4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
39 #ifndef CONFIG_USER_ONLY
40 static uint64_t a57_a53_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
42 ARMCPU
*cpu
= env_archcpu(env
);
44 /* Number of cores is in [25:24]; otherwise we RAZ */
45 return (cpu
->core_count
- 1) << 24;
49 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo
[] = {
50 #ifndef CONFIG_USER_ONLY
51 { .name
= "L2CTLR_EL1", .state
= ARM_CP_STATE_AA64
,
52 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 2,
53 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
54 .writefn
= arm_cp_write_ignore
},
56 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 2,
57 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
58 .writefn
= arm_cp_write_ignore
},
60 { .name
= "L2ECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
61 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 3,
62 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
64 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 3,
65 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
66 { .name
= "L2ACTLR", .state
= ARM_CP_STATE_BOTH
,
67 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 0, .opc2
= 0,
68 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
69 { .name
= "CPUACTLR_EL1", .state
= ARM_CP_STATE_AA64
,
70 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 0,
71 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
73 .cp
= 15, .opc1
= 0, .crm
= 15,
74 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
75 { .name
= "CPUECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
76 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 1,
77 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
79 .cp
= 15, .opc1
= 1, .crm
= 15,
80 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
81 { .name
= "CPUMERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
82 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 2,
83 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
84 { .name
= "CPUMERRSR",
85 .cp
= 15, .opc1
= 2, .crm
= 15,
86 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
87 { .name
= "L2MERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
88 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 3,
89 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
91 .cp
= 15, .opc1
= 3, .crm
= 15,
92 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
96 static void aarch64_a57_initfn(Object
*obj
)
98 ARMCPU
*cpu
= ARM_CPU(obj
);
100 cpu
->dtb_compatible
= "arm,cortex-a57";
101 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
102 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
103 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
104 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
105 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
106 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
107 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
108 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
109 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A57
;
110 cpu
->midr
= 0x411fd070;
111 cpu
->revidr
= 0x00000000;
112 cpu
->reset_fpsid
= 0x41034070;
113 cpu
->isar
.mvfr0
= 0x10110222;
114 cpu
->isar
.mvfr1
= 0x12111111;
115 cpu
->isar
.mvfr2
= 0x00000043;
116 cpu
->ctr
= 0x8444c004;
117 cpu
->reset_sctlr
= 0x00c50838;
118 cpu
->isar
.id_pfr0
= 0x00000131;
119 cpu
->isar
.id_pfr1
= 0x00011011;
120 cpu
->isar
.id_dfr0
= 0x03010066;
121 cpu
->id_afr0
= 0x00000000;
122 cpu
->isar
.id_mmfr0
= 0x10101105;
123 cpu
->isar
.id_mmfr1
= 0x40000000;
124 cpu
->isar
.id_mmfr2
= 0x01260000;
125 cpu
->isar
.id_mmfr3
= 0x02102211;
126 cpu
->isar
.id_isar0
= 0x02101110;
127 cpu
->isar
.id_isar1
= 0x13112111;
128 cpu
->isar
.id_isar2
= 0x21232042;
129 cpu
->isar
.id_isar3
= 0x01112131;
130 cpu
->isar
.id_isar4
= 0x00011142;
131 cpu
->isar
.id_isar5
= 0x00011121;
132 cpu
->isar
.id_isar6
= 0;
133 cpu
->isar
.id_aa64pfr0
= 0x00002222;
134 cpu
->isar
.id_aa64dfr0
= 0x10305106;
135 cpu
->isar
.id_aa64isar0
= 0x00011120;
136 cpu
->isar
.id_aa64mmfr0
= 0x00001124;
137 cpu
->isar
.dbgdidr
= 0x3516d000;
138 cpu
->clidr
= 0x0a200023;
139 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
140 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
141 cpu
->ccsidr
[2] = 0x70ffe07a; /* 2048KB L2 cache */
142 cpu
->dcz_blocksize
= 4; /* 64 bytes */
143 cpu
->gic_num_lrs
= 4;
144 cpu
->gic_vpribits
= 5;
145 cpu
->gic_vprebits
= 5;
146 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
149 static void aarch64_a53_initfn(Object
*obj
)
151 ARMCPU
*cpu
= ARM_CPU(obj
);
153 cpu
->dtb_compatible
= "arm,cortex-a53";
154 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
155 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
156 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
157 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
158 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
159 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
160 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
161 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
162 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A53
;
163 cpu
->midr
= 0x410fd034;
164 cpu
->revidr
= 0x00000000;
165 cpu
->reset_fpsid
= 0x41034070;
166 cpu
->isar
.mvfr0
= 0x10110222;
167 cpu
->isar
.mvfr1
= 0x12111111;
168 cpu
->isar
.mvfr2
= 0x00000043;
169 cpu
->ctr
= 0x84448004; /* L1Ip = VIPT */
170 cpu
->reset_sctlr
= 0x00c50838;
171 cpu
->isar
.id_pfr0
= 0x00000131;
172 cpu
->isar
.id_pfr1
= 0x00011011;
173 cpu
->isar
.id_dfr0
= 0x03010066;
174 cpu
->id_afr0
= 0x00000000;
175 cpu
->isar
.id_mmfr0
= 0x10101105;
176 cpu
->isar
.id_mmfr1
= 0x40000000;
177 cpu
->isar
.id_mmfr2
= 0x01260000;
178 cpu
->isar
.id_mmfr3
= 0x02102211;
179 cpu
->isar
.id_isar0
= 0x02101110;
180 cpu
->isar
.id_isar1
= 0x13112111;
181 cpu
->isar
.id_isar2
= 0x21232042;
182 cpu
->isar
.id_isar3
= 0x01112131;
183 cpu
->isar
.id_isar4
= 0x00011142;
184 cpu
->isar
.id_isar5
= 0x00011121;
185 cpu
->isar
.id_isar6
= 0;
186 cpu
->isar
.id_aa64pfr0
= 0x00002222;
187 cpu
->isar
.id_aa64dfr0
= 0x10305106;
188 cpu
->isar
.id_aa64isar0
= 0x00011120;
189 cpu
->isar
.id_aa64mmfr0
= 0x00001122; /* 40 bit physical addr */
190 cpu
->isar
.dbgdidr
= 0x3516d000;
191 cpu
->clidr
= 0x0a200023;
192 cpu
->ccsidr
[0] = 0x700fe01a; /* 32KB L1 dcache */
193 cpu
->ccsidr
[1] = 0x201fe00a; /* 32KB L1 icache */
194 cpu
->ccsidr
[2] = 0x707fe07a; /* 1024KB L2 cache */
195 cpu
->dcz_blocksize
= 4; /* 64 bytes */
196 cpu
->gic_num_lrs
= 4;
197 cpu
->gic_vpribits
= 5;
198 cpu
->gic_vprebits
= 5;
199 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
202 static void aarch64_a72_initfn(Object
*obj
)
204 ARMCPU
*cpu
= ARM_CPU(obj
);
206 cpu
->dtb_compatible
= "arm,cortex-a72";
207 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
208 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
209 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
210 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
211 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
212 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
213 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
214 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
215 cpu
->midr
= 0x410fd083;
216 cpu
->revidr
= 0x00000000;
217 cpu
->reset_fpsid
= 0x41034080;
218 cpu
->isar
.mvfr0
= 0x10110222;
219 cpu
->isar
.mvfr1
= 0x12111111;
220 cpu
->isar
.mvfr2
= 0x00000043;
221 cpu
->ctr
= 0x8444c004;
222 cpu
->reset_sctlr
= 0x00c50838;
223 cpu
->isar
.id_pfr0
= 0x00000131;
224 cpu
->isar
.id_pfr1
= 0x00011011;
225 cpu
->isar
.id_dfr0
= 0x03010066;
226 cpu
->id_afr0
= 0x00000000;
227 cpu
->isar
.id_mmfr0
= 0x10201105;
228 cpu
->isar
.id_mmfr1
= 0x40000000;
229 cpu
->isar
.id_mmfr2
= 0x01260000;
230 cpu
->isar
.id_mmfr3
= 0x02102211;
231 cpu
->isar
.id_isar0
= 0x02101110;
232 cpu
->isar
.id_isar1
= 0x13112111;
233 cpu
->isar
.id_isar2
= 0x21232042;
234 cpu
->isar
.id_isar3
= 0x01112131;
235 cpu
->isar
.id_isar4
= 0x00011142;
236 cpu
->isar
.id_isar5
= 0x00011121;
237 cpu
->isar
.id_aa64pfr0
= 0x00002222;
238 cpu
->isar
.id_aa64dfr0
= 0x10305106;
239 cpu
->isar
.id_aa64isar0
= 0x00011120;
240 cpu
->isar
.id_aa64mmfr0
= 0x00001124;
241 cpu
->isar
.dbgdidr
= 0x3516d000;
242 cpu
->clidr
= 0x0a200023;
243 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
244 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
245 cpu
->ccsidr
[2] = 0x707fe07a; /* 1MB L2 cache */
246 cpu
->dcz_blocksize
= 4; /* 64 bytes */
247 cpu
->gic_num_lrs
= 4;
248 cpu
->gic_vpribits
= 5;
249 cpu
->gic_vprebits
= 5;
250 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
253 void arm_cpu_sve_finalize(ARMCPU
*cpu
, Error
**errp
)
256 * If any vector lengths are explicitly enabled with sve<N> properties,
257 * then all other lengths are implicitly disabled. If sve-max-vq is
258 * specified then it is the same as explicitly enabling all lengths
259 * up to and including the specified maximum, which means all larger
260 * lengths will be implicitly disabled. If no sve<N> properties
261 * are enabled and sve-max-vq is not specified, then all lengths not
262 * explicitly disabled will be enabled. Additionally, all power-of-two
263 * vector lengths less than the maximum enabled length will be
264 * automatically enabled and all vector lengths larger than the largest
265 * disabled power-of-two vector length will be automatically disabled.
266 * Errors are generated if the user provided input that interferes with
267 * any of the above. Finally, if SVE is not disabled, then at least one
268 * vector length must be enabled.
270 DECLARE_BITMAP(tmp
, ARM_MAX_VQ
);
271 uint32_t vq
, max_vq
= 0;
274 * CPU models specify a set of supported vector lengths which are
275 * enabled by default. Attempting to enable any vector length not set
276 * in the supported bitmap results in an error. When KVM is enabled we
277 * fetch the supported bitmap from the host.
279 if (kvm_enabled() && kvm_arm_sve_supported()) {
280 kvm_arm_sve_get_vls(CPU(cpu
), cpu
->sve_vq_supported
);
281 } else if (kvm_enabled()) {
282 assert(!cpu_isar_feature(aa64_sve
, cpu
));
286 * Process explicit sve<N> properties.
287 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
288 * Check first for any sve<N> enabled.
290 if (!bitmap_empty(cpu
->sve_vq_map
, ARM_MAX_VQ
)) {
291 max_vq
= find_last_bit(cpu
->sve_vq_map
, ARM_MAX_VQ
) + 1;
293 if (cpu
->sve_max_vq
&& max_vq
> cpu
->sve_max_vq
) {
294 error_setg(errp
, "cannot enable sve%d", max_vq
* 128);
295 error_append_hint(errp
, "sve%d is larger than the maximum vector "
296 "length, sve-max-vq=%d (%d bits)\n",
297 max_vq
* 128, cpu
->sve_max_vq
,
298 cpu
->sve_max_vq
* 128);
304 * For KVM we have to automatically enable all supported unitialized
305 * lengths, even when the smaller lengths are not all powers-of-two.
307 bitmap_andnot(tmp
, cpu
->sve_vq_supported
, cpu
->sve_vq_init
, max_vq
);
308 bitmap_or(cpu
->sve_vq_map
, cpu
->sve_vq_map
, tmp
, max_vq
);
310 /* Propagate enabled bits down through required powers-of-two. */
311 for (vq
= pow2floor(max_vq
); vq
>= 1; vq
>>= 1) {
312 if (!test_bit(vq
- 1, cpu
->sve_vq_init
)) {
313 set_bit(vq
- 1, cpu
->sve_vq_map
);
317 } else if (cpu
->sve_max_vq
== 0) {
319 * No explicit bits enabled, and no implicit bits from sve-max-vq.
321 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
322 /* SVE is disabled and so are all vector lengths. Good. */
327 /* Disabling a supported length disables all larger lengths. */
328 for (vq
= 1; vq
<= ARM_MAX_VQ
; ++vq
) {
329 if (test_bit(vq
- 1, cpu
->sve_vq_init
) &&
330 test_bit(vq
- 1, cpu
->sve_vq_supported
)) {
335 /* Disabling a power-of-two disables all larger lengths. */
336 for (vq
= 1; vq
<= ARM_MAX_VQ
; vq
<<= 1) {
337 if (test_bit(vq
- 1, cpu
->sve_vq_init
)) {
343 max_vq
= vq
<= ARM_MAX_VQ
? vq
- 1 : ARM_MAX_VQ
;
344 bitmap_andnot(cpu
->sve_vq_map
, cpu
->sve_vq_supported
,
345 cpu
->sve_vq_init
, max_vq
);
346 if (max_vq
== 0 || bitmap_empty(cpu
->sve_vq_map
, max_vq
)) {
347 error_setg(errp
, "cannot disable sve%d", vq
* 128);
348 error_append_hint(errp
, "Disabling sve%d results in all "
349 "vector lengths being disabled.\n",
351 error_append_hint(errp
, "With SVE enabled, at least one "
352 "vector length must be enabled.\n");
356 max_vq
= find_last_bit(cpu
->sve_vq_map
, max_vq
) + 1;
360 * Process the sve-max-vq property.
361 * Note that we know from the above that no bit above
362 * sve-max-vq is currently set.
364 if (cpu
->sve_max_vq
!= 0) {
365 max_vq
= cpu
->sve_max_vq
;
367 if (!test_bit(max_vq
- 1, cpu
->sve_vq_map
) &&
368 test_bit(max_vq
- 1, cpu
->sve_vq_init
)) {
369 error_setg(errp
, "cannot disable sve%d", max_vq
* 128);
370 error_append_hint(errp
, "The maximum vector length must be "
371 "enabled, sve-max-vq=%d (%d bits)\n",
372 max_vq
, max_vq
* 128);
376 /* Set all bits not explicitly set within sve-max-vq. */
377 bitmap_complement(tmp
, cpu
->sve_vq_init
, max_vq
);
378 bitmap_or(cpu
->sve_vq_map
, cpu
->sve_vq_map
, tmp
, max_vq
);
382 * We should know what max-vq is now. Also, as we're done
383 * manipulating sve-vq-map, we ensure any bits above max-vq
384 * are clear, just in case anybody looks.
387 bitmap_clear(cpu
->sve_vq_map
, max_vq
, ARM_MAX_VQ
- max_vq
);
389 /* Ensure the set of lengths matches what is supported. */
390 bitmap_xor(tmp
, cpu
->sve_vq_map
, cpu
->sve_vq_supported
, max_vq
);
391 if (!bitmap_empty(tmp
, max_vq
)) {
392 vq
= find_last_bit(tmp
, max_vq
) + 1;
393 if (test_bit(vq
- 1, cpu
->sve_vq_map
)) {
394 if (cpu
->sve_max_vq
) {
395 error_setg(errp
, "cannot set sve-max-vq=%d", cpu
->sve_max_vq
);
396 error_append_hint(errp
, "This CPU does not support "
397 "the vector length %d-bits.\n", vq
* 128);
398 error_append_hint(errp
, "It may not be possible to use "
399 "sve-max-vq with this CPU. Try "
400 "using only sve<N> properties.\n");
402 error_setg(errp
, "cannot enable sve%d", vq
* 128);
403 error_append_hint(errp
, "This CPU does not support "
404 "the vector length %d-bits.\n", vq
* 128);
409 error_setg(errp
, "cannot disable sve%d", vq
* 128);
410 error_append_hint(errp
, "The KVM host requires all "
411 "supported vector lengths smaller "
412 "than %d bits to also be enabled.\n",
416 /* Ensure all required powers-of-two are enabled. */
417 for (vq
= pow2floor(max_vq
); vq
>= 1; vq
>>= 1) {
418 if (!test_bit(vq
- 1, cpu
->sve_vq_map
)) {
419 error_setg(errp
, "cannot disable sve%d", vq
* 128);
420 error_append_hint(errp
, "sve%d is required as it "
421 "is a power-of-two length smaller "
422 "than the maximum, sve%d\n",
423 vq
* 128, max_vq
* 128);
432 * Now that we validated all our vector lengths, the only question
433 * left to answer is if we even want SVE at all.
435 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
436 error_setg(errp
, "cannot enable sve%d", max_vq
* 128);
437 error_append_hint(errp
, "SVE must be enabled to enable vector "
439 error_append_hint(errp
, "Add sve=on to the CPU property list.\n");
443 /* From now on sve_max_vq is the actual maximum supported length. */
444 cpu
->sve_max_vq
= max_vq
;
447 static void cpu_max_get_sve_max_vq(Object
*obj
, Visitor
*v
, const char *name
,
448 void *opaque
, Error
**errp
)
450 ARMCPU
*cpu
= ARM_CPU(obj
);
453 /* All vector lengths are disabled when SVE is off. */
454 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
457 value
= cpu
->sve_max_vq
;
459 visit_type_uint32(v
, name
, &value
, errp
);
462 static void cpu_max_set_sve_max_vq(Object
*obj
, Visitor
*v
, const char *name
,
463 void *opaque
, Error
**errp
)
465 ARMCPU
*cpu
= ARM_CPU(obj
);
468 if (!visit_type_uint32(v
, name
, &max_vq
, errp
)) {
472 if (kvm_enabled() && !kvm_arm_sve_supported()) {
473 error_setg(errp
, "cannot set sve-max-vq");
474 error_append_hint(errp
, "SVE not supported by KVM on this host\n");
478 if (max_vq
== 0 || max_vq
> ARM_MAX_VQ
) {
479 error_setg(errp
, "unsupported SVE vector length");
480 error_append_hint(errp
, "Valid sve-max-vq in range [1-%d]\n",
485 cpu
->sve_max_vq
= max_vq
;
489 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
490 * object_property_add_bool interface because they make use
491 * of the contents of "name" to determine which bit on which
494 static void cpu_arm_get_sve_vq(Object
*obj
, Visitor
*v
, const char *name
,
495 void *opaque
, Error
**errp
)
497 ARMCPU
*cpu
= ARM_CPU(obj
);
498 uint32_t vq
= atoi(&name
[3]) / 128;
501 /* All vector lengths are disabled when SVE is off. */
502 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
505 value
= test_bit(vq
- 1, cpu
->sve_vq_map
);
507 visit_type_bool(v
, name
, &value
, errp
);
510 static void cpu_arm_set_sve_vq(Object
*obj
, Visitor
*v
, const char *name
,
511 void *opaque
, Error
**errp
)
513 ARMCPU
*cpu
= ARM_CPU(obj
);
514 uint32_t vq
= atoi(&name
[3]) / 128;
517 if (!visit_type_bool(v
, name
, &value
, errp
)) {
521 if (value
&& kvm_enabled() && !kvm_arm_sve_supported()) {
522 error_setg(errp
, "cannot enable %s", name
);
523 error_append_hint(errp
, "SVE not supported by KVM on this host\n");
528 set_bit(vq
- 1, cpu
->sve_vq_map
);
530 clear_bit(vq
- 1, cpu
->sve_vq_map
);
532 set_bit(vq
- 1, cpu
->sve_vq_init
);
535 static bool cpu_arm_get_sve(Object
*obj
, Error
**errp
)
537 ARMCPU
*cpu
= ARM_CPU(obj
);
538 return cpu_isar_feature(aa64_sve
, cpu
);
541 static void cpu_arm_set_sve(Object
*obj
, bool value
, Error
**errp
)
543 ARMCPU
*cpu
= ARM_CPU(obj
);
546 if (value
&& kvm_enabled() && !kvm_arm_sve_supported()) {
547 error_setg(errp
, "'sve' feature not supported by KVM on this host");
551 t
= cpu
->isar
.id_aa64pfr0
;
552 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, value
);
553 cpu
->isar
.id_aa64pfr0
= t
;
556 #ifdef CONFIG_USER_ONLY
557 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
558 static void cpu_arm_set_sve_default_vec_len(Object
*obj
, Visitor
*v
,
559 const char *name
, void *opaque
,
562 ARMCPU
*cpu
= ARM_CPU(obj
);
563 int32_t default_len
, default_vq
, remainder
;
565 if (!visit_type_int32(v
, name
, &default_len
, errp
)) {
569 /* Undocumented, but the kernel allows -1 to indicate "maximum". */
570 if (default_len
== -1) {
571 cpu
->sve_default_vq
= ARM_MAX_VQ
;
575 default_vq
= default_len
/ 16;
576 remainder
= default_len
% 16;
579 * Note that the 512 max comes from include/uapi/asm/sve_context.h
580 * and is the maximum architectural width of ZCR_ELx.LEN.
582 if (remainder
|| default_vq
< 1 || default_vq
> 512) {
583 error_setg(errp
, "cannot set sve-default-vector-length");
585 error_append_hint(errp
, "Vector length not a multiple of 16\n");
586 } else if (default_vq
< 1) {
587 error_append_hint(errp
, "Vector length smaller than 16\n");
589 error_append_hint(errp
, "Vector length larger than %d\n",
595 cpu
->sve_default_vq
= default_vq
;
598 static void cpu_arm_get_sve_default_vec_len(Object
*obj
, Visitor
*v
,
599 const char *name
, void *opaque
,
602 ARMCPU
*cpu
= ARM_CPU(obj
);
603 int32_t value
= cpu
->sve_default_vq
* 16;
605 visit_type_int32(v
, name
, &value
, errp
);
609 void aarch64_add_sve_properties(Object
*obj
)
613 object_property_add_bool(obj
, "sve", cpu_arm_get_sve
, cpu_arm_set_sve
);
615 for (vq
= 1; vq
<= ARM_MAX_VQ
; ++vq
) {
617 sprintf(name
, "sve%d", vq
* 128);
618 object_property_add(obj
, name
, "bool", cpu_arm_get_sve_vq
,
619 cpu_arm_set_sve_vq
, NULL
, NULL
);
622 #ifdef CONFIG_USER_ONLY
623 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
624 object_property_add(obj
, "sve-default-vector-length", "int32",
625 cpu_arm_get_sve_default_vec_len
,
626 cpu_arm_set_sve_default_vec_len
, NULL
, NULL
);
630 void arm_cpu_pauth_finalize(ARMCPU
*cpu
, Error
**errp
)
632 int arch_val
= 0, impdef_val
= 0;
635 /* Exit early if PAuth is enabled, and fall through to disable it */
636 if ((kvm_enabled() || hvf_enabled()) && cpu
->prop_pauth
) {
637 if (!cpu_isar_feature(aa64_pauth
, cpu
)) {
638 error_setg(errp
, "'pauth' feature not supported by %s on this host",
639 kvm_enabled() ? "KVM" : "hvf");
645 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
646 if (cpu
->prop_pauth
) {
647 if (cpu
->prop_pauth_impdef
) {
652 } else if (cpu
->prop_pauth_impdef
) {
653 error_setg(errp
, "cannot enable pauth-impdef without pauth");
654 error_append_hint(errp
, "Add pauth=on to the CPU property list.\n");
657 t
= cpu
->isar
.id_aa64isar1
;
658 t
= FIELD_DP64(t
, ID_AA64ISAR1
, APA
, arch_val
);
659 t
= FIELD_DP64(t
, ID_AA64ISAR1
, GPA
, arch_val
);
660 t
= FIELD_DP64(t
, ID_AA64ISAR1
, API
, impdef_val
);
661 t
= FIELD_DP64(t
, ID_AA64ISAR1
, GPI
, impdef_val
);
662 cpu
->isar
.id_aa64isar1
= t
;
665 static Property arm_cpu_pauth_property
=
666 DEFINE_PROP_BOOL("pauth", ARMCPU
, prop_pauth
, true);
667 static Property arm_cpu_pauth_impdef_property
=
668 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU
, prop_pauth_impdef
, false);
670 void aarch64_add_pauth_properties(Object
*obj
)
672 ARMCPU
*cpu
= ARM_CPU(obj
);
674 /* Default to PAUTH on, with the architected algorithm on TCG. */
675 qdev_property_add_static(DEVICE(obj
), &arm_cpu_pauth_property
);
676 if (kvm_enabled() || hvf_enabled()) {
678 * Mirror PAuth support from the probed sysregs back into the
679 * property for KVM or hvf. Is it just a bit backward? Yes it is!
680 * Note that prop_pauth is true whether the host CPU supports the
681 * architected QARMA5 algorithm or the IMPDEF one. We don't
682 * provide the separate pauth-impdef property for KVM or hvf,
685 cpu
->prop_pauth
= cpu_isar_feature(aa64_pauth
, cpu
);
687 qdev_property_add_static(DEVICE(obj
), &arm_cpu_pauth_impdef_property
);
691 static void aarch64_host_initfn(Object
*obj
)
693 #if defined(CONFIG_KVM)
694 ARMCPU
*cpu
= ARM_CPU(obj
);
695 kvm_arm_set_cpu_features_from_host(cpu
);
696 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
697 aarch64_add_sve_properties(obj
);
698 aarch64_add_pauth_properties(obj
);
700 #elif defined(CONFIG_HVF)
701 ARMCPU
*cpu
= ARM_CPU(obj
);
702 hvf_arm_set_cpu_features_from_host(cpu
);
703 aarch64_add_pauth_properties(obj
);
705 g_assert_not_reached();
709 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
710 * otherwise, a CPU with as many features enabled as our emulation supports.
711 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
712 * this only needs to handle 64 bits.
714 static void aarch64_max_initfn(Object
*obj
)
716 ARMCPU
*cpu
= ARM_CPU(obj
);
720 if (kvm_enabled() || hvf_enabled()) {
721 /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
722 aarch64_host_initfn(obj
);
726 /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
728 aarch64_a57_initfn(obj
);
731 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
732 * one and try to apply errata workarounds or use impdef features we
734 * An IMPLEMENTER field of 0 means "reserved for software use";
735 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
736 * to see which features are present";
737 * the VARIANT, PARTNUM and REVISION fields are all implementation
738 * defined and we choose to define PARTNUM just in case guest
739 * code needs to distinguish this QEMU CPU from other software
740 * implementations, though this shouldn't be needed.
742 t
= FIELD_DP64(0, MIDR_EL1
, IMPLEMENTER
, 0);
743 t
= FIELD_DP64(t
, MIDR_EL1
, ARCHITECTURE
, 0xf);
744 t
= FIELD_DP64(t
, MIDR_EL1
, PARTNUM
, 'Q');
745 t
= FIELD_DP64(t
, MIDR_EL1
, VARIANT
, 0);
746 t
= FIELD_DP64(t
, MIDR_EL1
, REVISION
, 0);
749 t
= cpu
->isar
.id_aa64isar0
;
750 t
= FIELD_DP64(t
, ID_AA64ISAR0
, AES
, 2); /* AES + PMULL */
751 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA1
, 1);
752 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA2
, 2); /* SHA512 */
753 t
= FIELD_DP64(t
, ID_AA64ISAR0
, CRC32
, 1);
754 t
= FIELD_DP64(t
, ID_AA64ISAR0
, ATOMIC
, 2);
755 t
= FIELD_DP64(t
, ID_AA64ISAR0
, RDM
, 1);
756 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA3
, 1);
757 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM3
, 1);
758 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM4
, 1);
759 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 1);
760 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 1);
761 t
= FIELD_DP64(t
, ID_AA64ISAR0
, TS
, 2); /* v8.5-CondM */
762 t
= FIELD_DP64(t
, ID_AA64ISAR0
, TLB
, 2); /* FEAT_TLBIRANGE */
763 t
= FIELD_DP64(t
, ID_AA64ISAR0
, RNDR
, 1);
764 cpu
->isar
.id_aa64isar0
= t
;
766 t
= cpu
->isar
.id_aa64isar1
;
767 t
= FIELD_DP64(t
, ID_AA64ISAR1
, DPB
, 2);
768 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 1);
769 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 1);
770 t
= FIELD_DP64(t
, ID_AA64ISAR1
, SB
, 1);
771 t
= FIELD_DP64(t
, ID_AA64ISAR1
, SPECRES
, 1);
772 t
= FIELD_DP64(t
, ID_AA64ISAR1
, BF16
, 1);
773 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 1);
774 t
= FIELD_DP64(t
, ID_AA64ISAR1
, LRCPC
, 2); /* ARMv8.4-RCPC */
775 t
= FIELD_DP64(t
, ID_AA64ISAR1
, I8MM
, 1);
776 cpu
->isar
.id_aa64isar1
= t
;
778 t
= cpu
->isar
.id_aa64pfr0
;
779 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, 1);
780 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 1);
781 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 1);
782 t
= FIELD_DP64(t
, ID_AA64PFR0
, SEL2
, 1);
783 t
= FIELD_DP64(t
, ID_AA64PFR0
, DIT
, 1);
784 cpu
->isar
.id_aa64pfr0
= t
;
786 t
= cpu
->isar
.id_aa64pfr1
;
787 t
= FIELD_DP64(t
, ID_AA64PFR1
, BT
, 1);
788 t
= FIELD_DP64(t
, ID_AA64PFR1
, SSBS
, 2);
790 * Begin with full support for MTE. This will be downgraded to MTE=0
791 * during realize if the board provides no tag memory, much like
792 * we do for EL2 with the virtualization=on property.
794 t
= FIELD_DP64(t
, ID_AA64PFR1
, MTE
, 3);
795 cpu
->isar
.id_aa64pfr1
= t
;
797 t
= cpu
->isar
.id_aa64mmfr0
;
798 t
= FIELD_DP64(t
, ID_AA64MMFR0
, PARANGE
, 5); /* PARange: 48 bits */
799 cpu
->isar
.id_aa64mmfr0
= t
;
801 t
= cpu
->isar
.id_aa64mmfr1
;
802 t
= FIELD_DP64(t
, ID_AA64MMFR1
, HPDS
, 1); /* HPD */
803 t
= FIELD_DP64(t
, ID_AA64MMFR1
, LO
, 1);
804 t
= FIELD_DP64(t
, ID_AA64MMFR1
, VH
, 1);
805 t
= FIELD_DP64(t
, ID_AA64MMFR1
, PAN
, 2); /* ATS1E1 */
806 t
= FIELD_DP64(t
, ID_AA64MMFR1
, VMIDBITS
, 2); /* VMID16 */
807 t
= FIELD_DP64(t
, ID_AA64MMFR1
, XNX
, 1); /* TTS2UXN */
808 cpu
->isar
.id_aa64mmfr1
= t
;
810 t
= cpu
->isar
.id_aa64mmfr2
;
811 t
= FIELD_DP64(t
, ID_AA64MMFR2
, UAO
, 1);
812 t
= FIELD_DP64(t
, ID_AA64MMFR2
, CNP
, 1); /* TTCNP */
813 t
= FIELD_DP64(t
, ID_AA64MMFR2
, ST
, 1); /* TTST */
814 cpu
->isar
.id_aa64mmfr2
= t
;
816 t
= cpu
->isar
.id_aa64zfr0
;
817 t
= FIELD_DP64(t
, ID_AA64ZFR0
, SVEVER
, 1);
818 t
= FIELD_DP64(t
, ID_AA64ZFR0
, AES
, 2); /* PMULL */
819 t
= FIELD_DP64(t
, ID_AA64ZFR0
, BITPERM
, 1);
820 t
= FIELD_DP64(t
, ID_AA64ZFR0
, BFLOAT16
, 1);
821 t
= FIELD_DP64(t
, ID_AA64ZFR0
, SHA3
, 1);
822 t
= FIELD_DP64(t
, ID_AA64ZFR0
, SM4
, 1);
823 t
= FIELD_DP64(t
, ID_AA64ZFR0
, I8MM
, 1);
824 t
= FIELD_DP64(t
, ID_AA64ZFR0
, F32MM
, 1);
825 t
= FIELD_DP64(t
, ID_AA64ZFR0
, F64MM
, 1);
826 cpu
->isar
.id_aa64zfr0
= t
;
828 /* Replicate the same data to the 32-bit id registers. */
829 u
= cpu
->isar
.id_isar5
;
830 u
= FIELD_DP32(u
, ID_ISAR5
, AES
, 2); /* AES + PMULL */
831 u
= FIELD_DP32(u
, ID_ISAR5
, SHA1
, 1);
832 u
= FIELD_DP32(u
, ID_ISAR5
, SHA2
, 1);
833 u
= FIELD_DP32(u
, ID_ISAR5
, CRC32
, 1);
834 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 1);
835 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 1);
836 cpu
->isar
.id_isar5
= u
;
838 u
= cpu
->isar
.id_isar6
;
839 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 1);
840 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 1);
841 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 1);
842 u
= FIELD_DP32(u
, ID_ISAR6
, SB
, 1);
843 u
= FIELD_DP32(u
, ID_ISAR6
, SPECRES
, 1);
844 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 1);
845 u
= FIELD_DP32(u
, ID_ISAR6
, I8MM
, 1);
846 cpu
->isar
.id_isar6
= u
;
848 u
= cpu
->isar
.id_pfr0
;
849 u
= FIELD_DP32(u
, ID_PFR0
, DIT
, 1);
850 cpu
->isar
.id_pfr0
= u
;
852 u
= cpu
->isar
.id_pfr2
;
853 u
= FIELD_DP32(u
, ID_PFR2
, SSBS
, 1);
854 cpu
->isar
.id_pfr2
= u
;
856 u
= cpu
->isar
.id_mmfr3
;
857 u
= FIELD_DP32(u
, ID_MMFR3
, PAN
, 2); /* ATS1E1 */
858 cpu
->isar
.id_mmfr3
= u
;
860 u
= cpu
->isar
.id_mmfr4
;
861 u
= FIELD_DP32(u
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
862 u
= FIELD_DP32(u
, ID_MMFR4
, AC2
, 1); /* ACTLR2, HACTLR2 */
863 u
= FIELD_DP32(u
, ID_MMFR4
, CNP
, 1); /* TTCNP */
864 u
= FIELD_DP32(u
, ID_MMFR4
, XNX
, 1); /* TTS2UXN */
865 cpu
->isar
.id_mmfr4
= u
;
867 t
= cpu
->isar
.id_aa64dfr0
;
868 t
= FIELD_DP64(t
, ID_AA64DFR0
, PMUVER
, 5); /* v8.4-PMU */
869 cpu
->isar
.id_aa64dfr0
= t
;
871 u
= cpu
->isar
.id_dfr0
;
872 u
= FIELD_DP32(u
, ID_DFR0
, PERFMON
, 5); /* v8.4-PMU */
873 cpu
->isar
.id_dfr0
= u
;
876 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 3); /* v8.2-FP16 */
877 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 2); /* v8.2-FP16 */
880 #ifdef CONFIG_USER_ONLY
882 * For usermode -cpu max we can use a larger and more efficient DCZ
883 * blocksize since we don't have to follow what the hardware does.
885 cpu
->ctr
= 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
886 cpu
->dcz_blocksize
= 7; /* 512 bytes */
889 bitmap_fill(cpu
->sve_vq_supported
, ARM_MAX_VQ
);
891 aarch64_add_pauth_properties(obj
);
892 aarch64_add_sve_properties(obj
);
893 object_property_add(obj
, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq
,
894 cpu_max_set_sve_max_vq
, NULL
, NULL
);
897 static void aarch64_a64fx_initfn(Object
*obj
)
899 ARMCPU
*cpu
= ARM_CPU(obj
);
901 cpu
->dtb_compatible
= "arm,a64fx";
902 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
903 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
904 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
905 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
906 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
907 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
908 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
909 cpu
->midr
= 0x461f0010;
910 cpu
->revidr
= 0x00000000;
911 cpu
->ctr
= 0x86668006;
912 cpu
->reset_sctlr
= 0x30000180;
913 cpu
->isar
.id_aa64pfr0
= 0x0000000101111111; /* No RAS Extensions */
914 cpu
->isar
.id_aa64pfr1
= 0x0000000000000000;
915 cpu
->isar
.id_aa64dfr0
= 0x0000000010305408;
916 cpu
->isar
.id_aa64dfr1
= 0x0000000000000000;
917 cpu
->id_aa64afr0
= 0x0000000000000000;
918 cpu
->id_aa64afr1
= 0x0000000000000000;
919 cpu
->isar
.id_aa64mmfr0
= 0x0000000000001122;
920 cpu
->isar
.id_aa64mmfr1
= 0x0000000011212100;
921 cpu
->isar
.id_aa64mmfr2
= 0x0000000000001011;
922 cpu
->isar
.id_aa64isar0
= 0x0000000010211120;
923 cpu
->isar
.id_aa64isar1
= 0x0000000000010001;
924 cpu
->isar
.id_aa64zfr0
= 0x0000000000000000;
925 cpu
->clidr
= 0x0000000080000023;
926 cpu
->ccsidr
[0] = 0x7007e01c; /* 64KB L1 dcache */
927 cpu
->ccsidr
[1] = 0x2007e01c; /* 64KB L1 icache */
928 cpu
->ccsidr
[2] = 0x70ffe07c; /* 8MB L2 cache */
929 cpu
->dcz_blocksize
= 6; /* 256 bytes */
930 cpu
->gic_num_lrs
= 4;
931 cpu
->gic_vpribits
= 5;
932 cpu
->gic_vprebits
= 5;
934 /* Suppport of A64FX's vector length are 128,256 and 512bit only */
935 aarch64_add_sve_properties(obj
);
936 bitmap_zero(cpu
->sve_vq_supported
, ARM_MAX_VQ
);
937 set_bit(0, cpu
->sve_vq_supported
); /* 128bit */
938 set_bit(1, cpu
->sve_vq_supported
); /* 256bit */
939 set_bit(3, cpu
->sve_vq_supported
); /* 512bit */
941 /* TODO: Add A64FX specific HPC extension registers */
944 static const ARMCPUInfo aarch64_cpus
[] = {
945 { .name
= "cortex-a57", .initfn
= aarch64_a57_initfn
},
946 { .name
= "cortex-a53", .initfn
= aarch64_a53_initfn
},
947 { .name
= "cortex-a72", .initfn
= aarch64_a72_initfn
},
948 { .name
= "a64fx", .initfn
= aarch64_a64fx_initfn
},
949 { .name
= "max", .initfn
= aarch64_max_initfn
},
950 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
951 { .name
= "host", .initfn
= aarch64_host_initfn
},
955 static bool aarch64_cpu_get_aarch64(Object
*obj
, Error
**errp
)
957 ARMCPU
*cpu
= ARM_CPU(obj
);
959 return arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
962 static void aarch64_cpu_set_aarch64(Object
*obj
, bool value
, Error
**errp
)
964 ARMCPU
*cpu
= ARM_CPU(obj
);
966 /* At this time, this property is only allowed if KVM is enabled. This
967 * restriction allows us to avoid fixing up functionality that assumes a
968 * uniform execution state like do_interrupt.
970 if (value
== false) {
971 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
972 error_setg(errp
, "'aarch64' feature cannot be disabled "
973 "unless KVM is enabled and 32-bit EL1 "
977 unset_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
979 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
983 static void aarch64_cpu_finalizefn(Object
*obj
)
987 static gchar
*aarch64_gdb_arch_name(CPUState
*cs
)
989 return g_strdup("aarch64");
992 static void aarch64_cpu_class_init(ObjectClass
*oc
, void *data
)
994 CPUClass
*cc
= CPU_CLASS(oc
);
996 cc
->gdb_read_register
= aarch64_cpu_gdb_read_register
;
997 cc
->gdb_write_register
= aarch64_cpu_gdb_write_register
;
998 cc
->gdb_num_core_regs
= 34;
999 cc
->gdb_core_xml_file
= "aarch64-core.xml";
1000 cc
->gdb_arch_name
= aarch64_gdb_arch_name
;
1002 object_class_property_add_bool(oc
, "aarch64", aarch64_cpu_get_aarch64
,
1003 aarch64_cpu_set_aarch64
);
1004 object_class_property_set_description(oc
, "aarch64",
1005 "Set on/off to enable/disable aarch64 "
1006 "execution state ");
1009 static void aarch64_cpu_instance_init(Object
*obj
)
1011 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
1013 acc
->info
->initfn(obj
);
1014 arm_cpu_post_init(obj
);
1017 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
1019 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
1024 void aarch64_cpu_register(const ARMCPUInfo
*info
)
1026 TypeInfo type_info
= {
1027 .parent
= TYPE_AARCH64_CPU
,
1028 .instance_size
= sizeof(ARMCPU
),
1029 .instance_init
= aarch64_cpu_instance_init
,
1030 .class_size
= sizeof(ARMCPUClass
),
1031 .class_init
= info
->class_init
?: cpu_register_class_init
,
1032 .class_data
= (void *)info
,
1035 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
1036 type_register(&type_info
);
1037 g_free((void *)type_info
.name
);
1040 static const TypeInfo aarch64_cpu_type_info
= {
1041 .name
= TYPE_AARCH64_CPU
,
1042 .parent
= TYPE_ARM_CPU
,
1043 .instance_size
= sizeof(ARMCPU
),
1044 .instance_finalize
= aarch64_cpu_finalizefn
,
1046 .class_size
= sizeof(AArch64CPUClass
),
1047 .class_init
= aarch64_cpu_class_init
,
1050 static void aarch64_cpu_register_types(void)
1054 type_register_static(&aarch64_cpu_type_info
);
1056 for (i
= 0; i
< ARRAY_SIZE(aarch64_cpus
); ++i
) {
1057 aarch64_cpu_register(&aarch64_cpus
[i
]);
1061 type_init(aarch64_cpu_register_types
)