target/ppc: implement xs[n]maddqp[o]/xs[n]msubqp[o]
[qemu/rayw.git] / target / arm / cpu64.c
blob1171ab16b94ccd64626c1a7b2c21d0fffd36e01e
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
39 #ifndef CONFIG_USER_ONLY
40 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
42 ARMCPU *cpu = env_archcpu(env);
44 /* Number of cores is in [25:24]; otherwise we RAZ */
45 return (cpu->core_count - 1) << 24;
47 #endif
49 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
50 #ifndef CONFIG_USER_ONLY
51 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
52 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
53 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
54 .writefn = arm_cp_write_ignore },
55 { .name = "L2CTLR",
56 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
57 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
58 .writefn = arm_cp_write_ignore },
59 #endif
60 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
61 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
62 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
63 { .name = "L2ECTLR",
64 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
65 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
67 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
68 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
70 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
71 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72 { .name = "CPUACTLR",
73 .cp = 15, .opc1 = 0, .crm = 15,
74 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
75 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
76 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
77 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
78 { .name = "CPUECTLR",
79 .cp = 15, .opc1 = 1, .crm = 15,
80 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
81 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
82 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
83 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
84 { .name = "CPUMERRSR",
85 .cp = 15, .opc1 = 2, .crm = 15,
86 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
87 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
88 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
89 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
90 { .name = "L2MERRSR",
91 .cp = 15, .opc1 = 3, .crm = 15,
92 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
93 REGINFO_SENTINEL
96 static void aarch64_a57_initfn(Object *obj)
98 ARMCPU *cpu = ARM_CPU(obj);
100 cpu->dtb_compatible = "arm,cortex-a57";
101 set_feature(&cpu->env, ARM_FEATURE_V8);
102 set_feature(&cpu->env, ARM_FEATURE_NEON);
103 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
104 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
105 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
106 set_feature(&cpu->env, ARM_FEATURE_EL2);
107 set_feature(&cpu->env, ARM_FEATURE_EL3);
108 set_feature(&cpu->env, ARM_FEATURE_PMU);
109 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
110 cpu->midr = 0x411fd070;
111 cpu->revidr = 0x00000000;
112 cpu->reset_fpsid = 0x41034070;
113 cpu->isar.mvfr0 = 0x10110222;
114 cpu->isar.mvfr1 = 0x12111111;
115 cpu->isar.mvfr2 = 0x00000043;
116 cpu->ctr = 0x8444c004;
117 cpu->reset_sctlr = 0x00c50838;
118 cpu->isar.id_pfr0 = 0x00000131;
119 cpu->isar.id_pfr1 = 0x00011011;
120 cpu->isar.id_dfr0 = 0x03010066;
121 cpu->id_afr0 = 0x00000000;
122 cpu->isar.id_mmfr0 = 0x10101105;
123 cpu->isar.id_mmfr1 = 0x40000000;
124 cpu->isar.id_mmfr2 = 0x01260000;
125 cpu->isar.id_mmfr3 = 0x02102211;
126 cpu->isar.id_isar0 = 0x02101110;
127 cpu->isar.id_isar1 = 0x13112111;
128 cpu->isar.id_isar2 = 0x21232042;
129 cpu->isar.id_isar3 = 0x01112131;
130 cpu->isar.id_isar4 = 0x00011142;
131 cpu->isar.id_isar5 = 0x00011121;
132 cpu->isar.id_isar6 = 0;
133 cpu->isar.id_aa64pfr0 = 0x00002222;
134 cpu->isar.id_aa64dfr0 = 0x10305106;
135 cpu->isar.id_aa64isar0 = 0x00011120;
136 cpu->isar.id_aa64mmfr0 = 0x00001124;
137 cpu->isar.dbgdidr = 0x3516d000;
138 cpu->clidr = 0x0a200023;
139 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
140 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
141 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
142 cpu->dcz_blocksize = 4; /* 64 bytes */
143 cpu->gic_num_lrs = 4;
144 cpu->gic_vpribits = 5;
145 cpu->gic_vprebits = 5;
146 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
149 static void aarch64_a53_initfn(Object *obj)
151 ARMCPU *cpu = ARM_CPU(obj);
153 cpu->dtb_compatible = "arm,cortex-a53";
154 set_feature(&cpu->env, ARM_FEATURE_V8);
155 set_feature(&cpu->env, ARM_FEATURE_NEON);
156 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
157 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
158 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
159 set_feature(&cpu->env, ARM_FEATURE_EL2);
160 set_feature(&cpu->env, ARM_FEATURE_EL3);
161 set_feature(&cpu->env, ARM_FEATURE_PMU);
162 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
163 cpu->midr = 0x410fd034;
164 cpu->revidr = 0x00000000;
165 cpu->reset_fpsid = 0x41034070;
166 cpu->isar.mvfr0 = 0x10110222;
167 cpu->isar.mvfr1 = 0x12111111;
168 cpu->isar.mvfr2 = 0x00000043;
169 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
170 cpu->reset_sctlr = 0x00c50838;
171 cpu->isar.id_pfr0 = 0x00000131;
172 cpu->isar.id_pfr1 = 0x00011011;
173 cpu->isar.id_dfr0 = 0x03010066;
174 cpu->id_afr0 = 0x00000000;
175 cpu->isar.id_mmfr0 = 0x10101105;
176 cpu->isar.id_mmfr1 = 0x40000000;
177 cpu->isar.id_mmfr2 = 0x01260000;
178 cpu->isar.id_mmfr3 = 0x02102211;
179 cpu->isar.id_isar0 = 0x02101110;
180 cpu->isar.id_isar1 = 0x13112111;
181 cpu->isar.id_isar2 = 0x21232042;
182 cpu->isar.id_isar3 = 0x01112131;
183 cpu->isar.id_isar4 = 0x00011142;
184 cpu->isar.id_isar5 = 0x00011121;
185 cpu->isar.id_isar6 = 0;
186 cpu->isar.id_aa64pfr0 = 0x00002222;
187 cpu->isar.id_aa64dfr0 = 0x10305106;
188 cpu->isar.id_aa64isar0 = 0x00011120;
189 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
190 cpu->isar.dbgdidr = 0x3516d000;
191 cpu->clidr = 0x0a200023;
192 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
193 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
194 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
195 cpu->dcz_blocksize = 4; /* 64 bytes */
196 cpu->gic_num_lrs = 4;
197 cpu->gic_vpribits = 5;
198 cpu->gic_vprebits = 5;
199 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
202 static void aarch64_a72_initfn(Object *obj)
204 ARMCPU *cpu = ARM_CPU(obj);
206 cpu->dtb_compatible = "arm,cortex-a72";
207 set_feature(&cpu->env, ARM_FEATURE_V8);
208 set_feature(&cpu->env, ARM_FEATURE_NEON);
209 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
210 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
211 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
212 set_feature(&cpu->env, ARM_FEATURE_EL2);
213 set_feature(&cpu->env, ARM_FEATURE_EL3);
214 set_feature(&cpu->env, ARM_FEATURE_PMU);
215 cpu->midr = 0x410fd083;
216 cpu->revidr = 0x00000000;
217 cpu->reset_fpsid = 0x41034080;
218 cpu->isar.mvfr0 = 0x10110222;
219 cpu->isar.mvfr1 = 0x12111111;
220 cpu->isar.mvfr2 = 0x00000043;
221 cpu->ctr = 0x8444c004;
222 cpu->reset_sctlr = 0x00c50838;
223 cpu->isar.id_pfr0 = 0x00000131;
224 cpu->isar.id_pfr1 = 0x00011011;
225 cpu->isar.id_dfr0 = 0x03010066;
226 cpu->id_afr0 = 0x00000000;
227 cpu->isar.id_mmfr0 = 0x10201105;
228 cpu->isar.id_mmfr1 = 0x40000000;
229 cpu->isar.id_mmfr2 = 0x01260000;
230 cpu->isar.id_mmfr3 = 0x02102211;
231 cpu->isar.id_isar0 = 0x02101110;
232 cpu->isar.id_isar1 = 0x13112111;
233 cpu->isar.id_isar2 = 0x21232042;
234 cpu->isar.id_isar3 = 0x01112131;
235 cpu->isar.id_isar4 = 0x00011142;
236 cpu->isar.id_isar5 = 0x00011121;
237 cpu->isar.id_aa64pfr0 = 0x00002222;
238 cpu->isar.id_aa64dfr0 = 0x10305106;
239 cpu->isar.id_aa64isar0 = 0x00011120;
240 cpu->isar.id_aa64mmfr0 = 0x00001124;
241 cpu->isar.dbgdidr = 0x3516d000;
242 cpu->clidr = 0x0a200023;
243 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
244 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
245 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
246 cpu->dcz_blocksize = 4; /* 64 bytes */
247 cpu->gic_num_lrs = 4;
248 cpu->gic_vpribits = 5;
249 cpu->gic_vprebits = 5;
250 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
253 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
256 * If any vector lengths are explicitly enabled with sve<N> properties,
257 * then all other lengths are implicitly disabled. If sve-max-vq is
258 * specified then it is the same as explicitly enabling all lengths
259 * up to and including the specified maximum, which means all larger
260 * lengths will be implicitly disabled. If no sve<N> properties
261 * are enabled and sve-max-vq is not specified, then all lengths not
262 * explicitly disabled will be enabled. Additionally, all power-of-two
263 * vector lengths less than the maximum enabled length will be
264 * automatically enabled and all vector lengths larger than the largest
265 * disabled power-of-two vector length will be automatically disabled.
266 * Errors are generated if the user provided input that interferes with
267 * any of the above. Finally, if SVE is not disabled, then at least one
268 * vector length must be enabled.
270 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
271 uint32_t vq, max_vq = 0;
274 * CPU models specify a set of supported vector lengths which are
275 * enabled by default. Attempting to enable any vector length not set
276 * in the supported bitmap results in an error. When KVM is enabled we
277 * fetch the supported bitmap from the host.
279 if (kvm_enabled() && kvm_arm_sve_supported()) {
280 kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported);
281 } else if (kvm_enabled()) {
282 assert(!cpu_isar_feature(aa64_sve, cpu));
286 * Process explicit sve<N> properties.
287 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
288 * Check first for any sve<N> enabled.
290 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
291 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
293 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
294 error_setg(errp, "cannot enable sve%d", max_vq * 128);
295 error_append_hint(errp, "sve%d is larger than the maximum vector "
296 "length, sve-max-vq=%d (%d bits)\n",
297 max_vq * 128, cpu->sve_max_vq,
298 cpu->sve_max_vq * 128);
299 return;
302 if (kvm_enabled()) {
304 * For KVM we have to automatically enable all supported unitialized
305 * lengths, even when the smaller lengths are not all powers-of-two.
307 bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq);
308 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
309 } else {
310 /* Propagate enabled bits down through required powers-of-two. */
311 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
312 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
313 set_bit(vq - 1, cpu->sve_vq_map);
317 } else if (cpu->sve_max_vq == 0) {
319 * No explicit bits enabled, and no implicit bits from sve-max-vq.
321 if (!cpu_isar_feature(aa64_sve, cpu)) {
322 /* SVE is disabled and so are all vector lengths. Good. */
323 return;
326 if (kvm_enabled()) {
327 /* Disabling a supported length disables all larger lengths. */
328 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
329 if (test_bit(vq - 1, cpu->sve_vq_init) &&
330 test_bit(vq - 1, cpu->sve_vq_supported)) {
331 break;
334 } else {
335 /* Disabling a power-of-two disables all larger lengths. */
336 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
337 if (test_bit(vq - 1, cpu->sve_vq_init)) {
338 break;
343 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
344 bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported,
345 cpu->sve_vq_init, max_vq);
346 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
347 error_setg(errp, "cannot disable sve%d", vq * 128);
348 error_append_hint(errp, "Disabling sve%d results in all "
349 "vector lengths being disabled.\n",
350 vq * 128);
351 error_append_hint(errp, "With SVE enabled, at least one "
352 "vector length must be enabled.\n");
353 return;
356 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
360 * Process the sve-max-vq property.
361 * Note that we know from the above that no bit above
362 * sve-max-vq is currently set.
364 if (cpu->sve_max_vq != 0) {
365 max_vq = cpu->sve_max_vq;
367 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
368 test_bit(max_vq - 1, cpu->sve_vq_init)) {
369 error_setg(errp, "cannot disable sve%d", max_vq * 128);
370 error_append_hint(errp, "The maximum vector length must be "
371 "enabled, sve-max-vq=%d (%d bits)\n",
372 max_vq, max_vq * 128);
373 return;
376 /* Set all bits not explicitly set within sve-max-vq. */
377 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
378 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
382 * We should know what max-vq is now. Also, as we're done
383 * manipulating sve-vq-map, we ensure any bits above max-vq
384 * are clear, just in case anybody looks.
386 assert(max_vq != 0);
387 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
389 /* Ensure the set of lengths matches what is supported. */
390 bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq);
391 if (!bitmap_empty(tmp, max_vq)) {
392 vq = find_last_bit(tmp, max_vq) + 1;
393 if (test_bit(vq - 1, cpu->sve_vq_map)) {
394 if (cpu->sve_max_vq) {
395 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
396 error_append_hint(errp, "This CPU does not support "
397 "the vector length %d-bits.\n", vq * 128);
398 error_append_hint(errp, "It may not be possible to use "
399 "sve-max-vq with this CPU. Try "
400 "using only sve<N> properties.\n");
401 } else {
402 error_setg(errp, "cannot enable sve%d", vq * 128);
403 error_append_hint(errp, "This CPU does not support "
404 "the vector length %d-bits.\n", vq * 128);
406 return;
407 } else {
408 if (kvm_enabled()) {
409 error_setg(errp, "cannot disable sve%d", vq * 128);
410 error_append_hint(errp, "The KVM host requires all "
411 "supported vector lengths smaller "
412 "than %d bits to also be enabled.\n",
413 max_vq * 128);
414 return;
415 } else {
416 /* Ensure all required powers-of-two are enabled. */
417 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
418 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
419 error_setg(errp, "cannot disable sve%d", vq * 128);
420 error_append_hint(errp, "sve%d is required as it "
421 "is a power-of-two length smaller "
422 "than the maximum, sve%d\n",
423 vq * 128, max_vq * 128);
424 return;
432 * Now that we validated all our vector lengths, the only question
433 * left to answer is if we even want SVE at all.
435 if (!cpu_isar_feature(aa64_sve, cpu)) {
436 error_setg(errp, "cannot enable sve%d", max_vq * 128);
437 error_append_hint(errp, "SVE must be enabled to enable vector "
438 "lengths.\n");
439 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
440 return;
443 /* From now on sve_max_vq is the actual maximum supported length. */
444 cpu->sve_max_vq = max_vq;
447 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
448 void *opaque, Error **errp)
450 ARMCPU *cpu = ARM_CPU(obj);
451 uint32_t value;
453 /* All vector lengths are disabled when SVE is off. */
454 if (!cpu_isar_feature(aa64_sve, cpu)) {
455 value = 0;
456 } else {
457 value = cpu->sve_max_vq;
459 visit_type_uint32(v, name, &value, errp);
462 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
463 void *opaque, Error **errp)
465 ARMCPU *cpu = ARM_CPU(obj);
466 uint32_t max_vq;
468 if (!visit_type_uint32(v, name, &max_vq, errp)) {
469 return;
472 if (kvm_enabled() && !kvm_arm_sve_supported()) {
473 error_setg(errp, "cannot set sve-max-vq");
474 error_append_hint(errp, "SVE not supported by KVM on this host\n");
475 return;
478 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
479 error_setg(errp, "unsupported SVE vector length");
480 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
481 ARM_MAX_VQ);
482 return;
485 cpu->sve_max_vq = max_vq;
489 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
490 * object_property_add_bool interface because they make use
491 * of the contents of "name" to determine which bit on which
492 * to operate.
494 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
495 void *opaque, Error **errp)
497 ARMCPU *cpu = ARM_CPU(obj);
498 uint32_t vq = atoi(&name[3]) / 128;
499 bool value;
501 /* All vector lengths are disabled when SVE is off. */
502 if (!cpu_isar_feature(aa64_sve, cpu)) {
503 value = false;
504 } else {
505 value = test_bit(vq - 1, cpu->sve_vq_map);
507 visit_type_bool(v, name, &value, errp);
510 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
511 void *opaque, Error **errp)
513 ARMCPU *cpu = ARM_CPU(obj);
514 uint32_t vq = atoi(&name[3]) / 128;
515 bool value;
517 if (!visit_type_bool(v, name, &value, errp)) {
518 return;
521 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
522 error_setg(errp, "cannot enable %s", name);
523 error_append_hint(errp, "SVE not supported by KVM on this host\n");
524 return;
527 if (value) {
528 set_bit(vq - 1, cpu->sve_vq_map);
529 } else {
530 clear_bit(vq - 1, cpu->sve_vq_map);
532 set_bit(vq - 1, cpu->sve_vq_init);
535 static bool cpu_arm_get_sve(Object *obj, Error **errp)
537 ARMCPU *cpu = ARM_CPU(obj);
538 return cpu_isar_feature(aa64_sve, cpu);
541 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
543 ARMCPU *cpu = ARM_CPU(obj);
544 uint64_t t;
546 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
547 error_setg(errp, "'sve' feature not supported by KVM on this host");
548 return;
551 t = cpu->isar.id_aa64pfr0;
552 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
553 cpu->isar.id_aa64pfr0 = t;
556 #ifdef CONFIG_USER_ONLY
557 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
558 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
559 const char *name, void *opaque,
560 Error **errp)
562 ARMCPU *cpu = ARM_CPU(obj);
563 int32_t default_len, default_vq, remainder;
565 if (!visit_type_int32(v, name, &default_len, errp)) {
566 return;
569 /* Undocumented, but the kernel allows -1 to indicate "maximum". */
570 if (default_len == -1) {
571 cpu->sve_default_vq = ARM_MAX_VQ;
572 return;
575 default_vq = default_len / 16;
576 remainder = default_len % 16;
579 * Note that the 512 max comes from include/uapi/asm/sve_context.h
580 * and is the maximum architectural width of ZCR_ELx.LEN.
582 if (remainder || default_vq < 1 || default_vq > 512) {
583 error_setg(errp, "cannot set sve-default-vector-length");
584 if (remainder) {
585 error_append_hint(errp, "Vector length not a multiple of 16\n");
586 } else if (default_vq < 1) {
587 error_append_hint(errp, "Vector length smaller than 16\n");
588 } else {
589 error_append_hint(errp, "Vector length larger than %d\n",
590 512 * 16);
592 return;
595 cpu->sve_default_vq = default_vq;
598 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
599 const char *name, void *opaque,
600 Error **errp)
602 ARMCPU *cpu = ARM_CPU(obj);
603 int32_t value = cpu->sve_default_vq * 16;
605 visit_type_int32(v, name, &value, errp);
607 #endif
609 void aarch64_add_sve_properties(Object *obj)
611 uint32_t vq;
613 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
615 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
616 char name[8];
617 sprintf(name, "sve%d", vq * 128);
618 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
619 cpu_arm_set_sve_vq, NULL, NULL);
622 #ifdef CONFIG_USER_ONLY
623 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
624 object_property_add(obj, "sve-default-vector-length", "int32",
625 cpu_arm_get_sve_default_vec_len,
626 cpu_arm_set_sve_default_vec_len, NULL, NULL);
627 #endif
630 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
632 int arch_val = 0, impdef_val = 0;
633 uint64_t t;
635 /* Exit early if PAuth is enabled, and fall through to disable it */
636 if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
637 if (!cpu_isar_feature(aa64_pauth, cpu)) {
638 error_setg(errp, "'pauth' feature not supported by %s on this host",
639 kvm_enabled() ? "KVM" : "hvf");
642 return;
645 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
646 if (cpu->prop_pauth) {
647 if (cpu->prop_pauth_impdef) {
648 impdef_val = 1;
649 } else {
650 arch_val = 1;
652 } else if (cpu->prop_pauth_impdef) {
653 error_setg(errp, "cannot enable pauth-impdef without pauth");
654 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
657 t = cpu->isar.id_aa64isar1;
658 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
659 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
660 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
661 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
662 cpu->isar.id_aa64isar1 = t;
665 static Property arm_cpu_pauth_property =
666 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
667 static Property arm_cpu_pauth_impdef_property =
668 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
670 void aarch64_add_pauth_properties(Object *obj)
672 ARMCPU *cpu = ARM_CPU(obj);
674 /* Default to PAUTH on, with the architected algorithm on TCG. */
675 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
676 if (kvm_enabled() || hvf_enabled()) {
678 * Mirror PAuth support from the probed sysregs back into the
679 * property for KVM or hvf. Is it just a bit backward? Yes it is!
680 * Note that prop_pauth is true whether the host CPU supports the
681 * architected QARMA5 algorithm or the IMPDEF one. We don't
682 * provide the separate pauth-impdef property for KVM or hvf,
683 * only for TCG.
685 cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
686 } else {
687 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
691 static void aarch64_host_initfn(Object *obj)
693 #if defined(CONFIG_KVM)
694 ARMCPU *cpu = ARM_CPU(obj);
695 kvm_arm_set_cpu_features_from_host(cpu);
696 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
697 aarch64_add_sve_properties(obj);
698 aarch64_add_pauth_properties(obj);
700 #elif defined(CONFIG_HVF)
701 ARMCPU *cpu = ARM_CPU(obj);
702 hvf_arm_set_cpu_features_from_host(cpu);
703 aarch64_add_pauth_properties(obj);
704 #else
705 g_assert_not_reached();
706 #endif
709 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
710 * otherwise, a CPU with as many features enabled as our emulation supports.
711 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
712 * this only needs to handle 64 bits.
714 static void aarch64_max_initfn(Object *obj)
716 ARMCPU *cpu = ARM_CPU(obj);
717 uint64_t t;
718 uint32_t u;
720 if (kvm_enabled() || hvf_enabled()) {
721 /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
722 aarch64_host_initfn(obj);
723 return;
726 /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
728 aarch64_a57_initfn(obj);
731 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
732 * one and try to apply errata workarounds or use impdef features we
733 * don't provide.
734 * An IMPLEMENTER field of 0 means "reserved for software use";
735 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
736 * to see which features are present";
737 * the VARIANT, PARTNUM and REVISION fields are all implementation
738 * defined and we choose to define PARTNUM just in case guest
739 * code needs to distinguish this QEMU CPU from other software
740 * implementations, though this shouldn't be needed.
742 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
743 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
744 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
745 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
746 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
747 cpu->midr = t;
749 t = cpu->isar.id_aa64isar0;
750 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
751 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
752 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
753 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
754 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
755 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
756 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
757 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
758 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
759 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
760 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
761 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
762 t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
763 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
764 cpu->isar.id_aa64isar0 = t;
766 t = cpu->isar.id_aa64isar1;
767 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
768 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
769 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
770 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
771 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
772 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);
773 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
774 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
775 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);
776 cpu->isar.id_aa64isar1 = t;
778 t = cpu->isar.id_aa64pfr0;
779 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
780 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
781 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
782 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
783 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
784 cpu->isar.id_aa64pfr0 = t;
786 t = cpu->isar.id_aa64pfr1;
787 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
788 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
790 * Begin with full support for MTE. This will be downgraded to MTE=0
791 * during realize if the board provides no tag memory, much like
792 * we do for EL2 with the virtualization=on property.
794 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);
795 cpu->isar.id_aa64pfr1 = t;
797 t = cpu->isar.id_aa64mmfr0;
798 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
799 cpu->isar.id_aa64mmfr0 = t;
801 t = cpu->isar.id_aa64mmfr1;
802 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
803 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
804 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
805 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
806 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
807 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
808 cpu->isar.id_aa64mmfr1 = t;
810 t = cpu->isar.id_aa64mmfr2;
811 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
812 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
813 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
814 cpu->isar.id_aa64mmfr2 = t;
816 t = cpu->isar.id_aa64zfr0;
817 t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
818 t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* PMULL */
819 t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);
820 t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);
821 t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);
822 t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);
823 t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);
824 t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);
825 t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);
826 cpu->isar.id_aa64zfr0 = t;
828 /* Replicate the same data to the 32-bit id registers. */
829 u = cpu->isar.id_isar5;
830 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
831 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
832 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
833 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
834 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
835 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
836 cpu->isar.id_isar5 = u;
838 u = cpu->isar.id_isar6;
839 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
840 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
841 u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
842 u = FIELD_DP32(u, ID_ISAR6, SB, 1);
843 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
844 u = FIELD_DP32(u, ID_ISAR6, BF16, 1);
845 u = FIELD_DP32(u, ID_ISAR6, I8MM, 1);
846 cpu->isar.id_isar6 = u;
848 u = cpu->isar.id_pfr0;
849 u = FIELD_DP32(u, ID_PFR0, DIT, 1);
850 cpu->isar.id_pfr0 = u;
852 u = cpu->isar.id_pfr2;
853 u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
854 cpu->isar.id_pfr2 = u;
856 u = cpu->isar.id_mmfr3;
857 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
858 cpu->isar.id_mmfr3 = u;
860 u = cpu->isar.id_mmfr4;
861 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
862 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
863 u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
864 u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
865 cpu->isar.id_mmfr4 = u;
867 t = cpu->isar.id_aa64dfr0;
868 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
869 cpu->isar.id_aa64dfr0 = t;
871 u = cpu->isar.id_dfr0;
872 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
873 cpu->isar.id_dfr0 = u;
875 u = cpu->isar.mvfr1;
876 u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */
877 u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
878 cpu->isar.mvfr1 = u;
880 #ifdef CONFIG_USER_ONLY
882 * For usermode -cpu max we can use a larger and more efficient DCZ
883 * blocksize since we don't have to follow what the hardware does.
885 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
886 cpu->dcz_blocksize = 7; /* 512 bytes */
887 #endif
889 bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ);
891 aarch64_add_pauth_properties(obj);
892 aarch64_add_sve_properties(obj);
893 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
894 cpu_max_set_sve_max_vq, NULL, NULL);
897 static void aarch64_a64fx_initfn(Object *obj)
899 ARMCPU *cpu = ARM_CPU(obj);
901 cpu->dtb_compatible = "arm,a64fx";
902 set_feature(&cpu->env, ARM_FEATURE_V8);
903 set_feature(&cpu->env, ARM_FEATURE_NEON);
904 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
905 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
906 set_feature(&cpu->env, ARM_FEATURE_EL2);
907 set_feature(&cpu->env, ARM_FEATURE_EL3);
908 set_feature(&cpu->env, ARM_FEATURE_PMU);
909 cpu->midr = 0x461f0010;
910 cpu->revidr = 0x00000000;
911 cpu->ctr = 0x86668006;
912 cpu->reset_sctlr = 0x30000180;
913 cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
914 cpu->isar.id_aa64pfr1 = 0x0000000000000000;
915 cpu->isar.id_aa64dfr0 = 0x0000000010305408;
916 cpu->isar.id_aa64dfr1 = 0x0000000000000000;
917 cpu->id_aa64afr0 = 0x0000000000000000;
918 cpu->id_aa64afr1 = 0x0000000000000000;
919 cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
920 cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
921 cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
922 cpu->isar.id_aa64isar0 = 0x0000000010211120;
923 cpu->isar.id_aa64isar1 = 0x0000000000010001;
924 cpu->isar.id_aa64zfr0 = 0x0000000000000000;
925 cpu->clidr = 0x0000000080000023;
926 cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
927 cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
928 cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
929 cpu->dcz_blocksize = 6; /* 256 bytes */
930 cpu->gic_num_lrs = 4;
931 cpu->gic_vpribits = 5;
932 cpu->gic_vprebits = 5;
934 /* Suppport of A64FX's vector length are 128,256 and 512bit only */
935 aarch64_add_sve_properties(obj);
936 bitmap_zero(cpu->sve_vq_supported, ARM_MAX_VQ);
937 set_bit(0, cpu->sve_vq_supported); /* 128bit */
938 set_bit(1, cpu->sve_vq_supported); /* 256bit */
939 set_bit(3, cpu->sve_vq_supported); /* 512bit */
941 /* TODO: Add A64FX specific HPC extension registers */
944 static const ARMCPUInfo aarch64_cpus[] = {
945 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
946 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
947 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
948 { .name = "a64fx", .initfn = aarch64_a64fx_initfn },
949 { .name = "max", .initfn = aarch64_max_initfn },
950 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
951 { .name = "host", .initfn = aarch64_host_initfn },
952 #endif
955 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
957 ARMCPU *cpu = ARM_CPU(obj);
959 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
962 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
964 ARMCPU *cpu = ARM_CPU(obj);
966 /* At this time, this property is only allowed if KVM is enabled. This
967 * restriction allows us to avoid fixing up functionality that assumes a
968 * uniform execution state like do_interrupt.
970 if (value == false) {
971 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
972 error_setg(errp, "'aarch64' feature cannot be disabled "
973 "unless KVM is enabled and 32-bit EL1 "
974 "is supported");
975 return;
977 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
978 } else {
979 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
983 static void aarch64_cpu_finalizefn(Object *obj)
987 static gchar *aarch64_gdb_arch_name(CPUState *cs)
989 return g_strdup("aarch64");
992 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
994 CPUClass *cc = CPU_CLASS(oc);
996 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
997 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
998 cc->gdb_num_core_regs = 34;
999 cc->gdb_core_xml_file = "aarch64-core.xml";
1000 cc->gdb_arch_name = aarch64_gdb_arch_name;
1002 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1003 aarch64_cpu_set_aarch64);
1004 object_class_property_set_description(oc, "aarch64",
1005 "Set on/off to enable/disable aarch64 "
1006 "execution state ");
1009 static void aarch64_cpu_instance_init(Object *obj)
1011 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1013 acc->info->initfn(obj);
1014 arm_cpu_post_init(obj);
1017 static void cpu_register_class_init(ObjectClass *oc, void *data)
1019 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1021 acc->info = data;
1024 void aarch64_cpu_register(const ARMCPUInfo *info)
1026 TypeInfo type_info = {
1027 .parent = TYPE_AARCH64_CPU,
1028 .instance_size = sizeof(ARMCPU),
1029 .instance_init = aarch64_cpu_instance_init,
1030 .class_size = sizeof(ARMCPUClass),
1031 .class_init = info->class_init ?: cpu_register_class_init,
1032 .class_data = (void *)info,
1035 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1036 type_register(&type_info);
1037 g_free((void *)type_info.name);
1040 static const TypeInfo aarch64_cpu_type_info = {
1041 .name = TYPE_AARCH64_CPU,
1042 .parent = TYPE_ARM_CPU,
1043 .instance_size = sizeof(ARMCPU),
1044 .instance_finalize = aarch64_cpu_finalizefn,
1045 .abstract = true,
1046 .class_size = sizeof(AArch64CPUClass),
1047 .class_init = aarch64_cpu_class_init,
1050 static void aarch64_cpu_register_types(void)
1052 size_t i;
1054 type_register_static(&aarch64_cpu_type_info);
1056 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1057 aarch64_cpu_register(&aarch64_cpus[i]);
1061 type_init(aarch64_cpu_register_types)