool coroutine_fn
846 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
848 BdrvTrackedRequest *req;
849 bool waited = false;
851 while ((req = bdrv_find_conflicting_request(self))) {
852 self->waiting_for = req;
853 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
854 self->waiting_for = NULL;
855 waited = true;
858 return waited;
861 /* Called with req->bs->reqs_lock held */
862 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
863 uint64_t align)
865 int64_t overlap_offset = req->offset & ~(align - 1);
866 int64_t overlap_bytes =
867 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
869 bdrv_check_request(req->offset, req->bytes, &error_abort);
871 if (!req->serialising) {
872 qatomic_inc(&req->bs->serialising_in_flight);
873 req->serialising = true;
876 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
877 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
881 * Return the tracked request on @bs for the current coroutine, or
882 * NULL if there is none.
884 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
886 BdrvTrackedRequest *req;
887 Coroutine *self = qemu_coroutine_self();
888 IO_CODE();
890 QLIST_FOREACH(req, &bs->tracked_requests, list) {
891 if (req->co == self) {
892 return req;
896 return NULL;
900 * Round a region to cluster boundaries
902 void bdrv_round_to_clusters(BlockDriverState *bs,
903 int64_t offset, int64_t bytes,
904 int64_t *cluster_offset,
905 int64_t *cluster_bytes)
907 BlockDriverInfo bdi;
908 IO_CODE();
909 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
910 *cluster_offset = offset;
911 *cluster_bytes = bytes;
912 } else {
913 int64_t c = bdi.cluster_size;
914 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
915 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
919 static int bdrv_get_cluster_size(BlockDriverState *bs)
921 BlockDriverInfo bdi;
922 int ret;
924 ret = bdrv_get_info(bs, &bdi);
925 if (ret < 0 || bdi.cluster_size == 0) {
926 return bs->bl.request_alignment;
927 } else {
928 return bdi.cluster_size;
932 void bdrv_inc_in_flight(BlockDriverState *bs)
934 IO_CODE();
935 qatomic_inc(&bs->in_flight);
938 void bdrv_wakeup(BlockDriverState *bs)
940 IO_CODE();
941 aio_wait_kick();
944 void bdrv_dec_in_flight(BlockDriverState *bs)
946 IO_CODE();
947 qatomic_dec(&bs->in_flight);
948 bdrv_wakeup(bs);
951 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
953 BlockDriverState *bs = self->bs;
954 bool waited = false;
956 if (!qatomic_read(&bs->serialising_in_flight)) {
957 return false;
960 qemu_co_mutex_lock(&bs->reqs_lock);
961 waited = bdrv_wait_serialising_requests_locked(self);
962 qemu_co_mutex_unlock(&bs->reqs_lock);
964 return waited;
967 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
968 uint64_t align)
970 bool waited;
971 IO_CODE();
973 qemu_co_mutex_lock(&req->bs->reqs_lock);
975 tracked_request_set_serialising(req, align);
976 waited = bdrv_wait_serialising_requests_locked(req);
978 qemu_co_mutex_unlock(&req->bs->reqs_lock);
980 return waited;
983 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
984 QEMUIOVector *qiov, size_t qiov_offset,
985 Error **errp)
988 * Check generic offset/bytes correctness
991 if (offset < 0) {
992 error_setg(errp, "offset is negative: %" PRIi64, offset);
993 return -EIO;
996 if (bytes < 0) {
997 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
998 return -EIO;
1001 if (bytes > BDRV_MAX_LENGTH) {
1002 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
1003 bytes, BDRV_MAX_LENGTH);
1004 return -EIO;
1007 if (offset > BDRV_MAX_LENGTH) {
1008 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
1009 offset, BDRV_MAX_LENGTH);
1010 return -EIO;
1013 if (offset > BDRV_MAX_LENGTH - bytes) {
1014 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
1015 "exceeds maximum(%" PRIi64 ")", offset, bytes,
1016 BDRV_MAX_LENGTH);
1017 return -EIO;
1020 if (!qiov) {
1021 return 0;
1025 * Check qiov and qiov_offset
1028 if (qiov_offset > qiov->size) {
1029 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1030 qiov_offset, qiov->size);
1031 return -EIO;
1034 if (bytes > qiov->size - qiov_offset) {
1035 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1036 "vector size(%zu)", bytes, qiov_offset, qiov->size);
1037 return -EIO;
1040 return 0;
1043 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1045 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1048 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1049 QEMUIOVector *qiov, size_t qiov_offset)
1051 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1052 if (ret < 0) {
1053 return ret;
1056 if (bytes > BDRV_REQUEST_MAX_BYTES) {
1057 return -EIO;
1060 return 0;
1063 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1064 int64_t bytes, BdrvRequestFlags flags)
1066 IO_CODE();
1067 return bdrv_pwritev(child, offset, bytes, NULL,
1068 BDRV_REQ_ZERO_WRITE | flags);
1072 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1073 * The operation is sped up by checking the block status and only writing
1074 * zeroes to the device if they currently do not return zeroes. Optional
1075 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1076 * BDRV_REQ_FUA).
1078 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1080 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1082 int ret;
1083 int64_t target_size, bytes, offset = 0;
1084 BlockDriverState *bs = child->bs;
1085 IO_CODE();
1087 target_size = bdrv_getlength(bs);
1088 if (target_size < 0) {
1089 return target_size;
1092 for (;;) {
1093 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1094 if (bytes <= 0) {
1095 return 0;
1097 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1098 if (ret < 0) {
1099 return ret;
1101 if (ret & BDRV_BLOCK_ZERO) {
1102 offset += bytes;
1103 continue;
1105 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1106 if (ret < 0) {
1107 return ret;
1109 offset += bytes;
1113 /* See bdrv_pwrite() for the return codes */
1114 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1116 int ret;
1117 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1118 IO_CODE();
1120 if (bytes < 0) {
1121 return -EINVAL;
1124 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1126 return ret < 0 ? ret : bytes;
1129 /* Return no. of bytes on success or < 0 on error. Important errors are:
1130 -EIO generic I/O error (may happen for all errors)
1131 -ENOMEDIUM No media inserted.
1132 -EINVAL Invalid offset or number of bytes
1133 -EACCES Trying to write a read-only device
1135 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1136 int64_t bytes)
1138 int ret;
1139 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1140 IO_CODE();
1142 if (bytes < 0) {
1143 return -EINVAL;
1146 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1148 return ret < 0 ? ret : bytes;
1152 * Writes to the file and ensures that no writes are reordered across this
1153 * request (acts as a barrier)
1155 * Returns 0 on success, -errno in error cases.
1157 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1158 const void *buf, int64_t count)
1160 int ret;
1161 IO_CODE();
1163 ret = bdrv_pwrite(child, offset, buf, count);
1164 if (ret < 0) {
1165 return ret;
1168 ret = bdrv_flush(child->bs);
1169 if (ret < 0) {
1170 return ret;
1173 return 0;
1176 typedef struct CoroutineIOCompletion {
1177 Coroutine *coroutine;
1178 int ret;
1179 } CoroutineIOCompletion;
1181 static void bdrv_co_io_em_complete(void *opaque, int ret)
1183 CoroutineIOCompletion *co = opaque;
1185 co->ret = ret;
1186 aio_co_wake(co->coroutine);
1189 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1190 int64_t offset, int64_t bytes,
1191 QEMUIOVector *qiov,
1192 size_t qiov_offset, int flags)
1194 BlockDriver *drv = bs->drv;
1195 int64_t sector_num;
1196 unsigned int nb_sectors;
1197 QEMUIOVector local_qiov;
1198 int ret;
1200 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1201 assert(!(flags & ~BDRV_REQ_MASK));
1202 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1204 if (!drv) {
1205 return -ENOMEDIUM;
1208 if (drv->bdrv_co_preadv_part) {
1209 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1210 flags);
1213 if (qiov_offset > 0 || bytes != qiov->size) {
1214 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1215 qiov = &local_qiov;
1218 if (drv->bdrv_co_preadv) {
1219 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1220 goto out;
1223 if (drv->bdrv_aio_preadv) {
1224 BlockAIOCB *acb;
1225 CoroutineIOCompletion co = {
1226 .coroutine = qemu_coroutine_self(),
1229 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1230 bdrv_co_io_em_complete, &co);
1231 if (acb == NULL) {
1232 ret = -EIO;
1233 goto out;
1234 } else {
1235 qemu_coroutine_yield();
1236 ret = co.ret;
1237 goto out;
1241 sector_num = offset >> BDRV_SECTOR_BITS;
1242 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1244 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1245 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1246 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1247 assert(drv->bdrv_co_readv);
1249 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1251 out:
1252 if (qiov == &local_qiov) {
1253 qemu_iovec_destroy(&local_qiov);
1256 return ret;
1259 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1260 int64_t offset, int64_t bytes,
1261 QEMUIOVector *qiov,
1262 size_t qiov_offset,
1263 BdrvRequestFlags flags)
1265 BlockDriver *drv = bs->drv;
1266 int64_t sector_num;
1267 unsigned int nb_sectors;
1268 QEMUIOVector local_qiov;
1269 int ret;
1271 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1272 assert(!(flags & ~BDRV_REQ_MASK));
1273 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1275 if (!drv) {
1276 return -ENOMEDIUM;
1279 if (drv->bdrv_co_pwritev_part) {
1280 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1281 flags & bs->supported_write_flags);
1282 flags &= ~bs->supported_write_flags;
1283 goto emulate_flags;
1286 if (qiov_offset > 0 || bytes != qiov->size) {
1287 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1288 qiov = &local_qiov;
1291 if (drv->bdrv_co_pwritev) {
1292 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1293 flags & bs->supported_write_flags);
1294 flags &= ~bs->supported_write_flags;
1295 goto emulate_flags;
1298 if (drv->bdrv_aio_pwritev) {
1299 BlockAIOCB *acb;
1300 CoroutineIOCompletion co = {
1301 .coroutine = qemu_coroutine_self(),
1304 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1305 flags & bs->supported_write_flags,
1306 bdrv_co_io_em_complete, &co);
1307 flags &= ~bs->supported_write_flags;
1308 if (acb == NULL) {
1309 ret = -EIO;
1310 } else {
1311 qemu_coroutine_yield();
1312 ret = co.ret;
1314 goto emulate_flags;
1317 sector_num = offset >> BDRV_SECTOR_BITS;
1318 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1320 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1321 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1322 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1324 assert(drv->bdrv_co_writev);
1325 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1326 flags & bs->supported_write_flags);
1327 flags &= ~bs->supported_write_flags;
1329 emulate_flags:
1330 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1331 ret = bdrv_co_flush(bs);
1334 if (qiov == &local_qiov) {
1335 qemu_iovec_destroy(&local_qiov);
1338 return ret;
1341 static int coroutine_fn
1342 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1343 int64_t bytes, QEMUIOVector *qiov,
1344 size_t qiov_offset)
1346 BlockDriver *drv = bs->drv;
1347 QEMUIOVector local_qiov;
1348 int ret;
1350 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1352 if (!drv) {
1353 return -ENOMEDIUM;
1356 if (!block_driver_can_compress(drv)) {
1357 return -ENOTSUP;
1360 if (drv->bdrv_co_pwritev_compressed_part) {
1361 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1362 qiov, qiov_offset);
1365 if (qiov_offset == 0) {
1366 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1369 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1370 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1371 qemu_iovec_destroy(&local_qiov);
1373 return ret;
1376 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1377 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1378 size_t qiov_offset, int flags)
1380 BlockDriverState *bs = child->bs;
1382 /* Perform I/O through a temporary buffer so that users who scribble over
1383 * their read buffer while the operation is in progress do not end up
1384 * modifying the image file. This is critical for zero-copy guest I/O
1385 * where anything might happen inside guest memory.
1387 void *bounce_buffer = NULL;
1389 BlockDriver *drv = bs->drv;
1390 int64_t cluster_offset;
1391 int64_t cluster_bytes;
1392 int64_t skip_bytes;
1393 int ret;
1394 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1395 BDRV_REQUEST_MAX_BYTES);
1396 int64_t progress = 0;
1397 bool skip_write;
1399 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1401 if (!drv) {
1402 return -ENOMEDIUM;
1406 * Do not write anything when the BDS is inactive. That is not
1407 * allowed, and it would not help.
1409 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1411 /* FIXME We cannot require callers to have write permissions when all they
1412 * are doing is a read request. If we did things right, write permissions
1413 * would be obtained anyway, but internally by the copy-on-read code. As
1414 * long as it is implemented here rather than in a separate filter driver,
1415 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1416 * it could request permissions. Therefore we have to bypass the permission
1417 * system for the moment. */
1418 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1420 /* Cover entire cluster so no additional backing file I/O is required when
1421 * allocating cluster in the image file. Note that this value may exceed
1422 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1423 * is one reason we loop rather than doing it all at once.
1425 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1426 skip_bytes = offset - cluster_offset;
1428 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1429 cluster_offset, cluster_bytes);
1431 while (cluster_bytes) {
1432 int64_t pnum;
1434 if (skip_write) {
1435 ret = 1; /* "already allocated", so nothing will be copied */
1436 pnum = MIN(cluster_bytes, max_transfer);
1437 } else {
1438 ret = bdrv_is_allocated(bs, cluster_offset,
1439 MIN(cluster_bytes, max_transfer), &pnum);
1440 if (ret < 0) {
1442 * Safe to treat errors in querying allocation as if
1443 * unallocated; we'll probably fail again soon on the
1444 * read, but at least that will set a decent errno.
1446 pnum = MIN(cluster_bytes, max_transfer);
1449 /* Stop at EOF if the image ends in the middle of the cluster */
1450 if (ret == 0 && pnum == 0) {
1451 assert(progress >= bytes);
1452 break;
1455 assert(skip_bytes < pnum);
1458 if (ret <= 0) {
1459 QEMUIOVector local_qiov;
1461 /* Must copy-on-read; use the bounce buffer */
1462 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1463 if (!bounce_buffer) {
1464 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1465 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1466 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1468 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1469 if (!bounce_buffer) {
1470 ret = -ENOMEM;
1471 goto err;
1474 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1476 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1477 &local_qiov, 0, 0);
1478 if (ret < 0) {
1479 goto err;
1482 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1483 if (drv->bdrv_co_pwrite_zeroes &&
1484 buffer_is_zero(bounce_buffer, pnum)) {
1485 /* FIXME: Should we (perhaps conditionally) be setting
1486 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1487 * that still correctly reads as zero? */
1488 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1489 BDRV_REQ_WRITE_UNCHANGED);
1490 } else {
1491 /* This does not change the data on the disk, it is not
1492 * necessary to flush even in cache=writethrough mode.
1494 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1495 &local_qiov, 0,
1496 BDRV_REQ_WRITE_UNCHANGED);
1499 if (ret < 0) {
1500 /* It might be okay to ignore write errors for guest
1501 * requests. If this is a deliberate copy-on-read
1502 * then we don't want to ignore the error. Simply
1503 * report it in all cases.
1505 goto err;
1508 if (!(flags & BDRV_REQ_PREFETCH)) {
1509 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1510 bounce_buffer + skip_bytes,
1511 MIN(pnum - skip_bytes, bytes - progress));
1513 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1514 /* Read directly into the destination */
1515 ret = bdrv_driver_preadv(bs, offset + progress,
1516 MIN(pnum - skip_bytes, bytes - progress),
1517 qiov, qiov_offset + progress, 0);
1518 if (ret < 0) {
1519 goto err;
1523 cluster_offset += pnum;
1524 cluster_bytes -= pnum;
1525 progress += pnum - skip_bytes;
1526 skip_bytes = 0;
1528 ret = 0;
1530 err:
1531 qemu_vfree(bounce_buffer);
1532 return ret;
1536 * Forwards an already correctly aligned request to the BlockDriver. This
1537 * handles copy on read, zeroing after EOF, and fragmentation of large
1538 * reads; any other features must be implemented by the caller.
1540 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1541 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1542 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1544 BlockDriverState *bs = child->bs;
1545 int64_t total_bytes, max_bytes;
1546 int ret = 0;
1547 int64_t bytes_remaining = bytes;
1548 int max_transfer;
1550 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1551 assert(is_power_of_2(align));
1552 assert((offset & (align - 1)) == 0);
1553 assert((bytes & (align - 1)) == 0);
1554 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1555 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1556 align);
1558 /* TODO: We would need a per-BDS .supported_read_flags and
1559 * potential fallback support, if we ever implement any read flags
1560 * to pass through to drivers. For now, there aren't any
1561 * passthrough flags. */
1562 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1564 /* Handle Copy on Read and associated serialisation */
1565 if (flags & BDRV_REQ_COPY_ON_READ) {
1566 /* If we touch the same cluster it counts as an overlap. This
1567 * guarantees that allocating writes will be serialized and not race
1568 * with each other for the same cluster. For example, in copy-on-read
1569 * it ensures that the CoR read and write operations are atomic and
1570 * guest writes cannot interleave between them. */
1571 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1572 } else {
1573 bdrv_wait_serialising_requests(req);
1576 if (flags & BDRV_REQ_COPY_ON_READ) {
1577 int64_t pnum;
1579 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1580 flags &= ~BDRV_REQ_COPY_ON_READ;
1582 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1583 if (ret < 0) {
1584 goto out;
1587 if (!ret || pnum != bytes) {
1588 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1589 qiov, qiov_offset, flags);
1590 goto out;
1591 } else if (flags & BDRV_REQ_PREFETCH) {
1592 goto out;
1596 /* Forward the request to the BlockDriver, possibly fragmenting it */
1597 total_bytes = bdrv_getlength(bs);
1598 if (total_bytes < 0) {
1599 ret = total_bytes;
1600 goto out;
1603 assert(!(flags & ~bs->supported_read_flags));
1605 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1606 if (bytes <= max_bytes && bytes <= max_transfer) {
1607 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1608 goto out;
1611 while (bytes_remaining) {
1612 int64_t num;
1614 if (max_bytes) {
1615 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1616 assert(num);
1618 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1619 num, qiov,
1620 qiov_offset + bytes - bytes_remaining,
1621 flags);
1622 max_bytes -= num;
1623 } else {
1624 num = bytes_remaining;
1625 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1626 0, bytes_remaining);
1628 if (ret < 0) {
1629 goto out;
1631 bytes_remaining -= num;
1634 out:
1635 return ret < 0 ? ret : 0;
1639 * Request padding
1641 * |<---- align ----->| |<----- align ---->|
1642 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1643 * | | | | | |
1644 * -*----------$-------*-------- ... --------*-----$------------*---
1645 * | | | | | |
1646 * | offset | | end |
1647 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1648 * [buf ... ) [tail_buf )
1650 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1651 * is placed at the beginning of @buf and @tail at the @end.
1653 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1654 * around tail, if tail exists.
1656 * @merge_reads is true for small requests,
1657 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1658 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1660 typedef struct BdrvRequestPadding {
1661 uint8_t *buf;
1662 size_t buf_len;
1663 uint8_t *tail_buf;
1664 size_t head;
1665 size_t tail;
1666 bool merge_reads;
1667 QEMUIOVector local_qiov;
1668 } BdrvRequestPadding;
1670 static bool bdrv_init_padding(BlockDriverState *bs,
1671 int64_t offset, int64_t bytes,
1672 BdrvRequestPadding *pad)
1674 int64_t align = bs->bl.request_alignment;
1675 int64_t sum;
1677 bdrv_check_request(offset, bytes, &error_abort);
1678 assert(align <= INT_MAX); /* documented in block/block_int.h */
1679 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1681 memset(pad, 0, sizeof(*pad));
1683 pad->head = offset & (align - 1);
1684 pad->tail = ((offset + bytes) & (align - 1));
1685 if (pad->tail) {
1686 pad->tail = align - pad->tail;
1689 if (!pad->head && !pad->tail) {
1690 return false;
1693 assert(bytes); /* Nothing good in aligning zero-length requests */
1695 sum = pad->head + bytes + pad->tail;
1696 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1697 pad->buf = qemu_blockalign(bs, pad->buf_len);
1698 pad->merge_reads = sum == pad->buf_len;
1699 if (pad->tail) {
1700 pad->tail_buf = pad->buf + pad->buf_len - align;
1703 return true;
1706 static int bdrv_padding_rmw_read(BdrvChild *child,
1707 BdrvTrackedRequest *req,
1708 BdrvRequestPadding *pad,
1709 bool zero_middle)
1711 QEMUIOVector local_qiov;
1712 BlockDriverState *bs = child->bs;
1713 uint64_t align = bs->bl.request_alignment;
1714 int ret;
1716 assert(req->serialising && pad->buf);
1718 if (pad->head || pad->merge_reads) {
1719 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1721 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1723 if (pad->head) {
1724 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1726 if (pad->merge_reads && pad->tail) {
1727 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1729 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1730 align, &local_qiov, 0, 0);
1731 if (ret < 0) {
1732 return ret;
1734 if (pad->head) {
1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1737 if (pad->merge_reads && pad->tail) {
1738 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1741 if (pad->merge_reads) {
1742 goto zero_mem;
1746 if (pad->tail) {
1747 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1749 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1750 ret = bdrv_aligned_preadv(
1751 child, req,
1752 req->overlap_offset + req->overlap_bytes - align,
1753 align, align, &local_qiov, 0, 0);
1754 if (ret < 0) {
1755 return ret;
1757 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1760 zero_mem:
1761 if (zero_middle) {
1762 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1765 return 0;
1768 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1770 if (pad->buf) {
1771 qemu_vfree(pad->buf);
1772 qemu_iovec_destroy(&pad->local_qiov);
1774 memset(pad, 0, sizeof(*pad));
1778 * bdrv_pad_request
1780 * Exchange request parameters with padded request if needed. Don't include RMW
1781 * read of padding, bdrv_padding_rmw_read() should be called separately if
1782 * needed.
1784 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1785 * - on function start they represent original request
1786 * - on failure or when padding is not needed they are unchanged
1787 * - on success when padding is needed they represent padded request
1789 static int bdrv_pad_request(BlockDriverState *bs,
1790 QEMUIOVector **qiov, size_t *qiov_offset,
1791 int64_t *offset, int64_t *bytes,
1792 BdrvRequestPadding *pad, bool *padded)
1794 int ret;
1796 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1798 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1799 if (padded) {
1800 *padded = false;
1802 return 0;
1805 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1806 *qiov, *qiov_offset, *bytes,
1807 pad->buf + pad->buf_len - pad->tail,
1808 pad->tail);
1809 if (ret < 0) {
1810 bdrv_padding_destroy(pad);
1811 return ret;
1813 *bytes += pad->head + pad->tail;
1814 *offset -= pad->head;
1815 *qiov = &pad->local_qiov;
1816 *qiov_offset = 0;
1817 if (padded) {
1818 *padded = true;
1821 return 0;
1824 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1825 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1826 BdrvRequestFlags flags)
1828 IO_CODE();
1829 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1832 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1833 int64_t offset, int64_t bytes,
1834 QEMUIOVector *qiov, size_t qiov_offset,
1835 BdrvRequestFlags flags)
1837 BlockDriverState *bs = child->bs;
1838 BdrvTrackedRequest req;
1839 BdrvRequestPadding pad;
1840 int ret;
1841 IO_CODE();
1843 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1845 if (!bdrv_is_inserted(bs)) {
1846 return -ENOMEDIUM;
1849 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1850 if (ret < 0) {
1851 return ret;
1854 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1856 * Aligning zero request is nonsense. Even if driver has special meaning
1857 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1858 * it to driver due to request_alignment.
1860 * Still, no reason to return an error if someone do unaligned
1861 * zero-length read occasionally.
1863 return 0;
1866 bdrv_inc_in_flight(bs);
1868 /* Don't do copy-on-read if we read data before write operation */
1869 if (qatomic_read(&bs->copy_on_read)) {
1870 flags |= BDRV_REQ_COPY_ON_READ;
1873 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1874 NULL);
1875 if (ret < 0) {
1876 goto fail;
1879 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1880 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1881 bs->bl.request_alignment,
1882 qiov, qiov_offset, flags);
1883 tracked_request_end(&req);
1884 bdrv_padding_destroy(&pad);
1886 fail:
1887 bdrv_dec_in_flight(bs);
1889 return ret;
1892 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1893 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1895 BlockDriver *drv = bs->drv;
1896 QEMUIOVector qiov;
1897 void *buf = NULL;
1898 int ret = 0;
1899 bool need_flush = false;
1900 int head = 0;
1901 int tail = 0;
1903 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1904 INT64_MAX);
1905 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1906 bs->bl.request_alignment);
1907 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1909 bdrv_check_request(offset, bytes, &error_abort);
1911 if (!drv) {
1912 return -ENOMEDIUM;
1915 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1916 return -ENOTSUP;
1919 /* Invalidate the cached block-status data range if this write overlaps */
1920 bdrv_bsc_invalidate_range(bs, offset, bytes);
1922 assert(alignment % bs->bl.request_alignment == 0);
1923 head = offset % alignment;
1924 tail = (offset + bytes) % alignment;
1925 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1926 assert(max_write_zeroes >= bs->bl.request_alignment);
1928 while (bytes > 0 && !ret) {
1929 int64_t num = bytes;
1931 /* Align request. Block drivers can expect the "bulk" of the request
1932 * to be aligned, and that unaligned requests do not cross cluster
1933 * boundaries.
1935 if (head) {
1936 /* Make a small request up to the first aligned sector. For
1937 * convenience, limit this request to max_transfer even if
1938 * we don't need to fall back to writes. */
1939 num = MIN(MIN(bytes, max_transfer), alignment - head);
1940 head = (head + num) % alignment;
1941 assert(num < max_write_zeroes);
1942 } else if (tail && num > alignment) {
1943 /* Shorten the request to the last aligned sector. */
1944 num -= tail;
1947 /* limit request size */
1948 if (num > max_write_zeroes) {
1949 num = max_write_zeroes;
1952 ret = -ENOTSUP;
1953 /* First try the efficient write zeroes operation */
1954 if (drv->bdrv_co_pwrite_zeroes) {
1955 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1956 flags & bs->supported_zero_flags);
1957 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1958 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1959 need_flush = true;
1961 } else {
1962 assert(!bs->supported_zero_flags);
1965 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1966 /* Fall back to bounce buffer if write zeroes is unsupported */
1967 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1969 if ((flags & BDRV_REQ_FUA) &&
1970 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1971 /* No need for bdrv_driver_pwrite() to do a fallback
1972 * flush on each chunk; use just one at the end */
1973 write_flags &= ~BDRV_REQ_FUA;
1974 need_flush = true;
1976 num = MIN(num, max_transfer);
1977 if (buf == NULL) {
1978 buf = qemu_try_blockalign0(bs, num);
1979 if (buf == NULL) {
1980 ret = -ENOMEM;
1981 goto fail;
1984 qemu_iovec_init_buf(&qiov, buf, num);
1986 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1988 /* Keep bounce buffer around if it is big enough for all
1989 * all future requests.
1991 if (num < max_transfer) {
1992 qemu_vfree(buf);
1993 buf = NULL;
1997 offset += num;
1998 bytes -= num;
2001 fail:
2002 if (ret == 0 && need_flush) {
2003 ret = bdrv_co_flush(bs);
2005 qemu_vfree(buf);
2006 return ret;
2009 static inline int coroutine_fn
2010 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
2011 BdrvTrackedRequest *req, int flags)
2013 BlockDriverState *bs = child->bs;
2015 bdrv_check_request(offset, bytes, &error_abort);
2017 if (bdrv_is_read_only(bs)) {
2018 return -EPERM;
2021 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2022 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
2023 assert(!(flags & ~BDRV_REQ_MASK));
2024 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
2026 if (flags & BDRV_REQ_SERIALISING) {
2027 QEMU_LOCK_GUARD(&bs->reqs_lock);
2029 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
2031 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
2032 return -EBUSY;
2035 bdrv_wait_serialising_requests_locked(req);
2036 } else {
2037 bdrv_wait_serialising_requests(req);
2040 assert(req->overlap_offset <= offset);
2041 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2042 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2043 child->perm & BLK_PERM_RESIZE);
2045 switch (req->type) {
2046 case BDRV_TRACKED_WRITE:
2047 case BDRV_TRACKED_DISCARD:
2048 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2049 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2050 } else {
2051 assert(child->perm & BLK_PERM_WRITE);
2053 bdrv_write_threshold_check_write(bs, offset, bytes);
2054 return 0;
2055 case BDRV_TRACKED_TRUNCATE:
2056 assert(child->perm & BLK_PERM_RESIZE);
2057 return 0;
2058 default:
2059 abort();
2063 static inline void coroutine_fn
2064 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2065 BdrvTrackedRequest *req, int ret)
2067 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2068 BlockDriverState *bs = child->bs;
2070 bdrv_check_request(offset, bytes, &error_abort);
2072 qatomic_inc(&bs->write_gen);
2075 * Discard cannot extend the image, but in error handling cases, such as
2076 * when reverting a qcow2 cluster allocation, the discarded range can pass
2077 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2078 * here. Instead, just skip it, since semantically a discard request
2079 * beyond EOF cannot expand the image anyway.
2081 if (ret == 0 &&
2082 (req->type == BDRV_TRACKED_TRUNCATE ||
2083 end_sector > bs->total_sectors) &&
2084 req->type != BDRV_TRACKED_DISCARD) {
2085 bs->total_sectors = end_sector;
2086 bdrv_parent_cb_resize(bs);
2087 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2089 if (req->bytes) {
2090 switch (req->type) {
2091 case BDRV_TRACKED_WRITE:
2092 stat64_max(&bs->wr_highest_offset, offset + bytes);
2093 /* fall through, to set dirty bits */
2094 case BDRV_TRACKED_DISCARD:
2095 bdrv_set_dirty(bs, offset, bytes);
2096 break;
2097 default:
2098 break;
2104 * Forwards an already correctly aligned write request to the BlockDriver,
2105 * after possibly fragmenting it.
2107 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2108 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2109 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2110 BdrvRequestFlags flags)
2112 BlockDriverState *bs = child->bs;
2113 BlockDriver *drv = bs->drv;
2114 int ret;
2116 int64_t bytes_remaining = bytes;
2117 int max_transfer;
2119 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2121 if (!drv) {
2122 return -ENOMEDIUM;
2125 if (bdrv_has_readonly_bitmaps(bs)) {
2126 return -EPERM;
2129 assert(is_power_of_2(align));
2130 assert((offset & (align - 1)) == 0);
2131 assert((bytes & (align - 1)) == 0);
2132 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2133 align);
2135 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2137 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2138 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2139 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2140 flags |= BDRV_REQ_ZERO_WRITE;
2141 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2142 flags |= BDRV_REQ_MAY_UNMAP;
2146 if (ret < 0) {
2147 /* Do nothing, write notifier decided to fail this request */
2148 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2149 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2150 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2151 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2152 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2153 qiov, qiov_offset);
2154 } else if (bytes <= max_transfer) {
2155 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2156 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2157 } else {
2158 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2159 while (bytes_remaining) {
2160 int num = MIN(bytes_remaining, max_transfer);
2161 int local_flags = flags;
2163 assert(num);
2164 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2165 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2166 /* If FUA is going to be emulated by flush, we only
2167 * need to flush on the last iteration */
2168 local_flags &= ~BDRV_REQ_FUA;
2171 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2172 num, qiov,
2173 qiov_offset + bytes - bytes_remaining,
2174 local_flags);
2175 if (ret < 0) {
2176 break;
2178 bytes_remaining -= num;
2181 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2183 if (ret >= 0) {
2184 ret = 0;
2186 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2188 return ret;
2191 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2192 int64_t offset,
2193 int64_t bytes,
2194 BdrvRequestFlags flags,
2195 BdrvTrackedRequest *req)
2197 BlockDriverState *bs = child->bs;
2198 QEMUIOVector local_qiov;
2199 uint64_t align = bs->bl.request_alignment;
2200 int ret = 0;
2201 bool padding;
2202 BdrvRequestPadding pad;
2204 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2205 if (padding) {
2206 bdrv_make_request_serialising(req, align);
2208 bdrv_padding_rmw_read(child, req, &pad, true);
2210 if (pad.head || pad.merge_reads) {
2211 int64_t aligned_offset = offset & ~(align - 1);
2212 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2214 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2215 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2216 align, &local_qiov, 0,
2217 flags & ~BDRV_REQ_ZERO_WRITE);
2218 if (ret < 0 || pad.merge_reads) {
2219 /* Error or all work is done */
2220 goto out;
2222 offset += write_bytes - pad.head;
2223 bytes -= write_bytes - pad.head;
2227 assert(!bytes || (offset & (align - 1)) == 0);
2228 if (bytes >= align) {
2229 /* Write the aligned part in the middle. */
2230 int64_t aligned_bytes = bytes & ~(align - 1);
2231 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2232 NULL, 0, flags);
2233 if (ret < 0) {
2234 goto out;
2236 bytes -= aligned_bytes;
2237 offset += aligned_bytes;
2240 assert(!bytes || (offset & (align - 1)) == 0);
2241 if (bytes) {
2242 assert(align == pad.tail + bytes);
2244 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2245 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2246 &local_qiov, 0,
2247 flags & ~BDRV_REQ_ZERO_WRITE);
2250 out:
2251 bdrv_padding_destroy(&pad);
2253 return ret;
2257 * Handle a write request in coroutine context
2259 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2260 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2261 BdrvRequestFlags flags)
2263 IO_CODE();
2264 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2267 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2268 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2269 BdrvRequestFlags flags)
2271 BlockDriverState *bs = child->bs;
2272 BdrvTrackedRequest req;
2273 uint64_t align = bs->bl.request_alignment;
2274 BdrvRequestPadding pad;
2275 int ret;
2276 bool padded = false;
2277 IO_CODE();
2279 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2281 if (!bdrv_is_inserted(bs)) {
2282 return -ENOMEDIUM;
2285 if (flags & BDRV_REQ_ZERO_WRITE) {
2286 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2287 } else {
2288 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2290 if (ret < 0) {
2291 return ret;
2294 /* If the request is misaligned then we can't make it efficient */
2295 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2296 !QEMU_IS_ALIGNED(offset | bytes, align))
2298 return -ENOTSUP;
2301 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2303 * Aligning zero request is nonsense. Even if driver has special meaning
2304 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2305 * it to driver due to request_alignment.
2307 * Still, no reason to return an error if someone do unaligned
2308 * zero-length write occasionally.
2310 return 0;
2313 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2315 * Pad request for following read-modify-write cycle.
2316 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2317 * alignment only if there is no ZERO flag.
2319 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2320 &padded);
2321 if (ret < 0) {
2322 return ret;
2326 bdrv_inc_in_flight(bs);
2327 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2329 if (flags & BDRV_REQ_ZERO_WRITE) {
2330 assert(!padded);
2331 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2332 goto out;
2335 if (padded) {
2337 * Request was unaligned to request_alignment and therefore
2338 * padded. We are going to do read-modify-write, and must
2339 * serialize the request to prevent interactions of the
2340 * widened region with other transactions.
2342 bdrv_make_request_serialising(&req, align);
2343 bdrv_padding_rmw_read(child, &req, &pad, false);
2346 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2347 qiov, qiov_offset, flags);
2349 bdrv_padding_destroy(&pad);
2351 out:
2352 tracked_request_end(&req);
2353 bdrv_dec_in_flight(bs);
2355 return ret;
2358 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2359 int64_t bytes, BdrvRequestFlags flags)
2361 IO_CODE();
2362 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2364 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2365 flags &= ~BDRV_REQ_MAY_UNMAP;
2368 return bdrv_co_pwritev(child, offset, bytes, NULL,
2369 BDRV_REQ_ZERO_WRITE | flags);
2373 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2375 int bdrv_flush_all(void)
2377 BdrvNextIterator it;
2378 BlockDriverState *bs = NULL;
2379 int result = 0;
2381 GLOBAL_STATE_CODE();
2384 * bdrv queue is managed by record/replay,
2385 * creating new flush request for stopping
2386 * the VM may break the determinism
2388 if (replay_events_enabled()) {
2389 return result;
2392 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2393 AioContext *aio_context = bdrv_get_aio_context(bs);
2394 int ret;
2396 aio_context_acquire(aio_context);
2397 ret = bdrv_flush(bs);
2398 if (ret < 0 && !result) {
2399 result = ret;
2401 aio_context_release(aio_context);
2404 return result;
2408 * Returns the allocation status of the specified sectors.
2409 * Drivers not implementing the functionality are assumed to not support
2410 * backing files, hence all their sectors are reported as allocated.
2412 * If 'want_zero' is true, the caller is querying for mapping
2413 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2414 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2415 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2417 * If 'offset' is beyond the end of the disk image the return value is
2418 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2420 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2421 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2422 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2424 * 'pnum' is set to the number of bytes (including and immediately
2425 * following the specified offset) that are easily known to be in the
2426 * same allocated/unallocated state. Note that a second call starting
2427 * at the original offset plus returned pnum may have the same status.
2428 * The returned value is non-zero on success except at end-of-file.
2430 * Returns negative errno on failure. Otherwise, if the
2431 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2432 * set to the host mapping and BDS corresponding to the guest offset.
2434 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2435 bool want_zero,
2436 int64_t offset, int64_t bytes,
2437 int64_t *pnum, int64_t *map,
2438 BlockDriverState **file)
2440 int64_t total_size;
2441 int64_t n; /* bytes */
2442 int ret;
2443 int64_t local_map = 0;
2444 BlockDriverState *local_file = NULL;
2445 int64_t aligned_offset, aligned_bytes;
2446 uint32_t align;
2447 bool has_filtered_child;
2449 assert(pnum);
2450 *pnum = 0;
2451 total_size = bdrv_getlength(bs);
2452 if (total_size < 0) {
2453 ret = total_size;
2454 goto early_out;
2457 if (offset >= total_size) {
2458 ret = BDRV_BLOCK_EOF;
2459 goto early_out;
2461 if (!bytes) {
2462 ret = 0;
2463 goto early_out;
2466 n = total_size - offset;
2467 if (n < bytes) {
2468 bytes = n;
2471 /* Must be non-NULL or bdrv_getlength() would have failed */
2472 assert(bs->drv);
2473 has_filtered_child = bdrv_filter_child(bs);
2474 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2475 *pnum = bytes;
2476 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2477 if (offset + bytes == total_size) {
2478 ret |= BDRV_BLOCK_EOF;
2480 if (bs->drv->protocol_name) {
2481 ret |= BDRV_BLOCK_OFFSET_VALID;
2482 local_map = offset;
2483 local_file = bs;
2485 goto early_out;
2488 bdrv_inc_in_flight(bs);
2490 /* Round out to request_alignment boundaries */
2491 align = bs->bl.request_alignment;
2492 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2493 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2495 if (bs->drv->bdrv_co_block_status) {
2497 * Use the block-status cache only for protocol nodes: Format
2498 * drivers are generally quick to inquire the status, but protocol
2499 * drivers often need to get information from outside of qemu, so
2500 * we do not have control over the actual implementation. There
2501 * have been cases where inquiring the status took an unreasonably
2502 * long time, and we can do nothing in qemu to fix it.
2503 * This is especially problematic for images with large data areas,
2504 * because finding the few holes in them and giving them special
2505 * treatment does not gain much performance. Therefore, we try to
2506 * cache the last-identified data region.
2508 * Second, limiting ourselves to protocol nodes allows us to assume
2509 * the block status for data regions to be DATA | OFFSET_VALID, and
2510 * that the host offset is the same as the guest offset.
2512 * Note that it is possible that external writers zero parts of
2513 * the cached regions without the cache being invalidated, and so
2514 * we may report zeroes as data. This is not catastrophic,
2515 * however, because reporting zeroes as data is fine.
2517 if (QLIST_EMPTY(&bs->children) &&
2518 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2520 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2521 local_file = bs;
2522 local_map = aligned_offset;
2523 } else {
2524 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2525 aligned_bytes, pnum, &local_map,
2526 &local_file);
2529 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2530 * the cache is queried above. Technically, we do not need to check
2531 * it here; the worst that can happen is that we fill the cache for
2532 * non-protocol nodes, and then it is never used. However, filling
2533 * the cache requires an RCU update, so double check here to avoid
2534 * such an update if possible.
2536 * Check want_zero, because we only want to update the cache when we
2537 * have accurate information about what is zero and what is data.
2539 if (want_zero &&
2540 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2541 QLIST_EMPTY(&bs->children))
2544 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2545 * returned local_map value must be the same as the offset we
2546 * have passed (aligned_offset), and local_bs must be the node
2547 * itself.
2548 * Assert this, because we follow this rule when reading from
2549 * the cache (see the `local_file = bs` and
2550 * `local_map = aligned_offset` assignments above), and the
2551 * result the cache delivers must be the same as the driver
2552 * would deliver.
2554 assert(local_file == bs);
2555 assert(local_map == aligned_offset);
2556 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2559 } else {
2560 /* Default code for filters */
2562 local_file = bdrv_filter_bs(bs);
2563 assert(local_file);
2565 *pnum = aligned_bytes;
2566 local_map = aligned_offset;
2567 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2569 if (ret < 0) {
2570 *pnum = 0;
2571 goto out;
2575 * The driver's result must be a non-zero multiple of request_alignment.
2576 * Clamp pnum and adjust map to original request.
2578 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2579 align > offset - aligned_offset);
2580 if (ret & BDRV_BLOCK_RECURSE) {
2581 assert(ret & BDRV_BLOCK_DATA);
2582 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2583 assert(!(ret & BDRV_BLOCK_ZERO));
2586 *pnum -= offset - aligned_offset;
2587 if (*pnum > bytes) {
2588 *pnum = bytes;
2590 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2591 local_map += offset - aligned_offset;
2594 if (ret & BDRV_BLOCK_RAW) {
2595 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2596 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2597 *pnum, pnum, &local_map, &local_file);
2598 goto out;
2601 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2602 ret |= BDRV_BLOCK_ALLOCATED;
2603 } else if (bs->drv->supports_backing) {
2604 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2606 if (!cow_bs) {
2607 ret |= BDRV_BLOCK_ZERO;
2608 } else if (want_zero) {
2609 int64_t size2 = bdrv_getlength(cow_bs);
2611 if (size2 >= 0 && offset >= size2) {
2612 ret |= BDRV_BLOCK_ZERO;
2617 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2618 local_file && local_file != bs &&
2619 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2620 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2621 int64_t file_pnum;
2622 int ret2;
2624 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2625 *pnum, &file_pnum, NULL, NULL);
2626 if (ret2 >= 0) {
2627 /* Ignore errors. This is just providing extra information, it
2628 * is useful but not necessary.
2630 if (ret2 & BDRV_BLOCK_EOF &&
2631 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2633 * It is valid for the format block driver to read
2634 * beyond the end of the underlying file's current
2635 * size; such areas read as zero.
2637 ret |= BDRV_BLOCK_ZERO;
2638 } else {
2639 /* Limit request to the range reported by the protocol driver */
2640 *pnum = file_pnum;
2641 ret |= (ret2 & BDRV_BLOCK_ZERO);
2646 out:
2647 bdrv_dec_in_flight(bs);
2648 if (ret >= 0 && offset + *pnum == total_size) {
2649 ret |= BDRV_BLOCK_EOF;
2651 early_out:
2652 if (file) {
2653 *file = local_file;
2655 if (map) {
2656 *map = local_map;
2658 return ret;
2661 int coroutine_fn
2662 bdrv_co_common_block_status_above(BlockDriverState *bs,
2663 BlockDriverState *base,
2664 bool include_base,
2665 bool want_zero,
2666 int64_t offset,
2667 int64_t bytes,
2668 int64_t *pnum,
2669 int64_t *map,
2670 BlockDriverState **file,
2671 int *depth)
2673 int ret;
2674 BlockDriverState *p;
2675 int64_t eof = 0;
2676 int dummy;
2677 IO_CODE();
2679 assert(!include_base || base); /* Can't include NULL base */
2681 if (!depth) {
2682 depth = &dummy;
2684 *depth = 0;
2686 if (!include_base && bs == base) {
2687 *pnum = bytes;
2688 return 0;
2691 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2692 ++*depth;
2693 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2694 return ret;
2697 if (ret & BDRV_BLOCK_EOF) {
2698 eof = offset + *pnum;
2701 assert(*pnum <= bytes);
2702 bytes = *pnum;
2704 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2705 p = bdrv_filter_or_cow_bs(p))
2707 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2708 file);
2709 ++*depth;
2710 if (ret < 0) {
2711 return ret;
2713 if (*pnum == 0) {
2715 * The top layer deferred to this layer, and because this layer is
2716 * short, any zeroes that we synthesize beyond EOF behave as if they
2717 * were allocated at this layer.
2719 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2720 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2721 * below.
2723 assert(ret & BDRV_BLOCK_EOF);
2724 *pnum = bytes;
2725 if (file) {
2726 *file = p;
2728 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2729 break;
2731 if (ret & BDRV_BLOCK_ALLOCATED) {
2733 * We've found the node and the status, we must break.
2735 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2736 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2737 * below.
2739 ret &= ~BDRV_BLOCK_EOF;
2740 break;
2743 if (p == base) {
2744 assert(include_base);
2745 break;
2749 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2750 * let's continue the diving.
2752 assert(*pnum <= bytes);
2753 bytes = *pnum;
2756 if (offset + *pnum == eof) {
2757 ret |= BDRV_BLOCK_EOF;
2760 return ret;
2763 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2764 int64_t offset, int64_t bytes, int64_t *pnum,
2765 int64_t *map, BlockDriverState **file)
2767 IO_CODE();
2768 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2769 pnum, map, file, NULL);
2772 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2773 int64_t *pnum, int64_t *map, BlockDriverState **file)
2775 IO_CODE();
2776 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2777 offset, bytes, pnum, map, file);
2781 * Check @bs (and its backing chain) to see if the range defined
2782 * by @offset and @bytes is known to read as zeroes.
2783 * Return 1 if that is the case, 0 otherwise and -errno on error.
2784 * This test is meant to be fast rather than accurate so returning 0
2785 * does not guarantee non-zero data.
2787 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2788 int64_t bytes)
2790 int ret;
2791 int64_t pnum = bytes;
2792 IO_CODE();
2794 if (!bytes) {
2795 return 1;
2798 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2799 bytes, &pnum, NULL, NULL, NULL);
2801 if (ret < 0) {
2802 return ret;
2805 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2808 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2809 int64_t bytes, int64_t *pnum)
2811 int ret;
2812 int64_t dummy;
2813 IO_CODE();
2815 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2816 bytes, pnum ? pnum : &dummy, NULL,
2817 NULL, NULL);
2818 if (ret < 0) {
2819 return ret;
2821 return !!(ret & BDRV_BLOCK_ALLOCATED);
2825 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2827 * Return a positive depth if (a prefix of) the given range is allocated
2828 * in any image between BASE and TOP (BASE is only included if include_base
2829 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2830 * BASE can be NULL to check if the given offset is allocated in any
2831 * image of the chain. Return 0 otherwise, or negative errno on
2832 * failure.
2834 * 'pnum' is set to the number of bytes (including and immediately
2835 * following the specified offset) that are known to be in the same
2836 * allocated/unallocated state. Note that a subsequent call starting
2837 * at 'offset + *pnum' may return the same allocation status (in other
2838 * words, the result is not necessarily the maximum possible range);
2839 * but 'pnum' will only be 0 when end of file is reached.
2841 int bdrv_is_allocated_above(BlockDriverState *top,
2842 BlockDriverState *base,
2843 bool include_base, int64_t offset,
2844 int64_t bytes, int64_t *pnum)
2846 int depth;
2847 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2848 offset, bytes, pnum, NULL, NULL,
2849 &depth);
2850 IO_CODE();
2851 if (ret < 0) {
2852 return ret;
2855 if (ret & BDRV_BLOCK_ALLOCATED) {
2856 return depth;
2858 return 0;
2861 int coroutine_fn
2862 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2864 BlockDriver *drv = bs->drv;
2865 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2866 int ret;
2867 IO_CODE();
2869 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2870 if (ret < 0) {
2871 return ret;
2874 if (!drv) {
2875 return -ENOMEDIUM;
2878 bdrv_inc_in_flight(bs);
2880 if (drv->bdrv_load_vmstate) {
2881 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2882 } else if (child_bs) {
2883 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2884 } else {
2885 ret = -ENOTSUP;
2888 bdrv_dec_in_flight(bs);
2890 return ret;
2893 int coroutine_fn
2894 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2896 BlockDriver *drv = bs->drv;
2897 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2898 int ret;
2899 IO_CODE();
2901 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2902 if (ret < 0) {
2903 return ret;
2906 if (!drv) {
2907 return -ENOMEDIUM;
2910 bdrv_inc_in_flight(bs);
2912 if (drv->bdrv_save_vmstate) {
2913 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2914 } else if (child_bs) {
2915 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2916 } else {
2917 ret = -ENOTSUP;
2920 bdrv_dec_in_flight(bs);
2922 return ret;
2925 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2926 int64_t pos, int size)
2928 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2929 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2930 IO_CODE();
2932 return ret < 0 ? ret : size;
2935 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2936 int64_t pos, int size)
2938 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2939 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2940 IO_CODE();
2942 return ret < 0 ? ret : size;
2945 /**************************************************************/
2946 /* async I/Os */
2948 void bdrv_aio_cancel(BlockAIOCB *acb)
2950 IO_CODE();
2951 qemu_aio_ref(acb);
2952 bdrv_aio_cancel_async(acb);
2953 while (acb->refcnt > 1) {
2954 if (acb->aiocb_info->get_aio_context) {
2955 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2956 } else if (acb->bs) {
2957 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2958 * assert that we're not using an I/O thread. Thread-safe
2959 * code should use bdrv_aio_cancel_async exclusively.
2961 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2962 aio_poll(bdrv_get_aio_context(acb->bs), true);
2963 } else {
2964 abort();
2967 qemu_aio_unref(acb);
2970 /* Async version of aio cancel. The caller is not blocked if the acb implements
2971 * cancel_async, otherwise we do nothing and let the request normally complete.
2972 * In either case the completion callback must be called. */
2973 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2975 IO_CODE();
2976 if (acb->aiocb_info->cancel_async) {
2977 acb->aiocb_info->cancel_async(acb);
2981 /**************************************************************/
2982 /* Coroutine block device emulation */
2984 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2986 BdrvChild *primary_child = bdrv_primary_child(bs);
2987 BdrvChild *child;
2988 int current_gen;
2989 int ret = 0;
2990 IO_CODE();
2992 bdrv_inc_in_flight(bs);
2994 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2995 bdrv_is_sg(bs)) {
2996 goto early_exit;
2999 qemu_co_mutex_lock(&bs->reqs_lock);
3000 current_gen = qatomic_read(&bs->write_gen);
3002 /* Wait until any previous flushes are completed */
3003 while (bs->active_flush_req) {
3004 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3007 /* Flushes reach this point in nondecreasing current_gen order. */
3008 bs->active_flush_req = true;
3009 qemu_co_mutex_unlock(&bs->reqs_lock);
3011 /* Write back all layers by calling one driver function */
3012 if (bs->drv->bdrv_co_flush) {
3013 ret = bs->drv->bdrv_co_flush(bs);
3014 goto out;
3017 /* Write back cached data to the OS even with cache=unsafe */
3018 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3019 if (bs->drv->bdrv_co_flush_to_os) {
3020 ret = bs->drv->bdrv_co_flush_to_os(bs);
3021 if (ret < 0) {
3022 goto out;
3026 /* But don't actually force it to the disk with cache=unsafe */
3027 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3028 goto flush_children;
3031 /* Check if we really need to flush anything */
3032 if (bs->flushed_gen == current_gen) {
3033 goto flush_children;
3036 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3037 if (!bs->drv) {
3038 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3039 * (even in case of apparent success) */
3040 ret = -ENOMEDIUM;
3041 goto out;
3043 if (bs->drv->bdrv_co_flush_to_disk) {
3044 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3045 } else if (bs->drv->bdrv_aio_flush) {
3046 BlockAIOCB *acb;
3047 CoroutineIOCompletion co = {
3048 .coroutine = qemu_coroutine_self(),
3051 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3052 if (acb == NULL) {
3053 ret = -EIO;
3054 } else {
3055 qemu_coroutine_yield();
3056 ret = co.ret;
3058 } else {
3060 * Some block drivers always operate in either writethrough or unsafe
3061 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3062 * know how the server works (because the behaviour is hardcoded or
3063 * depends on server-side configuration), so we can't ensure that
3064 * everything is safe on disk. Returning an error doesn't work because
3065 * that would break guests even if the server operates in writethrough
3066 * mode.
3068 * Let's hope the user knows what he's doing.
3070 ret = 0;
3073 if (ret < 0) {
3074 goto out;
3077 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3078 * in the case of cache=unsafe, so there are no useless flushes.
3080 flush_children:
3081 ret = 0;
3082 QLIST_FOREACH(child, &bs->children, next) {
3083 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3084 int this_child_ret = bdrv_co_flush(child->bs);
3085 if (!ret) {
3086 ret = this_child_ret;
3091 out:
3092 /* Notify any pending flushes that we have completed */
3093 if (ret == 0) {
3094 bs->flushed_gen = current_gen;
3097 qemu_co_mutex_lock(&bs->reqs_lock);
3098 bs->active_flush_req = false;
3099 /* Return value is ignored - it's ok if wait queue is empty */
3100 qemu_co_queue_next(&bs->flush_queue);
3101 qemu_co_mutex_unlock(&bs->reqs_lock);
3103 early_exit:
3104 bdrv_dec_in_flight(bs);
3105 return ret;
3108 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3109 int64_t bytes)
3111 BdrvTrackedRequest req;
3112 int ret;
3113 int64_t max_pdiscard;
3114 int head, tail, align;
3115 BlockDriverState *bs = child->bs;
3116 IO_CODE();
3118 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3119 return -ENOMEDIUM;
3122 if (bdrv_has_readonly_bitmaps(bs)) {
3123 return -EPERM;
3126 ret = bdrv_check_request(offset, bytes, NULL);
3127 if (ret < 0) {
3128 return ret;
3131 /* Do nothing if disabled. */
3132 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3133 return 0;
3136 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3137 return 0;
3140 /* Invalidate the cached block-status data range if this discard overlaps */
3141 bdrv_bsc_invalidate_range(bs, offset, bytes);
3143 /* Discard is advisory, but some devices track and coalesce
3144 * unaligned requests, so we must pass everything down rather than
3145 * round here. Still, most devices will just silently ignore
3146 * unaligned requests (by returning -ENOTSUP), so we must fragment
3147 * the request accordingly. */
3148 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3149 assert(align % bs->bl.request_alignment == 0);
3150 head = offset % align;
3151 tail = (offset + bytes) % align;
3153 bdrv_inc_in_flight(bs);
3154 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3156 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3157 if (ret < 0) {
3158 goto out;
3161 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3162 align);
3163 assert(max_pdiscard >= bs->bl.request_alignment);
3165 while (bytes > 0) {
3166 int64_t num = bytes;
3168 if (head) {
3169 /* Make small requests to get to alignment boundaries. */
3170 num = MIN(bytes, align - head);
3171 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3172 num %= bs->bl.request_alignment;
3174 head = (head + num) % align;
3175 assert(num < max_pdiscard);
3176 } else if (tail) {
3177 if (num > align) {
3178 /* Shorten the request to the last aligned cluster. */
3179 num -= tail;
3180 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3181 tail > bs->bl.request_alignment) {
3182 tail %= bs->bl.request_alignment;
3183 num -= tail;
3186 /* limit request size */
3187 if (num > max_pdiscard) {
3188 num = max_pdiscard;
3191 if (!bs->drv) {
3192 ret = -ENOMEDIUM;
3193 goto out;
3195 if (bs->drv->bdrv_co_pdiscard) {
3196 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3197 } else {
3198 BlockAIOCB *acb;
3199 CoroutineIOCompletion co = {
3200 .coroutine = qemu_coroutine_self(),
3203 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3204 bdrv_co_io_em_complete, &co);
3205 if (acb == NULL) {
3206 ret = -EIO;
3207 goto out;
3208 } else {
3209 qemu_coroutine_yield();
3210 ret = co.ret;
3213 if (ret && ret != -ENOTSUP) {
3214 goto out;
3217 offset += num;
3218 bytes -= num;
3220 ret = 0;
3221 out:
3222 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3223 tracked_request_end(&req);
3224 bdrv_dec_in_flight(bs);
3225 return ret;
3228 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3230 BlockDriver *drv = bs->drv;
3231 CoroutineIOCompletion co = {
3232 .coroutine = qemu_coroutine_self(),
3234 BlockAIOCB *acb;
3235 IO_CODE();
3237 bdrv_inc_in_flight(bs);
3238 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3239 co.ret = -ENOTSUP;
3240 goto out;
3243 if (drv->bdrv_co_ioctl) {
3244 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3245 } else {
3246 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3247 if (!acb) {
3248 co.ret = -ENOTSUP;
3249 goto out;
3251 qemu_coroutine_yield();
3253 out:
3254 bdrv_dec_in_flight(bs);
3255 return co.ret;
3258 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3260 IO_CODE();
3261 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3264 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3266 IO_CODE();
3267 return memset(qemu_blockalign(bs, size), 0, size);
3270 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3272 size_t align = bdrv_opt_mem_align(bs);
3273 IO_CODE();
3275 /* Ensure that NULL is never returned on success */
3276 assert(align > 0);
3277 if (size == 0) {
3278 size = align;
3281 return qemu_try_memalign(align, size);
3284 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3286 void *mem = qemu_try_blockalign(bs, size);
3287 IO_CODE();
3289 if (mem) {
3290 memset(mem, 0, size);
3293 return mem;
3297 * Check if all memory in this vector is sector aligned.
3299 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3301 int i;
3302 size_t alignment = bdrv_min_mem_align(bs);
3303 IO_CODE();
3305 for (i = 0; i < qiov->niov; i++) {
3306 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3307 return false;
3309 if (qiov->iov[i].iov_len % alignment) {
3310 return false;
3314 return true;
3317 void bdrv_io_plug(BlockDriverState *bs)
3319 BdrvChild *child;
3320 IO_CODE();
3322 QLIST_FOREACH(child, &bs->children, next) {
3323 bdrv_io_plug(child->bs);
3326 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3327 BlockDriver *drv = bs->drv;
3328 if (drv && drv->bdrv_io_plug) {
3329 drv->bdrv_io_plug(bs);
3334 void bdrv_io_unplug(BlockDriverState *bs)
3336 BdrvChild *child;
3337 IO_CODE();
3339 assert(bs->io_plugged);
3340 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3341 BlockDriver *drv = bs->drv;
3342 if (drv && drv->bdrv_io_unplug) {
3343 drv->bdrv_io_unplug(bs);
3347 QLIST_FOREACH(child, &bs->children, next) {
3348 bdrv_io_unplug(child->bs);
3352 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3354 BdrvChild *child;
3356 GLOBAL_STATE_CODE();
3357 if (bs->drv && bs->drv->bdrv_register_buf) {
3358 bs->drv->bdrv_register_buf(bs, host, size);
3360 QLIST_FOREACH(child, &bs->children, next) {
3361 bdrv_register_buf(child->bs, host, size);
3365 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3367 BdrvChild *child;
3369 GLOBAL_STATE_CODE();
3370 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3371 bs->drv->bdrv_unregister_buf(bs, host);
3373 QLIST_FOREACH(child, &bs->children, next) {
3374 bdrv_unregister_buf(child->bs, host);
3378 static int coroutine_fn bdrv_co_copy_range_internal(
3379 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3380 int64_t dst_offset, int64_t bytes,
3381 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3382 bool recurse_src)
3384 BdrvTrackedRequest req;
3385 int ret;
3387 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3388 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3389 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3391 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3392 return -ENOMEDIUM;
3394 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3395 if (ret) {
3396 return ret;
3398 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3399 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3402 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3403 return -ENOMEDIUM;
3405 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3406 if (ret) {
3407 return ret;
3410 if (!src->bs->drv->bdrv_co_copy_range_from
3411 || !dst->bs->drv->bdrv_co_copy_range_to
3412 || src->bs->encrypted || dst->bs->encrypted) {
3413 return -ENOTSUP;
3416 if (recurse_src) {
3417 bdrv_inc_in_flight(src->bs);
3418 tracked_request_begin(&req, src->bs, src_offset, bytes,
3419 BDRV_TRACKED_READ);
3421 /* BDRV_REQ_SERIALISING is only for write operation */
3422 assert(!(read_flags & BDRV_REQ_SERIALISING));
3423 bdrv_wait_serialising_requests(&req);
3425 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3426 src, src_offset,
3427 dst, dst_offset,
3428 bytes,
3429 read_flags, write_flags);
3431 tracked_request_end(&req);
3432 bdrv_dec_in_flight(src->bs);
3433 } else {
3434 bdrv_inc_in_flight(dst->bs);
3435 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3436 BDRV_TRACKED_WRITE);
3437 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3438 write_flags);
3439 if (!ret) {
3440 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3441 src, src_offset,
3442 dst, dst_offset,
3443 bytes,
3444 read_flags, write_flags);
3446 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3447 tracked_request_end(&req);
3448 bdrv_dec_in_flight(dst->bs);
3451 return ret;
3454 /* Copy range from @src to @dst.
3456 * See the comment of bdrv_co_copy_range for the parameter and return value
3457 * semantics. */
3458 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3459 BdrvChild *dst, int64_t dst_offset,
3460 int64_t bytes,
3461 BdrvRequestFlags read_flags,
3462 BdrvRequestFlags write_flags)
3464 IO_CODE();
3465 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3466 read_flags, write_flags);
3467 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3468 bytes, read_flags, write_flags, true);
3471 /* Copy range from @src to @dst.
3473 * See the comment of bdrv_co_copy_range for the parameter and return value
3474 * semantics. */
3475 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3476 BdrvChild *dst, int64_t dst_offset,
3477 int64_t bytes,
3478 BdrvRequestFlags read_flags,
3479 BdrvRequestFlags write_flags)
3481 IO_CODE();
3482 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3483 read_flags, write_flags);
3484 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3485 bytes, read_flags, write_flags, false);
3488 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3489 BdrvChild *dst, int64_t dst_offset,
3490 int64_t bytes, BdrvRequestFlags read_flags,
3491 BdrvRequestFlags write_flags)
3493 IO_CODE();
3494 return bdrv_co_copy_range_from(src, src_offset,
3495 dst, dst_offset,
3496 bytes, read_flags, write_flags);
3499 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3501 BdrvChild *c;
3502 QLIST_FOREACH(c, &bs->parents, next_parent) {
3503 if (c->klass->resize) {
3504 c->klass->resize(c);
3510 * Truncate file to 'offset' bytes (needed only for file protocols)
3512 * If 'exact' is true, the file must be resized to exactly the given
3513 * 'offset'. Otherwise, it is sufficient for the node to be at least
3514 * 'offset' bytes in length.
3516 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3517 PreallocMode prealloc, BdrvRequestFlags flags,
3518 Error **errp)
3520 BlockDriverState *bs = child->bs;
3521 BdrvChild *filtered, *backing;
3522 BlockDriver *drv = bs->drv;
3523 BdrvTrackedRequest req;
3524 int64_t old_size, new_bytes;
3525 int ret;
3526 IO_CODE();
3528 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3529 if (!drv) {
3530 error_setg(errp, "No medium inserted");
3531 return -ENOMEDIUM;
3533 if (offset < 0) {
3534 error_setg(errp, "Image size cannot be negative");
3535 return -EINVAL;
3538 ret = bdrv_check_request(offset, 0, errp);
3539 if (ret < 0) {
3540 return ret;
3543 old_size = bdrv_getlength(bs);
3544 if (old_size < 0) {
3545 error_setg_errno(errp, -old_size, "Failed to get old image size");
3546 return old_size;
3549 if (bdrv_is_read_only(bs)) {
3550 error_setg(errp, "Image is read-only");
3551 return -EACCES;
3554 if (offset > old_size) {
3555 new_bytes = offset - old_size;
3556 } else {
3557 new_bytes = 0;
3560 bdrv_inc_in_flight(bs);
3561 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3562 BDRV_TRACKED_TRUNCATE);
3564 /* If we are growing the image and potentially using preallocation for the
3565 * new area, we need to make sure that no write requests are made to it
3566 * concurrently or they might be overwritten by preallocation. */
3567 if (new_bytes) {
3568 bdrv_make_request_serialising(&req, 1);
3570 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3572 if (ret < 0) {
3573 error_setg_errno(errp, -ret,
3574 "Failed to prepare request for truncation");
3575 goto out;
3578 filtered = bdrv_filter_child(bs);
3579 backing = bdrv_cow_child(bs);
3582 * If the image has a backing file that is large enough that it would
3583 * provide data for the new area, we cannot leave it unallocated because
3584 * then the backing file content would become visible. Instead, zero-fill
3585 * the new area.
3587 * Note that if the image has a backing file, but was opened without the
3588 * backing file, taking care of keeping things consistent with that backing
3589 * file is the user's responsibility.
3591 if (new_bytes && backing) {
3592 int64_t backing_len;
3594 backing_len = bdrv_getlength(backing->bs);
3595 if (backing_len < 0) {
3596 ret = backing_len;
3597 error_setg_errno(errp, -ret, "Could not get backing file size");
3598 goto out;
3601 if (backing_len > old_size) {
3602 flags |= BDRV_REQ_ZERO_WRITE;
3606 if (drv->bdrv_co_truncate) {
3607 if (flags & ~bs->supported_truncate_flags) {
3608 error_setg(errp, "Block driver does not support requested flags");
3609 ret = -ENOTSUP;
3610 goto out;
3612 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3613 } else if (filtered) {
3614 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3615 } else {
3616 error_setg(errp, "Image format driver does not support resize");
3617 ret = -ENOTSUP;
3618 goto out;
3620 if (ret < 0) {
3621 goto out;
3624 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3625 if (ret < 0) {
3626 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3627 } else {
3628 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3630 /* It's possible that truncation succeeded but refresh_total_sectors
3631 * failed, but the latter doesn't affect how we should finish the request.
3632 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3633 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3635 out:
3636 tracked_request_end(&req);
3637 bdrv_dec_in_flight(bs);
3639 return ret;
3642 void bdrv_cancel_in_flight(BlockDriverState *bs)
3644 GLOBAL_STATE_CODE();
3645 if (!bs || !bs->drv) {
3646 return;
3649 if (bs->drv->bdrv_cancel_in_flight) {
3650 bs->drv->bdrv_cancel_in_flight(bs);