2 * Core code for QEMU e1000e emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
37 #include "sysemu/sysemu.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
43 #include "net_tx_pkt.h"
44 #include "net_rx_pkt.h"
46 #include "e1000x_common.h"
47 #include "e1000e_core.h"
51 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
52 second according to spec 10.2.4.2 */
53 #define E1000E_MAX_TX_FRAGS (64)
56 e1000e_set_interrupt_cause(E1000ECore
*core
, uint32_t val
);
59 e1000e_process_ts_option(E1000ECore
*core
, struct e1000_tx_desc
*dp
)
61 if (le32_to_cpu(dp
->upper
.data
) & E1000_TXD_EXTCMD_TSTAMP
) {
62 trace_e1000e_wrn_no_ts_support();
67 e1000e_process_snap_option(E1000ECore
*core
, uint32_t cmd_and_length
)
69 if (cmd_and_length
& E1000_TXD_CMD_SNAP
) {
70 trace_e1000e_wrn_no_snap_support();
75 e1000e_raise_legacy_irq(E1000ECore
*core
)
77 trace_e1000e_irq_legacy_notify(true);
78 e1000x_inc_reg_if_not_full(core
->mac
, IAC
);
79 pci_set_irq(core
->owner
, 1);
83 e1000e_lower_legacy_irq(E1000ECore
*core
)
85 trace_e1000e_irq_legacy_notify(false);
86 pci_set_irq(core
->owner
, 0);
90 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer
*timer
)
92 int64_t delay_ns
= (int64_t) timer
->core
->mac
[timer
->delay_reg
] *
93 timer
->delay_resolution_ns
;
95 trace_e1000e_irq_rearm_timer(timer
->delay_reg
<< 2, delay_ns
);
97 timer_mod(timer
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + delay_ns
);
99 timer
->running
= true;
103 e1000e_intmgr_timer_resume(E1000IntrDelayTimer
*timer
)
105 if (timer
->running
) {
106 e1000e_intrmgr_rearm_timer(timer
);
111 e1000e_intmgr_timer_pause(E1000IntrDelayTimer
*timer
)
113 if (timer
->running
) {
114 timer_del(timer
->timer
);
119 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer
*timer
)
121 if (timer
->running
) {
122 timer_del(timer
->timer
);
123 timer
->running
= false;
128 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore
*core
)
130 trace_e1000e_irq_fire_delayed_interrupts();
131 e1000e_set_interrupt_cause(core
, 0);
135 e1000e_intrmgr_on_timer(void *opaque
)
137 E1000IntrDelayTimer
*timer
= opaque
;
139 trace_e1000e_irq_throttling_timer(timer
->delay_reg
<< 2);
141 timer
->running
= false;
142 e1000e_intrmgr_fire_delayed_interrupts(timer
->core
);
146 e1000e_intrmgr_on_throttling_timer(void *opaque
)
148 E1000IntrDelayTimer
*timer
= opaque
;
150 assert(!msix_enabled(timer
->core
->owner
));
152 timer
->running
= false;
154 if (!timer
->core
->itr_intr_pending
) {
155 trace_e1000e_irq_throttling_no_pending_interrupts();
159 if (msi_enabled(timer
->core
->owner
)) {
160 trace_e1000e_irq_msi_notify_postponed();
161 e1000e_set_interrupt_cause(timer
->core
, 0);
163 trace_e1000e_irq_legacy_notify_postponed();
164 e1000e_set_interrupt_cause(timer
->core
, 0);
169 e1000e_intrmgr_on_msix_throttling_timer(void *opaque
)
171 E1000IntrDelayTimer
*timer
= opaque
;
172 int idx
= timer
- &timer
->core
->eitr
[0];
174 assert(msix_enabled(timer
->core
->owner
));
176 timer
->running
= false;
178 if (!timer
->core
->eitr_intr_pending
[idx
]) {
179 trace_e1000e_irq_throttling_no_pending_vec(idx
);
183 trace_e1000e_irq_msix_notify_postponed_vec(idx
);
184 msix_notify(timer
->core
->owner
, idx
);
188 e1000e_intrmgr_initialize_all_timers(E1000ECore
*core
, bool create
)
192 core
->radv
.delay_reg
= RADV
;
193 core
->rdtr
.delay_reg
= RDTR
;
194 core
->raid
.delay_reg
= RAID
;
195 core
->tadv
.delay_reg
= TADV
;
196 core
->tidv
.delay_reg
= TIDV
;
198 core
->radv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
199 core
->rdtr
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
200 core
->raid
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
201 core
->tadv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
202 core
->tidv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
204 core
->radv
.core
= core
;
205 core
->rdtr
.core
= core
;
206 core
->raid
.core
= core
;
207 core
->tadv
.core
= core
;
208 core
->tidv
.core
= core
;
210 core
->itr
.core
= core
;
211 core
->itr
.delay_reg
= ITR
;
212 core
->itr
.delay_resolution_ns
= E1000_INTR_THROTTLING_NS_RES
;
214 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
215 core
->eitr
[i
].core
= core
;
216 core
->eitr
[i
].delay_reg
= EITR
+ i
;
217 core
->eitr
[i
].delay_resolution_ns
= E1000_INTR_THROTTLING_NS_RES
;
225 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->radv
);
227 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->rdtr
);
229 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->raid
);
232 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->tadv
);
234 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->tidv
);
236 core
->itr
.timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
237 e1000e_intrmgr_on_throttling_timer
,
240 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
241 core
->eitr
[i
].timer
=
242 timer_new_ns(QEMU_CLOCK_VIRTUAL
,
243 e1000e_intrmgr_on_msix_throttling_timer
,
249 e1000e_intrmgr_stop_delay_timers(E1000ECore
*core
)
251 e1000e_intrmgr_stop_timer(&core
->radv
);
252 e1000e_intrmgr_stop_timer(&core
->rdtr
);
253 e1000e_intrmgr_stop_timer(&core
->raid
);
254 e1000e_intrmgr_stop_timer(&core
->tidv
);
255 e1000e_intrmgr_stop_timer(&core
->tadv
);
259 e1000e_intrmgr_delay_rx_causes(E1000ECore
*core
, uint32_t *causes
)
261 uint32_t delayable_causes
;
262 uint32_t rdtr
= core
->mac
[RDTR
];
263 uint32_t radv
= core
->mac
[RADV
];
264 uint32_t raid
= core
->mac
[RAID
];
266 if (msix_enabled(core
->owner
)) {
270 delayable_causes
= E1000_ICR_RXQ0
|
274 if (!(core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DIS
)) {
275 delayable_causes
|= E1000_ICR_ACK
;
278 /* Clean up all causes that may be delayed */
279 core
->delayed_causes
|= *causes
& delayable_causes
;
280 *causes
&= ~delayable_causes
;
282 /* Check if delayed RX interrupts disabled by client
283 or if there are causes that cannot be delayed */
284 if ((rdtr
== 0) || (*causes
!= 0)) {
288 /* Check if delayed RX ACK interrupts disabled by client
289 and there is an ACK packet received */
290 if ((raid
== 0) && (core
->delayed_causes
& E1000_ICR_ACK
)) {
294 /* All causes delayed */
295 e1000e_intrmgr_rearm_timer(&core
->rdtr
);
297 if (!core
->radv
.running
&& (radv
!= 0)) {
298 e1000e_intrmgr_rearm_timer(&core
->radv
);
301 if (!core
->raid
.running
&& (core
->delayed_causes
& E1000_ICR_ACK
)) {
302 e1000e_intrmgr_rearm_timer(&core
->raid
);
309 e1000e_intrmgr_delay_tx_causes(E1000ECore
*core
, uint32_t *causes
)
311 static const uint32_t delayable_causes
= E1000_ICR_TXQ0
|
316 if (msix_enabled(core
->owner
)) {
320 /* Clean up all causes that may be delayed */
321 core
->delayed_causes
|= *causes
& delayable_causes
;
322 *causes
&= ~delayable_causes
;
324 /* If there are causes that cannot be delayed */
329 /* All causes delayed */
330 e1000e_intrmgr_rearm_timer(&core
->tidv
);
332 if (!core
->tadv
.running
&& (core
->mac
[TADV
] != 0)) {
333 e1000e_intrmgr_rearm_timer(&core
->tadv
);
340 e1000e_intmgr_collect_delayed_causes(E1000ECore
*core
)
344 if (msix_enabled(core
->owner
)) {
345 assert(core
->delayed_causes
== 0);
349 res
= core
->delayed_causes
;
350 core
->delayed_causes
= 0;
352 e1000e_intrmgr_stop_delay_timers(core
);
358 e1000e_intrmgr_fire_all_timers(E1000ECore
*core
)
361 uint32_t val
= e1000e_intmgr_collect_delayed_causes(core
);
363 trace_e1000e_irq_adding_delayed_causes(val
, core
->mac
[ICR
]);
364 core
->mac
[ICR
] |= val
;
366 if (core
->itr
.running
) {
367 timer_del(core
->itr
.timer
);
368 e1000e_intrmgr_on_throttling_timer(&core
->itr
);
371 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
372 if (core
->eitr
[i
].running
) {
373 timer_del(core
->eitr
[i
].timer
);
374 e1000e_intrmgr_on_msix_throttling_timer(&core
->eitr
[i
]);
380 e1000e_intrmgr_resume(E1000ECore
*core
)
384 e1000e_intmgr_timer_resume(&core
->radv
);
385 e1000e_intmgr_timer_resume(&core
->rdtr
);
386 e1000e_intmgr_timer_resume(&core
->raid
);
387 e1000e_intmgr_timer_resume(&core
->tidv
);
388 e1000e_intmgr_timer_resume(&core
->tadv
);
390 e1000e_intmgr_timer_resume(&core
->itr
);
392 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
393 e1000e_intmgr_timer_resume(&core
->eitr
[i
]);
398 e1000e_intrmgr_pause(E1000ECore
*core
)
402 e1000e_intmgr_timer_pause(&core
->radv
);
403 e1000e_intmgr_timer_pause(&core
->rdtr
);
404 e1000e_intmgr_timer_pause(&core
->raid
);
405 e1000e_intmgr_timer_pause(&core
->tidv
);
406 e1000e_intmgr_timer_pause(&core
->tadv
);
408 e1000e_intmgr_timer_pause(&core
->itr
);
410 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
411 e1000e_intmgr_timer_pause(&core
->eitr
[i
]);
416 e1000e_intrmgr_reset(E1000ECore
*core
)
420 core
->delayed_causes
= 0;
422 e1000e_intrmgr_stop_delay_timers(core
);
424 e1000e_intrmgr_stop_timer(&core
->itr
);
426 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
427 e1000e_intrmgr_stop_timer(&core
->eitr
[i
]);
432 e1000e_intrmgr_pci_unint(E1000ECore
*core
)
436 timer_del(core
->radv
.timer
);
437 timer_free(core
->radv
.timer
);
438 timer_del(core
->rdtr
.timer
);
439 timer_free(core
->rdtr
.timer
);
440 timer_del(core
->raid
.timer
);
441 timer_free(core
->raid
.timer
);
443 timer_del(core
->tadv
.timer
);
444 timer_free(core
->tadv
.timer
);
445 timer_del(core
->tidv
.timer
);
446 timer_free(core
->tidv
.timer
);
448 timer_del(core
->itr
.timer
);
449 timer_free(core
->itr
.timer
);
451 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
452 timer_del(core
->eitr
[i
].timer
);
453 timer_free(core
->eitr
[i
].timer
);
458 e1000e_intrmgr_pci_realize(E1000ECore
*core
)
460 e1000e_intrmgr_initialize_all_timers(core
, true);
464 e1000e_rx_csum_enabled(E1000ECore
*core
)
466 return (core
->mac
[RXCSUM
] & E1000_RXCSUM_PCSD
) ? false : true;
470 e1000e_rx_use_legacy_descriptor(E1000ECore
*core
)
472 return (core
->mac
[RFCTL
] & E1000_RFCTL_EXTEN
) ? false : true;
476 e1000e_rx_use_ps_descriptor(E1000ECore
*core
)
478 return !e1000e_rx_use_legacy_descriptor(core
) &&
479 (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
);
483 e1000e_rss_enabled(E1000ECore
*core
)
485 return E1000_MRQC_ENABLED(core
->mac
[MRQC
]) &&
486 !e1000e_rx_csum_enabled(core
) &&
487 !e1000e_rx_use_legacy_descriptor(core
);
490 typedef struct E1000E_RSSInfo_st
{
498 e1000e_rss_get_hash_type(E1000ECore
*core
, struct NetRxPkt
*pkt
)
500 bool isip4
, isip6
, isudp
, istcp
;
502 assert(e1000e_rss_enabled(core
));
504 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
507 bool fragment
= net_rx_pkt_get_ip4_info(pkt
)->fragment
;
509 trace_e1000e_rx_rss_ip4(fragment
, istcp
, core
->mac
[MRQC
],
510 E1000_MRQC_EN_TCPIPV4(core
->mac
[MRQC
]),
511 E1000_MRQC_EN_IPV4(core
->mac
[MRQC
]));
513 if (!fragment
&& istcp
&& E1000_MRQC_EN_TCPIPV4(core
->mac
[MRQC
])) {
514 return E1000_MRQ_RSS_TYPE_IPV4TCP
;
517 if (E1000_MRQC_EN_IPV4(core
->mac
[MRQC
])) {
518 return E1000_MRQ_RSS_TYPE_IPV4
;
521 eth_ip6_hdr_info
*ip6info
= net_rx_pkt_get_ip6_info(pkt
);
523 bool ex_dis
= core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_EX_DIS
;
524 bool new_ex_dis
= core
->mac
[RFCTL
] & E1000_RFCTL_NEW_IPV6_EXT_DIS
;
527 * Following two traces must not be combined because resulting
528 * event will have 11 arguments totally and some trace backends
529 * (at least "ust") have limitation of maximum 10 arguments per
530 * event. Events with more arguments fail to compile for
531 * backends like these.
533 trace_e1000e_rx_rss_ip6_rfctl(core
->mac
[RFCTL
]);
534 trace_e1000e_rx_rss_ip6(ex_dis
, new_ex_dis
, istcp
,
535 ip6info
->has_ext_hdrs
,
536 ip6info
->rss_ex_dst_valid
,
537 ip6info
->rss_ex_src_valid
,
539 E1000_MRQC_EN_TCPIPV6(core
->mac
[MRQC
]),
540 E1000_MRQC_EN_IPV6EX(core
->mac
[MRQC
]),
541 E1000_MRQC_EN_IPV6(core
->mac
[MRQC
]));
543 if ((!ex_dis
|| !ip6info
->has_ext_hdrs
) &&
544 (!new_ex_dis
|| !(ip6info
->rss_ex_dst_valid
||
545 ip6info
->rss_ex_src_valid
))) {
547 if (istcp
&& !ip6info
->fragment
&&
548 E1000_MRQC_EN_TCPIPV6(core
->mac
[MRQC
])) {
549 return E1000_MRQ_RSS_TYPE_IPV6TCP
;
552 if (E1000_MRQC_EN_IPV6EX(core
->mac
[MRQC
])) {
553 return E1000_MRQ_RSS_TYPE_IPV6EX
;
558 if (E1000_MRQC_EN_IPV6(core
->mac
[MRQC
])) {
559 return E1000_MRQ_RSS_TYPE_IPV6
;
564 return E1000_MRQ_RSS_TYPE_NONE
;
568 e1000e_rss_calc_hash(E1000ECore
*core
,
569 struct NetRxPkt
*pkt
,
570 E1000E_RSSInfo
*info
)
572 NetRxPktRssType type
;
574 assert(e1000e_rss_enabled(core
));
576 switch (info
->type
) {
577 case E1000_MRQ_RSS_TYPE_IPV4
:
578 type
= NetPktRssIpV4
;
580 case E1000_MRQ_RSS_TYPE_IPV4TCP
:
581 type
= NetPktRssIpV4Tcp
;
583 case E1000_MRQ_RSS_TYPE_IPV6TCP
:
584 type
= NetPktRssIpV6Tcp
;
586 case E1000_MRQ_RSS_TYPE_IPV6
:
587 type
= NetPktRssIpV6
;
589 case E1000_MRQ_RSS_TYPE_IPV6EX
:
590 type
= NetPktRssIpV6Ex
;
597 return net_rx_pkt_calc_rss_hash(pkt
, type
, (uint8_t *) &core
->mac
[RSSRK
]);
601 e1000e_rss_parse_packet(E1000ECore
*core
,
602 struct NetRxPkt
*pkt
,
603 E1000E_RSSInfo
*info
)
605 trace_e1000e_rx_rss_started();
607 if (!e1000e_rss_enabled(core
)) {
608 info
->enabled
= false;
612 trace_e1000e_rx_rss_disabled();
616 info
->enabled
= true;
618 info
->type
= e1000e_rss_get_hash_type(core
, pkt
);
620 trace_e1000e_rx_rss_type(info
->type
);
622 if (info
->type
== E1000_MRQ_RSS_TYPE_NONE
) {
628 info
->hash
= e1000e_rss_calc_hash(core
, pkt
, info
);
629 info
->queue
= E1000_RSS_QUEUE(&core
->mac
[RETA
], info
->hash
);
633 e1000e_setup_tx_offloads(E1000ECore
*core
, struct e1000e_tx
*tx
)
635 if (tx
->props
.tse
&& tx
->props
.cptse
) {
636 net_tx_pkt_build_vheader(tx
->tx_pkt
, true, true, tx
->props
.mss
);
637 net_tx_pkt_update_ip_checksums(tx
->tx_pkt
);
638 e1000x_inc_reg_if_not_full(core
->mac
, TSCTC
);
642 if (tx
->props
.sum_needed
& E1000_TXD_POPTS_TXSM
) {
643 net_tx_pkt_build_vheader(tx
->tx_pkt
, false, true, 0);
646 if (tx
->props
.sum_needed
& E1000_TXD_POPTS_IXSM
) {
647 net_tx_pkt_update_ip_hdr_checksum(tx
->tx_pkt
);
652 e1000e_tx_pkt_send(E1000ECore
*core
, struct e1000e_tx
*tx
, int queue_index
)
654 int target_queue
= MIN(core
->max_queue_num
, queue_index
);
655 NetClientState
*queue
= qemu_get_subqueue(core
->owner_nic
, target_queue
);
657 e1000e_setup_tx_offloads(core
, tx
);
659 net_tx_pkt_dump(tx
->tx_pkt
);
661 if ((core
->phy
[0][PHY_CTRL
] & MII_CR_LOOPBACK
) ||
662 ((core
->mac
[RCTL
] & E1000_RCTL_LBM_MAC
) == E1000_RCTL_LBM_MAC
)) {
663 return net_tx_pkt_send_loopback(tx
->tx_pkt
, queue
);
665 return net_tx_pkt_send(tx
->tx_pkt
, queue
);
670 e1000e_on_tx_done_update_stats(E1000ECore
*core
, struct NetTxPkt
*tx_pkt
)
672 static const int PTCregs
[6] = { PTC64
, PTC127
, PTC255
, PTC511
,
675 size_t tot_len
= net_tx_pkt_get_total_len(tx_pkt
);
677 e1000x_increase_size_stats(core
->mac
, PTCregs
, tot_len
);
678 e1000x_inc_reg_if_not_full(core
->mac
, TPT
);
679 e1000x_grow_8reg_if_not_full(core
->mac
, TOTL
, tot_len
);
681 switch (net_tx_pkt_get_packet_type(tx_pkt
)) {
683 e1000x_inc_reg_if_not_full(core
->mac
, BPTC
);
686 e1000x_inc_reg_if_not_full(core
->mac
, MPTC
);
691 g_assert_not_reached();
694 core
->mac
[GPTC
] = core
->mac
[TPT
];
695 core
->mac
[GOTCL
] = core
->mac
[TOTL
];
696 core
->mac
[GOTCH
] = core
->mac
[TOTH
];
700 e1000e_process_tx_desc(E1000ECore
*core
,
701 struct e1000e_tx
*tx
,
702 struct e1000_tx_desc
*dp
,
705 uint32_t txd_lower
= le32_to_cpu(dp
->lower
.data
);
706 uint32_t dtype
= txd_lower
& (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
);
707 unsigned int split_size
= txd_lower
& 0xffff;
709 struct e1000_context_desc
*xp
= (struct e1000_context_desc
*)dp
;
710 bool eop
= txd_lower
& E1000_TXD_CMD_EOP
;
712 if (dtype
== E1000_TXD_CMD_DEXT
) { /* context descriptor */
713 e1000x_read_tx_ctx_descr(xp
, &tx
->props
);
714 e1000e_process_snap_option(core
, le32_to_cpu(xp
->cmd_and_length
));
716 } else if (dtype
== (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
)) {
717 /* data descriptor */
718 tx
->props
.sum_needed
= le32_to_cpu(dp
->upper
.data
) >> 8;
719 tx
->props
.cptse
= (txd_lower
& E1000_TXD_CMD_TSE
) ? 1 : 0;
720 e1000e_process_ts_option(core
, dp
);
722 /* legacy descriptor */
723 e1000e_process_ts_option(core
, dp
);
727 addr
= le64_to_cpu(dp
->buffer_addr
);
730 if (!net_tx_pkt_add_raw_fragment(tx
->tx_pkt
, addr
, split_size
)) {
736 if (!tx
->skip_cp
&& net_tx_pkt_parse(tx
->tx_pkt
)) {
737 if (e1000x_vlan_enabled(core
->mac
) &&
738 e1000x_is_vlan_txd(txd_lower
)) {
739 net_tx_pkt_setup_vlan_header_ex(tx
->tx_pkt
,
740 le16_to_cpu(dp
->upper
.fields
.special
), core
->vet
);
742 if (e1000e_tx_pkt_send(core
, tx
, queue_index
)) {
743 e1000e_on_tx_done_update_stats(core
, tx
->tx_pkt
);
748 net_tx_pkt_reset(tx
->tx_pkt
);
750 tx
->props
.sum_needed
= 0;
755 static inline uint32_t
756 e1000e_tx_wb_interrupt_cause(E1000ECore
*core
, int queue_idx
)
758 if (!msix_enabled(core
->owner
)) {
759 return E1000_ICR_TXDW
;
762 return (queue_idx
== 0) ? E1000_ICR_TXQ0
: E1000_ICR_TXQ1
;
765 static inline uint32_t
766 e1000e_rx_wb_interrupt_cause(E1000ECore
*core
, int queue_idx
,
767 bool min_threshold_hit
)
769 if (!msix_enabled(core
->owner
)) {
770 return E1000_ICS_RXT0
| (min_threshold_hit
? E1000_ICS_RXDMT0
: 0);
773 return (queue_idx
== 0) ? E1000_ICR_RXQ0
: E1000_ICR_RXQ1
;
777 e1000e_txdesc_writeback(E1000ECore
*core
, dma_addr_t base
,
778 struct e1000_tx_desc
*dp
, bool *ide
, int queue_idx
)
780 uint32_t txd_upper
, txd_lower
= le32_to_cpu(dp
->lower
.data
);
782 if (!(txd_lower
& E1000_TXD_CMD_RS
) &&
783 !(core
->mac
[IVAR
] & E1000_IVAR_TX_INT_EVERY_WB
)) {
787 *ide
= (txd_lower
& E1000_TXD_CMD_IDE
) ? true : false;
789 txd_upper
= le32_to_cpu(dp
->upper
.data
) | E1000_TXD_STAT_DD
;
791 dp
->upper
.data
= cpu_to_le32(txd_upper
);
792 pci_dma_write(core
->owner
, base
+ ((char *)&dp
->upper
- (char *)dp
),
793 &dp
->upper
, sizeof(dp
->upper
));
794 return e1000e_tx_wb_interrupt_cause(core
, queue_idx
);
797 typedef struct E1000E_RingInfo_st
{
807 e1000e_ring_empty(E1000ECore
*core
, const E1000E_RingInfo
*r
)
809 return core
->mac
[r
->dh
] == core
->mac
[r
->dt
];
812 static inline uint64_t
813 e1000e_ring_base(E1000ECore
*core
, const E1000E_RingInfo
*r
)
815 uint64_t bah
= core
->mac
[r
->dbah
];
816 uint64_t bal
= core
->mac
[r
->dbal
];
818 return (bah
<< 32) + bal
;
821 static inline uint64_t
822 e1000e_ring_head_descr(E1000ECore
*core
, const E1000E_RingInfo
*r
)
824 return e1000e_ring_base(core
, r
) + E1000_RING_DESC_LEN
* core
->mac
[r
->dh
];
828 e1000e_ring_advance(E1000ECore
*core
, const E1000E_RingInfo
*r
, uint32_t count
)
830 core
->mac
[r
->dh
] += count
;
832 if (core
->mac
[r
->dh
] * E1000_RING_DESC_LEN
>= core
->mac
[r
->dlen
]) {
833 core
->mac
[r
->dh
] = 0;
837 static inline uint32_t
838 e1000e_ring_free_descr_num(E1000ECore
*core
, const E1000E_RingInfo
*r
)
840 trace_e1000e_ring_free_space(r
->idx
, core
->mac
[r
->dlen
],
841 core
->mac
[r
->dh
], core
->mac
[r
->dt
]);
843 if (core
->mac
[r
->dh
] <= core
->mac
[r
->dt
]) {
844 return core
->mac
[r
->dt
] - core
->mac
[r
->dh
];
847 if (core
->mac
[r
->dh
] > core
->mac
[r
->dt
]) {
848 return core
->mac
[r
->dlen
] / E1000_RING_DESC_LEN
+
849 core
->mac
[r
->dt
] - core
->mac
[r
->dh
];
852 g_assert_not_reached();
857 e1000e_ring_enabled(E1000ECore
*core
, const E1000E_RingInfo
*r
)
859 return core
->mac
[r
->dlen
] > 0;
862 static inline uint32_t
863 e1000e_ring_len(E1000ECore
*core
, const E1000E_RingInfo
*r
)
865 return core
->mac
[r
->dlen
];
868 typedef struct E1000E_TxRing_st
{
869 const E1000E_RingInfo
*i
;
870 struct e1000e_tx
*tx
;
874 e1000e_mq_queue_idx(int base_reg_idx
, int reg_idx
)
876 return (reg_idx
- base_reg_idx
) / (0x100 >> 2);
880 e1000e_tx_ring_init(E1000ECore
*core
, E1000E_TxRing
*txr
, int idx
)
882 static const E1000E_RingInfo i
[E1000E_NUM_QUEUES
] = {
883 { TDBAH
, TDBAL
, TDLEN
, TDH
, TDT
, 0 },
884 { TDBAH1
, TDBAL1
, TDLEN1
, TDH1
, TDT1
, 1 }
887 assert(idx
< ARRAY_SIZE(i
));
890 txr
->tx
= &core
->tx
[idx
];
893 typedef struct E1000E_RxRing_st
{
894 const E1000E_RingInfo
*i
;
898 e1000e_rx_ring_init(E1000ECore
*core
, E1000E_RxRing
*rxr
, int idx
)
900 static const E1000E_RingInfo i
[E1000E_NUM_QUEUES
] = {
901 { RDBAH0
, RDBAL0
, RDLEN0
, RDH0
, RDT0
, 0 },
902 { RDBAH1
, RDBAL1
, RDLEN1
, RDH1
, RDT1
, 1 }
905 assert(idx
< ARRAY_SIZE(i
));
911 e1000e_start_xmit(E1000ECore
*core
, const E1000E_TxRing
*txr
)
914 struct e1000_tx_desc desc
;
916 const E1000E_RingInfo
*txi
= txr
->i
;
917 uint32_t cause
= E1000_ICS_TXQE
;
919 if (!(core
->mac
[TCTL
] & E1000_TCTL_EN
)) {
920 trace_e1000e_tx_disabled();
924 while (!e1000e_ring_empty(core
, txi
)) {
925 base
= e1000e_ring_head_descr(core
, txi
);
927 pci_dma_read(core
->owner
, base
, &desc
, sizeof(desc
));
929 trace_e1000e_tx_descr((void *)(intptr_t)desc
.buffer_addr
,
930 desc
.lower
.data
, desc
.upper
.data
);
932 e1000e_process_tx_desc(core
, txr
->tx
, &desc
, txi
->idx
);
933 cause
|= e1000e_txdesc_writeback(core
, base
, &desc
, &ide
, txi
->idx
);
935 e1000e_ring_advance(core
, txi
, 1);
938 if (!ide
|| !e1000e_intrmgr_delay_tx_causes(core
, &cause
)) {
939 e1000e_set_interrupt_cause(core
, cause
);
944 e1000e_has_rxbufs(E1000ECore
*core
, const E1000E_RingInfo
*r
,
947 uint32_t bufs
= e1000e_ring_free_descr_num(core
, r
);
949 trace_e1000e_rx_has_buffers(r
->idx
, bufs
, total_size
,
950 core
->rx_desc_buf_size
);
952 return total_size
<= bufs
/ (core
->rx_desc_len
/ E1000_MIN_RX_DESC_LEN
) *
953 core
->rx_desc_buf_size
;
957 e1000e_start_recv(E1000ECore
*core
)
961 trace_e1000e_rx_start_recv();
963 for (i
= 0; i
<= core
->max_queue_num
; i
++) {
964 qemu_flush_queued_packets(qemu_get_subqueue(core
->owner_nic
, i
));
969 e1000e_can_receive(E1000ECore
*core
)
973 if (!e1000x_rx_ready(core
->owner
, core
->mac
)) {
977 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
980 e1000e_rx_ring_init(core
, &rxr
, i
);
981 if (e1000e_ring_enabled(core
, rxr
.i
) &&
982 e1000e_has_rxbufs(core
, rxr
.i
, 1)) {
983 trace_e1000e_rx_can_recv();
988 trace_e1000e_rx_can_recv_rings_full();
993 e1000e_receive(E1000ECore
*core
, const uint8_t *buf
, size_t size
)
995 const struct iovec iov
= {
996 .iov_base
= (uint8_t *)buf
,
1000 return e1000e_receive_iov(core
, &iov
, 1);
1004 e1000e_rx_l3_cso_enabled(E1000ECore
*core
)
1006 return !!(core
->mac
[RXCSUM
] & E1000_RXCSUM_IPOFLD
);
1010 e1000e_rx_l4_cso_enabled(E1000ECore
*core
)
1012 return !!(core
->mac
[RXCSUM
] & E1000_RXCSUM_TUOFLD
);
1016 e1000e_receive_filter(E1000ECore
*core
, const uint8_t *buf
, int size
)
1018 uint32_t rctl
= core
->mac
[RCTL
];
1020 if (e1000x_is_vlan_packet(buf
, core
->vet
) &&
1021 e1000x_vlan_rx_filter_enabled(core
->mac
)) {
1022 uint16_t vid
= lduw_be_p(buf
+ 14);
1023 uint32_t vfta
= ldl_le_p((uint32_t *)(core
->mac
+ VFTA
) +
1024 ((vid
>> 5) & 0x7f));
1025 if ((vfta
& (1 << (vid
& 0x1f))) == 0) {
1026 trace_e1000e_rx_flt_vlan_mismatch(vid
);
1029 trace_e1000e_rx_flt_vlan_match(vid
);
1033 switch (net_rx_pkt_get_packet_type(core
->rx_pkt
)) {
1035 if (rctl
& E1000_RCTL_UPE
) {
1036 return true; /* promiscuous ucast */
1041 if (rctl
& E1000_RCTL_BAM
) {
1042 return true; /* broadcast enabled */
1047 if (rctl
& E1000_RCTL_MPE
) {
1048 return true; /* promiscuous mcast */
1053 g_assert_not_reached();
1056 return e1000x_rx_group_filter(core
->mac
, buf
);
1060 e1000e_read_lgcy_rx_descr(E1000ECore
*core
, uint8_t *desc
, hwaddr
*buff_addr
)
1062 struct e1000_rx_desc
*d
= (struct e1000_rx_desc
*) desc
;
1063 *buff_addr
= le64_to_cpu(d
->buffer_addr
);
1067 e1000e_read_ext_rx_descr(E1000ECore
*core
, uint8_t *desc
, hwaddr
*buff_addr
)
1069 union e1000_rx_desc_extended
*d
= (union e1000_rx_desc_extended
*) desc
;
1070 *buff_addr
= le64_to_cpu(d
->read
.buffer_addr
);
1074 e1000e_read_ps_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1075 hwaddr (*buff_addr
)[MAX_PS_BUFFERS
])
1078 union e1000_rx_desc_packet_split
*d
=
1079 (union e1000_rx_desc_packet_split
*) desc
;
1081 for (i
= 0; i
< MAX_PS_BUFFERS
; i
++) {
1082 (*buff_addr
)[i
] = le64_to_cpu(d
->read
.buffer_addr
[i
]);
1085 trace_e1000e_rx_desc_ps_read((*buff_addr
)[0], (*buff_addr
)[1],
1086 (*buff_addr
)[2], (*buff_addr
)[3]);
1090 e1000e_read_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1091 hwaddr (*buff_addr
)[MAX_PS_BUFFERS
])
1093 if (e1000e_rx_use_legacy_descriptor(core
)) {
1094 e1000e_read_lgcy_rx_descr(core
, desc
, &(*buff_addr
)[0]);
1095 (*buff_addr
)[1] = (*buff_addr
)[2] = (*buff_addr
)[3] = 0;
1097 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1098 e1000e_read_ps_rx_descr(core
, desc
, buff_addr
);
1100 e1000e_read_ext_rx_descr(core
, desc
, &(*buff_addr
)[0]);
1101 (*buff_addr
)[1] = (*buff_addr
)[2] = (*buff_addr
)[3] = 0;
1107 e1000e_verify_csum_in_sw(E1000ECore
*core
,
1108 struct NetRxPkt
*pkt
,
1109 uint32_t *status_flags
,
1110 bool istcp
, bool isudp
)
1113 uint32_t csum_error
;
1115 if (e1000e_rx_l3_cso_enabled(core
)) {
1116 if (!net_rx_pkt_validate_l3_csum(pkt
, &csum_valid
)) {
1117 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1119 csum_error
= csum_valid
? 0 : E1000_RXDEXT_STATERR_IPE
;
1120 *status_flags
|= E1000_RXD_STAT_IPCS
| csum_error
;
1123 trace_e1000e_rx_metadata_l3_cso_disabled();
1126 if (!e1000e_rx_l4_cso_enabled(core
)) {
1127 trace_e1000e_rx_metadata_l4_cso_disabled();
1131 if (!net_rx_pkt_validate_l4_csum(pkt
, &csum_valid
)) {
1132 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1136 csum_error
= csum_valid
? 0 : E1000_RXDEXT_STATERR_TCPE
;
1139 *status_flags
|= E1000_RXD_STAT_TCPCS
|
1142 *status_flags
|= E1000_RXD_STAT_TCPCS
|
1143 E1000_RXD_STAT_UDPCS
|
1149 e1000e_is_tcp_ack(E1000ECore
*core
, struct NetRxPkt
*rx_pkt
)
1151 if (!net_rx_pkt_is_tcp_ack(rx_pkt
)) {
1155 if (core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DATA_DIS
) {
1156 return !net_rx_pkt_has_tcp_data(rx_pkt
);
1163 e1000e_build_rx_metadata(E1000ECore
*core
,
1164 struct NetRxPkt
*pkt
,
1166 const E1000E_RSSInfo
*rss_info
,
1167 uint32_t *rss
, uint32_t *mrq
,
1168 uint32_t *status_flags
,
1172 struct virtio_net_hdr
*vhdr
;
1173 bool isip4
, isip6
, istcp
, isudp
;
1176 *status_flags
= E1000_RXD_STAT_DD
;
1178 /* No additional metadata needed for non-EOP descriptors */
1183 *status_flags
|= E1000_RXD_STAT_EOP
;
1185 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
1186 trace_e1000e_rx_metadata_protocols(isip4
, isip6
, isudp
, istcp
);
1189 if (net_rx_pkt_is_vlan_stripped(pkt
)) {
1190 *status_flags
|= E1000_RXD_STAT_VP
;
1191 *vlan_tag
= cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt
));
1192 trace_e1000e_rx_metadata_vlan(*vlan_tag
);
1195 /* Packet parsing results */
1196 if ((core
->mac
[RXCSUM
] & E1000_RXCSUM_PCSD
) != 0) {
1197 if (rss_info
->enabled
) {
1198 *rss
= cpu_to_le32(rss_info
->hash
);
1199 *mrq
= cpu_to_le32(rss_info
->type
| (rss_info
->queue
<< 8));
1200 trace_e1000e_rx_metadata_rss(*rss
, *mrq
);
1203 *status_flags
|= E1000_RXD_STAT_IPIDV
;
1204 *ip_id
= cpu_to_le16(net_rx_pkt_get_ip_id(pkt
));
1205 trace_e1000e_rx_metadata_ip_id(*ip_id
);
1208 if (istcp
&& e1000e_is_tcp_ack(core
, pkt
)) {
1209 *status_flags
|= E1000_RXD_STAT_ACK
;
1210 trace_e1000e_rx_metadata_ack();
1213 if (isip6
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_DIS
)) {
1214 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1215 pkt_type
= E1000_RXD_PKT_MAC
;
1216 } else if (istcp
|| isudp
) {
1217 pkt_type
= isip4
? E1000_RXD_PKT_IP4_XDP
: E1000_RXD_PKT_IP6_XDP
;
1218 } else if (isip4
|| isip6
) {
1219 pkt_type
= isip4
? E1000_RXD_PKT_IP4
: E1000_RXD_PKT_IP6
;
1221 pkt_type
= E1000_RXD_PKT_MAC
;
1224 *status_flags
|= E1000_RXD_PKT_TYPE(pkt_type
);
1225 trace_e1000e_rx_metadata_pkt_type(pkt_type
);
1227 /* RX CSO information */
1228 if (isip6
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_XSUM_DIS
)) {
1229 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1233 if (!net_rx_pkt_has_virt_hdr(pkt
)) {
1234 trace_e1000e_rx_metadata_no_virthdr();
1235 e1000e_verify_csum_in_sw(core
, pkt
, status_flags
, istcp
, isudp
);
1239 vhdr
= net_rx_pkt_get_vhdr(pkt
);
1241 if (!(vhdr
->flags
& VIRTIO_NET_HDR_F_DATA_VALID
) &&
1242 !(vhdr
->flags
& VIRTIO_NET_HDR_F_NEEDS_CSUM
)) {
1243 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1244 e1000e_verify_csum_in_sw(core
, pkt
, status_flags
, istcp
, isudp
);
1248 if (e1000e_rx_l3_cso_enabled(core
)) {
1249 *status_flags
|= isip4
? E1000_RXD_STAT_IPCS
: 0;
1251 trace_e1000e_rx_metadata_l3_cso_disabled();
1254 if (e1000e_rx_l4_cso_enabled(core
)) {
1256 *status_flags
|= E1000_RXD_STAT_TCPCS
;
1258 *status_flags
|= E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
;
1261 trace_e1000e_rx_metadata_l4_cso_disabled();
1264 trace_e1000e_rx_metadata_status_flags(*status_flags
);
1267 *status_flags
= cpu_to_le32(*status_flags
);
1271 e1000e_write_lgcy_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1272 struct NetRxPkt
*pkt
,
1273 const E1000E_RSSInfo
*rss_info
,
1276 uint32_t status_flags
, rss
, mrq
;
1279 struct e1000_rx_desc
*d
= (struct e1000_rx_desc
*) desc
;
1281 memset(d
, 0, sizeof(*d
));
1283 assert(!rss_info
->enabled
);
1285 d
->length
= cpu_to_le16(length
);
1287 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1290 &status_flags
, &ip_id
,
1292 d
->errors
= (uint8_t) (le32_to_cpu(status_flags
) >> 24);
1293 d
->status
= (uint8_t) le32_to_cpu(status_flags
);
1297 e1000e_write_ext_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1298 struct NetRxPkt
*pkt
,
1299 const E1000E_RSSInfo
*rss_info
,
1302 union e1000_rx_desc_extended
*d
= (union e1000_rx_desc_extended
*) desc
;
1304 memset(d
, 0, sizeof(*d
));
1306 d
->wb
.upper
.length
= cpu_to_le16(length
);
1308 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1310 &d
->wb
.lower
.hi_dword
.rss
,
1312 &d
->wb
.upper
.status_error
,
1313 &d
->wb
.lower
.hi_dword
.csum_ip
.ip_id
,
1318 e1000e_write_ps_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1319 struct NetRxPkt
*pkt
,
1320 const E1000E_RSSInfo
*rss_info
,
1322 uint16_t(*written
)[MAX_PS_BUFFERS
])
1325 union e1000_rx_desc_packet_split
*d
=
1326 (union e1000_rx_desc_packet_split
*) desc
;
1328 memset(d
, 0, sizeof(*d
));
1330 d
->wb
.middle
.length0
= cpu_to_le16((*written
)[0]);
1332 for (i
= 0; i
< PS_PAGE_BUFFERS
; i
++) {
1333 d
->wb
.upper
.length
[i
] = cpu_to_le16((*written
)[i
+ 1]);
1336 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1338 &d
->wb
.lower
.hi_dword
.rss
,
1340 &d
->wb
.middle
.status_error
,
1341 &d
->wb
.lower
.hi_dword
.csum_ip
.ip_id
,
1342 &d
->wb
.middle
.vlan
);
1344 d
->wb
.upper
.header_status
=
1345 cpu_to_le16(ps_hdr_len
| (ps_hdr_len
? E1000_RXDPS_HDRSTAT_HDRSP
: 0));
1347 trace_e1000e_rx_desc_ps_write((*written
)[0], (*written
)[1],
1348 (*written
)[2], (*written
)[3]);
1352 e1000e_write_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1353 struct NetRxPkt
*pkt
, const E1000E_RSSInfo
*rss_info
,
1354 size_t ps_hdr_len
, uint16_t(*written
)[MAX_PS_BUFFERS
])
1356 if (e1000e_rx_use_legacy_descriptor(core
)) {
1357 assert(ps_hdr_len
== 0);
1358 e1000e_write_lgcy_rx_descr(core
, desc
, pkt
, rss_info
, (*written
)[0]);
1360 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1361 e1000e_write_ps_rx_descr(core
, desc
, pkt
, rss_info
,
1362 ps_hdr_len
, written
);
1364 assert(ps_hdr_len
== 0);
1365 e1000e_write_ext_rx_descr(core
, desc
, pkt
, rss_info
,
1371 typedef struct e1000e_ba_state_st
{
1372 uint16_t written
[MAX_PS_BUFFERS
];
1377 e1000e_write_hdr_to_rx_buffers(E1000ECore
*core
,
1378 hwaddr (*ba
)[MAX_PS_BUFFERS
],
1379 e1000e_ba_state
*bastate
,
1381 dma_addr_t data_len
)
1383 assert(data_len
<= core
->rxbuf_sizes
[0] - bastate
->written
[0]);
1385 pci_dma_write(core
->owner
, (*ba
)[0] + bastate
->written
[0], data
, data_len
);
1386 bastate
->written
[0] += data_len
;
1388 bastate
->cur_idx
= 1;
1392 e1000e_write_to_rx_buffers(E1000ECore
*core
,
1393 hwaddr (*ba
)[MAX_PS_BUFFERS
],
1394 e1000e_ba_state
*bastate
,
1396 dma_addr_t data_len
)
1398 while (data_len
> 0) {
1399 uint32_t cur_buf_len
= core
->rxbuf_sizes
[bastate
->cur_idx
];
1400 uint32_t cur_buf_bytes_left
= cur_buf_len
-
1401 bastate
->written
[bastate
->cur_idx
];
1402 uint32_t bytes_to_write
= MIN(data_len
, cur_buf_bytes_left
);
1404 trace_e1000e_rx_desc_buff_write(bastate
->cur_idx
,
1405 (*ba
)[bastate
->cur_idx
],
1406 bastate
->written
[bastate
->cur_idx
],
1410 pci_dma_write(core
->owner
,
1411 (*ba
)[bastate
->cur_idx
] + bastate
->written
[bastate
->cur_idx
],
1412 data
, bytes_to_write
);
1414 bastate
->written
[bastate
->cur_idx
] += bytes_to_write
;
1415 data
+= bytes_to_write
;
1416 data_len
-= bytes_to_write
;
1418 if (bastate
->written
[bastate
->cur_idx
] == cur_buf_len
) {
1422 assert(bastate
->cur_idx
< MAX_PS_BUFFERS
);
1427 e1000e_update_rx_stats(E1000ECore
*core
,
1429 size_t data_fcs_size
)
1431 e1000x_update_rx_total_stats(core
->mac
, data_size
, data_fcs_size
);
1433 switch (net_rx_pkt_get_packet_type(core
->rx_pkt
)) {
1435 e1000x_inc_reg_if_not_full(core
->mac
, BPRC
);
1439 e1000x_inc_reg_if_not_full(core
->mac
, MPRC
);
1448 e1000e_rx_descr_threshold_hit(E1000ECore
*core
, const E1000E_RingInfo
*rxi
)
1450 return e1000e_ring_free_descr_num(core
, rxi
) ==
1451 e1000e_ring_len(core
, rxi
) >> core
->rxbuf_min_shift
;
1455 e1000e_do_ps(E1000ECore
*core
, struct NetRxPkt
*pkt
, size_t *hdr_len
)
1457 bool isip4
, isip6
, isudp
, istcp
;
1460 if (!e1000e_rx_use_ps_descriptor(core
)) {
1464 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
1467 fragment
= net_rx_pkt_get_ip4_info(pkt
)->fragment
;
1469 fragment
= net_rx_pkt_get_ip6_info(pkt
)->fragment
;
1474 if (fragment
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPFRSP_DIS
)) {
1478 if (!fragment
&& (isudp
|| istcp
)) {
1479 *hdr_len
= net_rx_pkt_get_l5_hdr_offset(pkt
);
1481 *hdr_len
= net_rx_pkt_get_l4_hdr_offset(pkt
);
1484 if ((*hdr_len
> core
->rxbuf_sizes
[0]) ||
1485 (*hdr_len
> net_rx_pkt_get_total_len(pkt
))) {
1493 e1000e_write_packet_to_guest(E1000ECore
*core
, struct NetRxPkt
*pkt
,
1494 const E1000E_RxRing
*rxr
,
1495 const E1000E_RSSInfo
*rss_info
)
1497 PCIDevice
*d
= core
->owner
;
1499 uint8_t desc
[E1000_MAX_RX_DESC_LEN
];
1501 size_t desc_offset
= 0;
1504 struct iovec
*iov
= net_rx_pkt_get_iovec(pkt
);
1505 size_t size
= net_rx_pkt_get_total_len(pkt
);
1506 size_t total_size
= size
+ e1000x_fcs_len(core
->mac
);
1507 const E1000E_RingInfo
*rxi
;
1508 size_t ps_hdr_len
= 0;
1509 bool do_ps
= e1000e_do_ps(core
, pkt
, &ps_hdr_len
);
1514 hwaddr ba
[MAX_PS_BUFFERS
];
1515 e1000e_ba_state bastate
= { { 0 } };
1516 bool is_last
= false;
1517 bool is_first
= true;
1519 desc_size
= total_size
- desc_offset
;
1521 if (desc_size
> core
->rx_desc_buf_size
) {
1522 desc_size
= core
->rx_desc_buf_size
;
1525 base
= e1000e_ring_head_descr(core
, rxi
);
1527 pci_dma_read(d
, base
, &desc
, core
->rx_desc_len
);
1529 trace_e1000e_rx_descr(rxi
->idx
, base
, core
->rx_desc_len
);
1531 e1000e_read_rx_descr(core
, desc
, &ba
);
1534 if (desc_offset
< size
) {
1535 static const uint32_t fcs_pad
;
1537 size_t copy_size
= size
- desc_offset
;
1538 if (copy_size
> core
->rx_desc_buf_size
) {
1539 copy_size
= core
->rx_desc_buf_size
;
1542 /* For PS mode copy the packet header first */
1545 size_t ps_hdr_copied
= 0;
1547 iov_copy
= MIN(ps_hdr_len
- ps_hdr_copied
,
1548 iov
->iov_len
- iov_ofs
);
1550 e1000e_write_hdr_to_rx_buffers(core
, &ba
, &bastate
,
1551 iov
->iov_base
, iov_copy
);
1553 copy_size
-= iov_copy
;
1554 ps_hdr_copied
+= iov_copy
;
1556 iov_ofs
+= iov_copy
;
1557 if (iov_ofs
== iov
->iov_len
) {
1561 } while (ps_hdr_copied
< ps_hdr_len
);
1565 /* Leave buffer 0 of each descriptor except first */
1566 /* empty as per spec 7.1.5.1 */
1567 e1000e_write_hdr_to_rx_buffers(core
, &ba
, &bastate
,
1572 /* Copy packet payload */
1574 iov_copy
= MIN(copy_size
, iov
->iov_len
- iov_ofs
);
1576 e1000e_write_to_rx_buffers(core
, &ba
, &bastate
,
1577 iov
->iov_base
+ iov_ofs
, iov_copy
);
1579 copy_size
-= iov_copy
;
1580 iov_ofs
+= iov_copy
;
1581 if (iov_ofs
== iov
->iov_len
) {
1587 if (desc_offset
+ desc_size
>= total_size
) {
1588 /* Simulate FCS checksum presence in the last descriptor */
1589 e1000e_write_to_rx_buffers(core
, &ba
, &bastate
,
1590 (const char *) &fcs_pad
, e1000x_fcs_len(core
->mac
));
1593 desc_offset
+= desc_size
;
1594 if (desc_offset
>= total_size
) {
1597 } else { /* as per intel docs; skip descriptors with null buf addr */
1598 trace_e1000e_rx_null_descriptor();
1601 e1000e_write_rx_descr(core
, desc
, is_last
? core
->rx_pkt
: NULL
,
1602 rss_info
, do_ps
? ps_hdr_len
: 0, &bastate
.written
);
1603 pci_dma_write(d
, base
, &desc
, core
->rx_desc_len
);
1605 e1000e_ring_advance(core
, rxi
,
1606 core
->rx_desc_len
/ E1000_MIN_RX_DESC_LEN
);
1608 } while (desc_offset
< total_size
);
1610 e1000e_update_rx_stats(core
, size
, total_size
);
1614 e1000e_rx_fix_l4_csum(E1000ECore
*core
, struct NetRxPkt
*pkt
)
1616 if (net_rx_pkt_has_virt_hdr(pkt
)) {
1617 struct virtio_net_hdr
*vhdr
= net_rx_pkt_get_vhdr(pkt
);
1619 if (vhdr
->flags
& VIRTIO_NET_HDR_F_NEEDS_CSUM
) {
1620 net_rx_pkt_fix_l4_csum(pkt
);
1626 e1000e_receive_iov(E1000ECore
*core
, const struct iovec
*iov
, int iovcnt
)
1628 static const int maximum_ethernet_hdr_len
= (14 + 4);
1629 /* Min. octets in an ethernet frame sans FCS */
1630 static const int min_buf_size
= 60;
1633 uint8_t min_buf
[min_buf_size
];
1634 struct iovec min_iov
;
1635 uint8_t *filter_buf
;
1636 size_t size
, orig_size
;
1639 E1000E_RSSInfo rss_info
;
1644 trace_e1000e_rx_receive_iov(iovcnt
);
1646 if (!e1000x_hw_rx_enabled(core
->mac
)) {
1650 /* Pull virtio header in */
1651 if (core
->has_vnet
) {
1652 net_rx_pkt_set_vhdr_iovec(core
->rx_pkt
, iov
, iovcnt
);
1653 iov_ofs
= sizeof(struct virtio_net_hdr
);
1656 filter_buf
= iov
->iov_base
+ iov_ofs
;
1657 orig_size
= iov_size(iov
, iovcnt
);
1658 size
= orig_size
- iov_ofs
;
1660 /* Pad to minimum Ethernet frame length */
1661 if (size
< sizeof(min_buf
)) {
1662 iov_to_buf(iov
, iovcnt
, iov_ofs
, min_buf
, size
);
1663 memset(&min_buf
[size
], 0, sizeof(min_buf
) - size
);
1664 e1000x_inc_reg_if_not_full(core
->mac
, RUC
);
1665 min_iov
.iov_base
= filter_buf
= min_buf
;
1666 min_iov
.iov_len
= size
= sizeof(min_buf
);
1670 } else if (iov
->iov_len
< maximum_ethernet_hdr_len
) {
1671 /* This is very unlikely, but may happen. */
1672 iov_to_buf(iov
, iovcnt
, iov_ofs
, min_buf
, maximum_ethernet_hdr_len
);
1673 filter_buf
= min_buf
;
1676 /* Discard oversized packets if !LPE and !SBP. */
1677 if (e1000x_is_oversized(core
->mac
, size
)) {
1681 net_rx_pkt_set_packet_type(core
->rx_pkt
,
1682 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf
)));
1684 if (!e1000e_receive_filter(core
, filter_buf
, size
)) {
1685 trace_e1000e_rx_flt_dropped();
1689 net_rx_pkt_attach_iovec_ex(core
->rx_pkt
, iov
, iovcnt
, iov_ofs
,
1690 e1000x_vlan_enabled(core
->mac
), core
->vet
);
1692 e1000e_rss_parse_packet(core
, core
->rx_pkt
, &rss_info
);
1693 e1000e_rx_ring_init(core
, &rxr
, rss_info
.queue
);
1695 trace_e1000e_rx_rss_dispatched_to_queue(rxr
.i
->idx
);
1697 total_size
= net_rx_pkt_get_total_len(core
->rx_pkt
) +
1698 e1000x_fcs_len(core
->mac
);
1700 if (e1000e_has_rxbufs(core
, rxr
.i
, total_size
)) {
1701 e1000e_rx_fix_l4_csum(core
, core
->rx_pkt
);
1703 e1000e_write_packet_to_guest(core
, core
->rx_pkt
, &rxr
, &rss_info
);
1707 /* Perform small receive detection (RSRPD) */
1708 if (total_size
< core
->mac
[RSRPD
]) {
1709 n
|= E1000_ICS_SRPD
;
1712 /* Perform ACK receive detection */
1713 if (e1000e_is_tcp_ack(core
, core
->rx_pkt
)) {
1717 /* Check if receive descriptor minimum threshold hit */
1718 rdmts_hit
= e1000e_rx_descr_threshold_hit(core
, rxr
.i
);
1719 n
|= e1000e_rx_wb_interrupt_cause(core
, rxr
.i
->idx
, rdmts_hit
);
1721 trace_e1000e_rx_written_to_guest(n
);
1726 trace_e1000e_rx_not_written_to_guest(n
);
1729 if (!e1000e_intrmgr_delay_rx_causes(core
, &n
)) {
1730 trace_e1000e_rx_interrupt_set(n
);
1731 e1000e_set_interrupt_cause(core
, n
);
1733 trace_e1000e_rx_interrupt_delayed(n
);
1740 e1000e_have_autoneg(E1000ECore
*core
)
1742 return core
->phy
[0][PHY_CTRL
] & MII_CR_AUTO_NEG_EN
;
1745 static void e1000e_update_flowctl_status(E1000ECore
*core
)
1747 if (e1000e_have_autoneg(core
) &&
1748 core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
) {
1749 trace_e1000e_link_autoneg_flowctl(true);
1750 core
->mac
[CTRL
] |= E1000_CTRL_TFCE
| E1000_CTRL_RFCE
;
1752 trace_e1000e_link_autoneg_flowctl(false);
1757 e1000e_link_down(E1000ECore
*core
)
1759 e1000x_update_regs_on_link_down(core
->mac
, core
->phy
[0]);
1760 e1000e_update_flowctl_status(core
);
1764 e1000e_set_phy_ctrl(E1000ECore
*core
, int index
, uint16_t val
)
1766 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1767 core
->phy
[0][PHY_CTRL
] = val
& ~(0x3f |
1769 MII_CR_RESTART_AUTO_NEG
);
1771 if ((val
& MII_CR_RESTART_AUTO_NEG
) &&
1772 e1000e_have_autoneg(core
)) {
1773 e1000x_restart_autoneg(core
->mac
, core
->phy
[0], core
->autoneg_timer
);
1778 e1000e_set_phy_oem_bits(E1000ECore
*core
, int index
, uint16_t val
)
1780 core
->phy
[0][PHY_OEM_BITS
] = val
& ~BIT(10);
1782 if (val
& BIT(10)) {
1783 e1000x_restart_autoneg(core
->mac
, core
->phy
[0], core
->autoneg_timer
);
1788 e1000e_set_phy_page(E1000ECore
*core
, int index
, uint16_t val
)
1790 core
->phy
[0][PHY_PAGE
] = val
& PHY_PAGE_RW_MASK
;
1794 e1000e_core_set_link_status(E1000ECore
*core
)
1796 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
1797 uint32_t old_status
= core
->mac
[STATUS
];
1799 trace_e1000e_link_status_changed(nc
->link_down
? false : true);
1801 if (nc
->link_down
) {
1802 e1000x_update_regs_on_link_down(core
->mac
, core
->phy
[0]);
1804 if (e1000e_have_autoneg(core
) &&
1805 !(core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
)) {
1806 e1000x_restart_autoneg(core
->mac
, core
->phy
[0],
1807 core
->autoneg_timer
);
1809 e1000x_update_regs_on_link_up(core
->mac
, core
->phy
[0]);
1813 if (core
->mac
[STATUS
] != old_status
) {
1814 e1000e_set_interrupt_cause(core
, E1000_ICR_LSC
);
1819 e1000e_set_ctrl(E1000ECore
*core
, int index
, uint32_t val
)
1821 trace_e1000e_core_ctrl_write(index
, val
);
1823 /* RST is self clearing */
1824 core
->mac
[CTRL
] = val
& ~E1000_CTRL_RST
;
1825 core
->mac
[CTRL_DUP
] = core
->mac
[CTRL
];
1827 trace_e1000e_link_set_params(
1828 !!(val
& E1000_CTRL_ASDE
),
1829 (val
& E1000_CTRL_SPD_SEL
) >> E1000_CTRL_SPD_SHIFT
,
1830 !!(val
& E1000_CTRL_FRCSPD
),
1831 !!(val
& E1000_CTRL_FRCDPX
),
1832 !!(val
& E1000_CTRL_RFCE
),
1833 !!(val
& E1000_CTRL_TFCE
));
1835 if (val
& E1000_CTRL_RST
) {
1836 trace_e1000e_core_ctrl_sw_reset();
1837 e1000x_reset_mac_addr(core
->owner_nic
, core
->mac
, core
->permanent_mac
);
1840 if (val
& E1000_CTRL_PHY_RST
) {
1841 trace_e1000e_core_ctrl_phy_reset();
1842 core
->mac
[STATUS
] |= E1000_STATUS_PHYRA
;
1847 e1000e_set_rfctl(E1000ECore
*core
, int index
, uint32_t val
)
1849 trace_e1000e_rx_set_rfctl(val
);
1851 if (!(val
& E1000_RFCTL_ISCSI_DIS
)) {
1852 trace_e1000e_wrn_iscsi_filtering_not_supported();
1855 if (!(val
& E1000_RFCTL_NFSW_DIS
)) {
1856 trace_e1000e_wrn_nfsw_filtering_not_supported();
1859 if (!(val
& E1000_RFCTL_NFSR_DIS
)) {
1860 trace_e1000e_wrn_nfsr_filtering_not_supported();
1863 core
->mac
[RFCTL
] = val
;
1867 e1000e_calc_per_desc_buf_size(E1000ECore
*core
)
1870 core
->rx_desc_buf_size
= 0;
1872 for (i
= 0; i
< ARRAY_SIZE(core
->rxbuf_sizes
); i
++) {
1873 core
->rx_desc_buf_size
+= core
->rxbuf_sizes
[i
];
1878 e1000e_parse_rxbufsize(E1000ECore
*core
)
1880 uint32_t rctl
= core
->mac
[RCTL
];
1882 memset(core
->rxbuf_sizes
, 0, sizeof(core
->rxbuf_sizes
));
1884 if (rctl
& E1000_RCTL_DTYP_MASK
) {
1887 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE0_MASK
;
1888 core
->rxbuf_sizes
[0] = (bsize
>> E1000_PSRCTL_BSIZE0_SHIFT
) * 128;
1890 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE1_MASK
;
1891 core
->rxbuf_sizes
[1] = (bsize
>> E1000_PSRCTL_BSIZE1_SHIFT
) * 1024;
1893 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE2_MASK
;
1894 core
->rxbuf_sizes
[2] = (bsize
>> E1000_PSRCTL_BSIZE2_SHIFT
) * 1024;
1896 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE3_MASK
;
1897 core
->rxbuf_sizes
[3] = (bsize
>> E1000_PSRCTL_BSIZE3_SHIFT
) * 1024;
1898 } else if (rctl
& E1000_RCTL_FLXBUF_MASK
) {
1899 int flxbuf
= rctl
& E1000_RCTL_FLXBUF_MASK
;
1900 core
->rxbuf_sizes
[0] = (flxbuf
>> E1000_RCTL_FLXBUF_SHIFT
) * 1024;
1902 core
->rxbuf_sizes
[0] = e1000x_rxbufsize(rctl
);
1905 trace_e1000e_rx_desc_buff_sizes(core
->rxbuf_sizes
[0], core
->rxbuf_sizes
[1],
1906 core
->rxbuf_sizes
[2], core
->rxbuf_sizes
[3]);
1908 e1000e_calc_per_desc_buf_size(core
);
1912 e1000e_calc_rxdesclen(E1000ECore
*core
)
1914 if (e1000e_rx_use_legacy_descriptor(core
)) {
1915 core
->rx_desc_len
= sizeof(struct e1000_rx_desc
);
1917 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1918 core
->rx_desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1920 core
->rx_desc_len
= sizeof(union e1000_rx_desc_extended
);
1923 trace_e1000e_rx_desc_len(core
->rx_desc_len
);
1927 e1000e_set_rx_control(E1000ECore
*core
, int index
, uint32_t val
)
1929 core
->mac
[RCTL
] = val
;
1930 trace_e1000e_rx_set_rctl(core
->mac
[RCTL
]);
1932 if (val
& E1000_RCTL_EN
) {
1933 e1000e_parse_rxbufsize(core
);
1934 e1000e_calc_rxdesclen(core
);
1935 core
->rxbuf_min_shift
= ((val
/ E1000_RCTL_RDMTS_QUAT
) & 3) + 1 +
1936 E1000_RING_DESC_LEN_SHIFT
;
1938 e1000e_start_recv(core
);
1943 void(*e1000e_phyreg_writeops
[E1000E_PHY_PAGES
][E1000E_PHY_PAGE_SIZE
])
1944 (E1000ECore
*, int, uint16_t) = {
1946 [PHY_CTRL
] = e1000e_set_phy_ctrl
,
1947 [PHY_PAGE
] = e1000e_set_phy_page
,
1948 [PHY_OEM_BITS
] = e1000e_set_phy_oem_bits
1953 e1000e_clear_ims_bits(E1000ECore
*core
, uint32_t bits
)
1955 trace_e1000e_irq_clear_ims(bits
, core
->mac
[IMS
], core
->mac
[IMS
] & ~bits
);
1956 core
->mac
[IMS
] &= ~bits
;
1960 e1000e_postpone_interrupt(bool *interrupt_pending
,
1961 E1000IntrDelayTimer
*timer
)
1963 if (timer
->running
) {
1964 trace_e1000e_irq_postponed_by_xitr(timer
->delay_reg
<< 2);
1966 *interrupt_pending
= true;
1970 if (timer
->core
->mac
[timer
->delay_reg
] != 0) {
1971 e1000e_intrmgr_rearm_timer(timer
);
1978 e1000e_itr_should_postpone(E1000ECore
*core
)
1980 return e1000e_postpone_interrupt(&core
->itr_intr_pending
, &core
->itr
);
1984 e1000e_eitr_should_postpone(E1000ECore
*core
, int idx
)
1986 return e1000e_postpone_interrupt(&core
->eitr_intr_pending
[idx
],
1991 e1000e_msix_notify_one(E1000ECore
*core
, uint32_t cause
, uint32_t int_cfg
)
1993 uint32_t effective_eiac
;
1995 if (E1000_IVAR_ENTRY_VALID(int_cfg
)) {
1996 uint32_t vec
= E1000_IVAR_ENTRY_VEC(int_cfg
);
1997 if (vec
< E1000E_MSIX_VEC_NUM
) {
1998 if (!e1000e_eitr_should_postpone(core
, vec
)) {
1999 trace_e1000e_irq_msix_notify_vec(vec
);
2000 msix_notify(core
->owner
, vec
);
2003 trace_e1000e_wrn_msix_vec_wrong(cause
, int_cfg
);
2006 trace_e1000e_wrn_msix_invalid(cause
, int_cfg
);
2009 if (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_EIAME
) {
2010 trace_e1000e_irq_ims_clear_eiame(core
->mac
[IAM
], cause
);
2011 e1000e_clear_ims_bits(core
, core
->mac
[IAM
] & cause
);
2014 trace_e1000e_irq_icr_clear_eiac(core
->mac
[ICR
], core
->mac
[EIAC
]);
2016 if (core
->mac
[EIAC
] & E1000_ICR_OTHER
) {
2017 effective_eiac
= (core
->mac
[EIAC
] & E1000_EIAC_MASK
) |
2018 E1000_ICR_OTHER_CAUSES
;
2020 effective_eiac
= core
->mac
[EIAC
] & E1000_EIAC_MASK
;
2022 core
->mac
[ICR
] &= ~effective_eiac
;
2026 e1000e_msix_notify(E1000ECore
*core
, uint32_t causes
)
2028 if (causes
& E1000_ICR_RXQ0
) {
2029 e1000e_msix_notify_one(core
, E1000_ICR_RXQ0
,
2030 E1000_IVAR_RXQ0(core
->mac
[IVAR
]));
2033 if (causes
& E1000_ICR_RXQ1
) {
2034 e1000e_msix_notify_one(core
, E1000_ICR_RXQ1
,
2035 E1000_IVAR_RXQ1(core
->mac
[IVAR
]));
2038 if (causes
& E1000_ICR_TXQ0
) {
2039 e1000e_msix_notify_one(core
, E1000_ICR_TXQ0
,
2040 E1000_IVAR_TXQ0(core
->mac
[IVAR
]));
2043 if (causes
& E1000_ICR_TXQ1
) {
2044 e1000e_msix_notify_one(core
, E1000_ICR_TXQ1
,
2045 E1000_IVAR_TXQ1(core
->mac
[IVAR
]));
2048 if (causes
& E1000_ICR_OTHER
) {
2049 e1000e_msix_notify_one(core
, E1000_ICR_OTHER
,
2050 E1000_IVAR_OTHER(core
->mac
[IVAR
]));
2055 e1000e_msix_clear_one(E1000ECore
*core
, uint32_t cause
, uint32_t int_cfg
)
2057 if (E1000_IVAR_ENTRY_VALID(int_cfg
)) {
2058 uint32_t vec
= E1000_IVAR_ENTRY_VEC(int_cfg
);
2059 if (vec
< E1000E_MSIX_VEC_NUM
) {
2060 trace_e1000e_irq_msix_pending_clearing(cause
, int_cfg
, vec
);
2061 msix_clr_pending(core
->owner
, vec
);
2063 trace_e1000e_wrn_msix_vec_wrong(cause
, int_cfg
);
2066 trace_e1000e_wrn_msix_invalid(cause
, int_cfg
);
2071 e1000e_msix_clear(E1000ECore
*core
, uint32_t causes
)
2073 if (causes
& E1000_ICR_RXQ0
) {
2074 e1000e_msix_clear_one(core
, E1000_ICR_RXQ0
,
2075 E1000_IVAR_RXQ0(core
->mac
[IVAR
]));
2078 if (causes
& E1000_ICR_RXQ1
) {
2079 e1000e_msix_clear_one(core
, E1000_ICR_RXQ1
,
2080 E1000_IVAR_RXQ1(core
->mac
[IVAR
]));
2083 if (causes
& E1000_ICR_TXQ0
) {
2084 e1000e_msix_clear_one(core
, E1000_ICR_TXQ0
,
2085 E1000_IVAR_TXQ0(core
->mac
[IVAR
]));
2088 if (causes
& E1000_ICR_TXQ1
) {
2089 e1000e_msix_clear_one(core
, E1000_ICR_TXQ1
,
2090 E1000_IVAR_TXQ1(core
->mac
[IVAR
]));
2093 if (causes
& E1000_ICR_OTHER
) {
2094 e1000e_msix_clear_one(core
, E1000_ICR_OTHER
,
2095 E1000_IVAR_OTHER(core
->mac
[IVAR
]));
2100 e1000e_fix_icr_asserted(E1000ECore
*core
)
2102 core
->mac
[ICR
] &= ~E1000_ICR_ASSERTED
;
2103 if (core
->mac
[ICR
]) {
2104 core
->mac
[ICR
] |= E1000_ICR_ASSERTED
;
2107 trace_e1000e_irq_fix_icr_asserted(core
->mac
[ICR
]);
2111 e1000e_send_msi(E1000ECore
*core
, bool msix
)
2113 uint32_t causes
= core
->mac
[ICR
] & core
->mac
[IMS
] & ~E1000_ICR_ASSERTED
;
2116 e1000e_msix_notify(core
, causes
);
2118 if (!e1000e_itr_should_postpone(core
)) {
2119 trace_e1000e_irq_msi_notify(causes
);
2120 msi_notify(core
->owner
, 0);
2126 e1000e_update_interrupt_state(E1000ECore
*core
)
2128 bool interrupts_pending
;
2129 bool is_msix
= msix_enabled(core
->owner
);
2131 /* Set ICR[OTHER] for MSI-X */
2133 if (core
->mac
[ICR
] & core
->mac
[IMS
] & E1000_ICR_OTHER_CAUSES
) {
2134 core
->mac
[ICR
] |= E1000_ICR_OTHER
;
2135 trace_e1000e_irq_add_msi_other(core
->mac
[ICR
]);
2139 e1000e_fix_icr_asserted(core
);
2142 * Make sure ICR and ICS registers have the same value.
2143 * The spec says that the ICS register is write-only. However in practice,
2144 * on real hardware ICS is readable, and for reads it has the same value as
2145 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2147 * The VxWorks PRO/1000 driver uses this behaviour.
2149 core
->mac
[ICS
] = core
->mac
[ICR
];
2151 interrupts_pending
= (core
->mac
[IMS
] & core
->mac
[ICR
]) ? true : false;
2153 trace_e1000e_irq_pending_interrupts(core
->mac
[ICR
] & core
->mac
[IMS
],
2154 core
->mac
[ICR
], core
->mac
[IMS
]);
2156 if (is_msix
|| msi_enabled(core
->owner
)) {
2157 if (interrupts_pending
) {
2158 e1000e_send_msi(core
, is_msix
);
2161 if (interrupts_pending
) {
2162 if (!e1000e_itr_should_postpone(core
)) {
2163 e1000e_raise_legacy_irq(core
);
2166 e1000e_lower_legacy_irq(core
);
2172 e1000e_set_interrupt_cause(E1000ECore
*core
, uint32_t val
)
2174 trace_e1000e_irq_set_cause_entry(val
, core
->mac
[ICR
]);
2176 val
|= e1000e_intmgr_collect_delayed_causes(core
);
2177 core
->mac
[ICR
] |= val
;
2179 trace_e1000e_irq_set_cause_exit(val
, core
->mac
[ICR
]);
2181 e1000e_update_interrupt_state(core
);
2185 e1000e_autoneg_timer(void *opaque
)
2187 E1000ECore
*core
= opaque
;
2188 if (!qemu_get_queue(core
->owner_nic
)->link_down
) {
2189 e1000x_update_regs_on_autoneg_done(core
->mac
, core
->phy
[0]);
2190 e1000e_update_flowctl_status(core
);
2191 /* signal link status change to the guest */
2192 e1000e_set_interrupt_cause(core
, E1000_ICR_LSC
);
2196 static inline uint16_t
2197 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access
, hwaddr addr
)
2199 uint16_t index
= (addr
& 0x1ffff) >> 2;
2200 return index
+ (mac_reg_access
[index
] & 0xfffe);
2203 static const char e1000e_phy_regcap
[E1000E_PHY_PAGES
][0x20] = {
2205 [PHY_CTRL
] = PHY_ANYPAGE
| PHY_RW
,
2206 [PHY_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2207 [PHY_ID1
] = PHY_ANYPAGE
| PHY_R
,
2208 [PHY_ID2
] = PHY_ANYPAGE
| PHY_R
,
2209 [PHY_AUTONEG_ADV
] = PHY_ANYPAGE
| PHY_RW
,
2210 [PHY_LP_ABILITY
] = PHY_ANYPAGE
| PHY_R
,
2211 [PHY_AUTONEG_EXP
] = PHY_ANYPAGE
| PHY_R
,
2212 [PHY_NEXT_PAGE_TX
] = PHY_ANYPAGE
| PHY_RW
,
2213 [PHY_LP_NEXT_PAGE
] = PHY_ANYPAGE
| PHY_R
,
2214 [PHY_1000T_CTRL
] = PHY_ANYPAGE
| PHY_RW
,
2215 [PHY_1000T_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2216 [PHY_EXT_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2217 [PHY_PAGE
] = PHY_ANYPAGE
| PHY_RW
,
2219 [PHY_COPPER_CTRL1
] = PHY_RW
,
2220 [PHY_COPPER_STAT1
] = PHY_R
,
2221 [PHY_COPPER_CTRL3
] = PHY_RW
,
2222 [PHY_RX_ERR_CNTR
] = PHY_R
,
2223 [PHY_OEM_BITS
] = PHY_RW
,
2224 [PHY_BIAS_1
] = PHY_RW
,
2225 [PHY_BIAS_2
] = PHY_RW
,
2226 [PHY_COPPER_INT_ENABLE
] = PHY_RW
,
2227 [PHY_COPPER_STAT2
] = PHY_R
,
2228 [PHY_COPPER_CTRL2
] = PHY_RW
2231 [PHY_MAC_CTRL1
] = PHY_RW
,
2232 [PHY_MAC_INT_ENABLE
] = PHY_RW
,
2233 [PHY_MAC_STAT
] = PHY_R
,
2234 [PHY_MAC_CTRL2
] = PHY_RW
2237 [PHY_LED_03_FUNC_CTRL1
] = PHY_RW
,
2238 [PHY_LED_03_POL_CTRL
] = PHY_RW
,
2239 [PHY_LED_TIMER_CTRL
] = PHY_RW
,
2240 [PHY_LED_45_CTRL
] = PHY_RW
2243 [PHY_1000T_SKEW
] = PHY_R
,
2244 [PHY_1000T_SWAP
] = PHY_R
2247 [PHY_CRC_COUNTERS
] = PHY_R
2252 e1000e_phy_reg_check_cap(E1000ECore
*core
, uint32_t addr
,
2253 char cap
, uint8_t *page
)
2256 (e1000e_phy_regcap
[0][addr
] & PHY_ANYPAGE
) ? 0
2257 : core
->phy
[0][PHY_PAGE
];
2259 if (*page
>= E1000E_PHY_PAGES
) {
2263 return e1000e_phy_regcap
[*page
][addr
] & cap
;
2267 e1000e_phy_reg_write(E1000ECore
*core
, uint8_t page
,
2268 uint32_t addr
, uint16_t data
)
2270 assert(page
< E1000E_PHY_PAGES
);
2271 assert(addr
< E1000E_PHY_PAGE_SIZE
);
2273 if (e1000e_phyreg_writeops
[page
][addr
]) {
2274 e1000e_phyreg_writeops
[page
][addr
](core
, addr
, data
);
2276 core
->phy
[page
][addr
] = data
;
2281 e1000e_set_mdic(E1000ECore
*core
, int index
, uint32_t val
)
2283 uint32_t data
= val
& E1000_MDIC_DATA_MASK
;
2284 uint32_t addr
= ((val
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
2287 if ((val
& E1000_MDIC_PHY_MASK
) >> E1000_MDIC_PHY_SHIFT
!= 1) { /* phy # */
2288 val
= core
->mac
[MDIC
] | E1000_MDIC_ERROR
;
2289 } else if (val
& E1000_MDIC_OP_READ
) {
2290 if (!e1000e_phy_reg_check_cap(core
, addr
, PHY_R
, &page
)) {
2291 trace_e1000e_core_mdic_read_unhandled(page
, addr
);
2292 val
|= E1000_MDIC_ERROR
;
2294 val
= (val
^ data
) | core
->phy
[page
][addr
];
2295 trace_e1000e_core_mdic_read(page
, addr
, val
);
2297 } else if (val
& E1000_MDIC_OP_WRITE
) {
2298 if (!e1000e_phy_reg_check_cap(core
, addr
, PHY_W
, &page
)) {
2299 trace_e1000e_core_mdic_write_unhandled(page
, addr
);
2300 val
|= E1000_MDIC_ERROR
;
2302 trace_e1000e_core_mdic_write(page
, addr
, data
);
2303 e1000e_phy_reg_write(core
, page
, addr
, data
);
2306 core
->mac
[MDIC
] = val
| E1000_MDIC_READY
;
2308 if (val
& E1000_MDIC_INT_EN
) {
2309 e1000e_set_interrupt_cause(core
, E1000_ICR_MDAC
);
2314 e1000e_set_rdt(E1000ECore
*core
, int index
, uint32_t val
)
2316 core
->mac
[index
] = val
& 0xffff;
2317 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0
, index
), val
);
2318 e1000e_start_recv(core
);
2322 e1000e_set_status(E1000ECore
*core
, int index
, uint32_t val
)
2324 if ((val
& E1000_STATUS_PHYRA
) == 0) {
2325 core
->mac
[index
] &= ~E1000_STATUS_PHYRA
;
2330 e1000e_set_ctrlext(E1000ECore
*core
, int index
, uint32_t val
)
2332 trace_e1000e_link_set_ext_params(!!(val
& E1000_CTRL_EXT_ASDCHK
),
2333 !!(val
& E1000_CTRL_EXT_SPD_BYPS
));
2335 /* Zero self-clearing bits */
2336 val
&= ~(E1000_CTRL_EXT_ASDCHK
| E1000_CTRL_EXT_EE_RST
);
2337 core
->mac
[CTRL_EXT
] = val
;
2341 e1000e_set_pbaclr(E1000ECore
*core
, int index
, uint32_t val
)
2345 core
->mac
[PBACLR
] = val
& E1000_PBACLR_VALID_MASK
;
2347 if (msix_enabled(core
->owner
)) {
2351 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
2352 if (core
->mac
[PBACLR
] & BIT(i
)) {
2353 msix_clr_pending(core
->owner
, i
);
2359 e1000e_set_fcrth(E1000ECore
*core
, int index
, uint32_t val
)
2361 core
->mac
[FCRTH
] = val
& 0xFFF8;
2365 e1000e_set_fcrtl(E1000ECore
*core
, int index
, uint32_t val
)
2367 core
->mac
[FCRTL
] = val
& 0x8000FFF8;
2371 e1000e_set_16bit(E1000ECore
*core
, int index
, uint32_t val
)
2373 core
->mac
[index
] = val
& 0xffff;
2377 e1000e_set_12bit(E1000ECore
*core
, int index
, uint32_t val
)
2379 core
->mac
[index
] = val
& 0xfff;
2383 e1000e_set_vet(E1000ECore
*core
, int index
, uint32_t val
)
2385 core
->mac
[VET
] = val
& 0xffff;
2386 core
->vet
= le16_to_cpu(core
->mac
[VET
]);
2387 trace_e1000e_vlan_vet(core
->vet
);
2391 e1000e_set_dlen(E1000ECore
*core
, int index
, uint32_t val
)
2393 core
->mac
[index
] = val
& E1000_XDLEN_MASK
;
2397 e1000e_set_dbal(E1000ECore
*core
, int index
, uint32_t val
)
2399 core
->mac
[index
] = val
& E1000_XDBAL_MASK
;
2403 e1000e_set_tctl(E1000ECore
*core
, int index
, uint32_t val
)
2406 core
->mac
[index
] = val
;
2408 if (core
->mac
[TARC0
] & E1000_TARC_ENABLE
) {
2409 e1000e_tx_ring_init(core
, &txr
, 0);
2410 e1000e_start_xmit(core
, &txr
);
2413 if (core
->mac
[TARC1
] & E1000_TARC_ENABLE
) {
2414 e1000e_tx_ring_init(core
, &txr
, 1);
2415 e1000e_start_xmit(core
, &txr
);
2420 e1000e_set_tdt(E1000ECore
*core
, int index
, uint32_t val
)
2423 int qidx
= e1000e_mq_queue_idx(TDT
, index
);
2424 uint32_t tarc_reg
= (qidx
== 0) ? TARC0
: TARC1
;
2426 core
->mac
[index
] = val
& 0xffff;
2428 if (core
->mac
[tarc_reg
] & E1000_TARC_ENABLE
) {
2429 e1000e_tx_ring_init(core
, &txr
, qidx
);
2430 e1000e_start_xmit(core
, &txr
);
2435 e1000e_set_ics(E1000ECore
*core
, int index
, uint32_t val
)
2437 trace_e1000e_irq_write_ics(val
);
2438 e1000e_set_interrupt_cause(core
, val
);
2442 e1000e_set_icr(E1000ECore
*core
, int index
, uint32_t val
)
2444 if ((core
->mac
[ICR
] & E1000_ICR_ASSERTED
) &&
2445 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2446 trace_e1000e_irq_icr_process_iame();
2447 e1000e_clear_ims_bits(core
, core
->mac
[IAM
]);
2450 trace_e1000e_irq_icr_write(val
, core
->mac
[ICR
], core
->mac
[ICR
] & ~val
);
2451 core
->mac
[ICR
] &= ~val
;
2452 e1000e_update_interrupt_state(core
);
2456 e1000e_set_imc(E1000ECore
*core
, int index
, uint32_t val
)
2458 trace_e1000e_irq_ims_clear_set_imc(val
);
2459 e1000e_clear_ims_bits(core
, val
);
2460 e1000e_update_interrupt_state(core
);
2464 e1000e_set_ims(E1000ECore
*core
, int index
, uint32_t val
)
2466 static const uint32_t ims_ext_mask
=
2467 E1000_IMS_RXQ0
| E1000_IMS_RXQ1
|
2468 E1000_IMS_TXQ0
| E1000_IMS_TXQ1
|
2471 static const uint32_t ims_valid_mask
=
2472 E1000_IMS_TXDW
| E1000_IMS_TXQE
| E1000_IMS_LSC
|
2473 E1000_IMS_RXDMT0
| E1000_IMS_RXO
| E1000_IMS_RXT0
|
2474 E1000_IMS_MDAC
| E1000_IMS_TXD_LOW
| E1000_IMS_SRPD
|
2475 E1000_IMS_ACK
| E1000_IMS_MNG
| E1000_IMS_RXQ0
|
2476 E1000_IMS_RXQ1
| E1000_IMS_TXQ0
| E1000_IMS_TXQ1
|
2479 uint32_t valid_val
= val
& ims_valid_mask
;
2481 trace_e1000e_irq_set_ims(val
, core
->mac
[IMS
], core
->mac
[IMS
] | valid_val
);
2482 core
->mac
[IMS
] |= valid_val
;
2484 if ((valid_val
& ims_ext_mask
) &&
2485 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_PBA_CLR
) &&
2486 msix_enabled(core
->owner
)) {
2487 e1000e_msix_clear(core
, valid_val
);
2490 if ((valid_val
== ims_valid_mask
) &&
2491 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA
)) {
2492 trace_e1000e_irq_fire_all_timers(val
);
2493 e1000e_intrmgr_fire_all_timers(core
);
2496 e1000e_update_interrupt_state(core
);
2500 e1000e_set_rdtr(E1000ECore
*core
, int index
, uint32_t val
)
2502 e1000e_set_16bit(core
, index
, val
);
2504 if ((val
& E1000_RDTR_FPD
) && (core
->rdtr
.running
)) {
2505 trace_e1000e_irq_rdtr_fpd_running();
2506 e1000e_intrmgr_fire_delayed_interrupts(core
);
2508 trace_e1000e_irq_rdtr_fpd_not_running();
2513 e1000e_set_tidv(E1000ECore
*core
, int index
, uint32_t val
)
2515 e1000e_set_16bit(core
, index
, val
);
2517 if ((val
& E1000_TIDV_FPD
) && (core
->tidv
.running
)) {
2518 trace_e1000e_irq_tidv_fpd_running();
2519 e1000e_intrmgr_fire_delayed_interrupts(core
);
2521 trace_e1000e_irq_tidv_fpd_not_running();
2526 e1000e_mac_readreg(E1000ECore
*core
, int index
)
2528 return core
->mac
[index
];
2532 e1000e_mac_ics_read(E1000ECore
*core
, int index
)
2534 trace_e1000e_irq_read_ics(core
->mac
[ICS
]);
2535 return core
->mac
[ICS
];
2539 e1000e_mac_ims_read(E1000ECore
*core
, int index
)
2541 trace_e1000e_irq_read_ims(core
->mac
[IMS
]);
2542 return core
->mac
[IMS
];
2545 #define E1000E_LOW_BITS_READ_FUNC(num) \
2547 e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2549 return core->mac[index] & (BIT(num) - 1); \
2552 #define E1000E_LOW_BITS_READ(num) \
2553 e1000e_mac_low##num##_read
2555 E1000E_LOW_BITS_READ_FUNC(4);
2556 E1000E_LOW_BITS_READ_FUNC(6);
2557 E1000E_LOW_BITS_READ_FUNC(11);
2558 E1000E_LOW_BITS_READ_FUNC(13);
2559 E1000E_LOW_BITS_READ_FUNC(16);
2562 e1000e_mac_swsm_read(E1000ECore
*core
, int index
)
2564 uint32_t val
= core
->mac
[SWSM
];
2565 core
->mac
[SWSM
] = val
| 1;
2570 e1000e_mac_itr_read(E1000ECore
*core
, int index
)
2572 return core
->itr_guest_value
;
2576 e1000e_mac_eitr_read(E1000ECore
*core
, int index
)
2578 return core
->eitr_guest_value
[index
- EITR
];
2582 e1000e_mac_icr_read(E1000ECore
*core
, int index
)
2584 uint32_t ret
= core
->mac
[ICR
];
2585 trace_e1000e_irq_icr_read_entry(ret
);
2587 if (core
->mac
[IMS
] == 0) {
2588 trace_e1000e_irq_icr_clear_zero_ims();
2592 if ((core
->mac
[ICR
] & E1000_ICR_ASSERTED
) &&
2593 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2594 trace_e1000e_irq_icr_clear_iame();
2596 trace_e1000e_irq_icr_process_iame();
2597 e1000e_clear_ims_bits(core
, core
->mac
[IAM
]);
2600 trace_e1000e_irq_icr_read_exit(core
->mac
[ICR
]);
2601 e1000e_update_interrupt_state(core
);
2606 e1000e_mac_read_clr4(E1000ECore
*core
, int index
)
2608 uint32_t ret
= core
->mac
[index
];
2610 core
->mac
[index
] = 0;
2615 e1000e_mac_read_clr8(E1000ECore
*core
, int index
)
2617 uint32_t ret
= core
->mac
[index
];
2619 core
->mac
[index
] = 0;
2620 core
->mac
[index
- 1] = 0;
2625 e1000e_get_ctrl(E1000ECore
*core
, int index
)
2627 uint32_t val
= core
->mac
[CTRL
];
2629 trace_e1000e_link_read_params(
2630 !!(val
& E1000_CTRL_ASDE
),
2631 (val
& E1000_CTRL_SPD_SEL
) >> E1000_CTRL_SPD_SHIFT
,
2632 !!(val
& E1000_CTRL_FRCSPD
),
2633 !!(val
& E1000_CTRL_FRCDPX
),
2634 !!(val
& E1000_CTRL_RFCE
),
2635 !!(val
& E1000_CTRL_TFCE
));
2641 e1000e_get_status(E1000ECore
*core
, int index
)
2643 uint32_t res
= core
->mac
[STATUS
];
2645 if (!(core
->mac
[CTRL
] & E1000_CTRL_GIO_MASTER_DISABLE
)) {
2646 res
|= E1000_STATUS_GIO_MASTER_ENABLE
;
2649 if (core
->mac
[CTRL
] & E1000_CTRL_FRCDPX
) {
2650 res
|= (core
->mac
[CTRL
] & E1000_CTRL_FD
) ? E1000_STATUS_FD
: 0;
2652 res
|= E1000_STATUS_FD
;
2655 if ((core
->mac
[CTRL
] & E1000_CTRL_FRCSPD
) ||
2656 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_SPD_BYPS
)) {
2657 switch (core
->mac
[CTRL
] & E1000_CTRL_SPD_SEL
) {
2658 case E1000_CTRL_SPD_10
:
2659 res
|= E1000_STATUS_SPEED_10
;
2661 case E1000_CTRL_SPD_100
:
2662 res
|= E1000_STATUS_SPEED_100
;
2664 case E1000_CTRL_SPD_1000
:
2666 res
|= E1000_STATUS_SPEED_1000
;
2670 res
|= E1000_STATUS_SPEED_1000
;
2673 trace_e1000e_link_status(
2674 !!(res
& E1000_STATUS_LU
),
2675 !!(res
& E1000_STATUS_FD
),
2676 (res
& E1000_STATUS_SPEED_MASK
) >> E1000_STATUS_SPEED_SHIFT
,
2677 (res
& E1000_STATUS_ASDV
) >> E1000_STATUS_ASDV_SHIFT
);
2683 e1000e_get_tarc(E1000ECore
*core
, int index
)
2685 return core
->mac
[index
] & ((BIT(11) - 1) |
2693 e1000e_mac_writereg(E1000ECore
*core
, int index
, uint32_t val
)
2695 core
->mac
[index
] = val
;
2699 e1000e_mac_setmacaddr(E1000ECore
*core
, int index
, uint32_t val
)
2701 uint32_t macaddr
[2];
2703 core
->mac
[index
] = val
;
2705 macaddr
[0] = cpu_to_le32(core
->mac
[RA
]);
2706 macaddr
[1] = cpu_to_le32(core
->mac
[RA
+ 1]);
2707 qemu_format_nic_info_str(qemu_get_queue(core
->owner_nic
),
2708 (uint8_t *) macaddr
);
2710 trace_e1000e_mac_set_sw(MAC_ARG(macaddr
));
2714 e1000e_set_eecd(E1000ECore
*core
, int index
, uint32_t val
)
2716 static const uint32_t ro_bits
= E1000_EECD_PRES
|
2717 E1000_EECD_AUTO_RD
|
2718 E1000_EECD_SIZE_EX_MASK
;
2720 core
->mac
[EECD
] = (core
->mac
[EECD
] & ro_bits
) | (val
& ~ro_bits
);
2724 e1000e_set_eerd(E1000ECore
*core
, int index
, uint32_t val
)
2726 uint32_t addr
= (val
>> E1000_EERW_ADDR_SHIFT
) & E1000_EERW_ADDR_MASK
;
2730 if ((addr
< E1000E_EEPROM_SIZE
) && (val
& E1000_EERW_START
)) {
2731 data
= core
->eeprom
[addr
];
2732 flags
= E1000_EERW_DONE
;
2735 core
->mac
[EERD
] = flags
|
2736 (addr
<< E1000_EERW_ADDR_SHIFT
) |
2737 (data
<< E1000_EERW_DATA_SHIFT
);
2741 e1000e_set_eewr(E1000ECore
*core
, int index
, uint32_t val
)
2743 uint32_t addr
= (val
>> E1000_EERW_ADDR_SHIFT
) & E1000_EERW_ADDR_MASK
;
2744 uint32_t data
= (val
>> E1000_EERW_DATA_SHIFT
) & E1000_EERW_DATA_MASK
;
2747 if ((addr
< E1000E_EEPROM_SIZE
) && (val
& E1000_EERW_START
)) {
2748 core
->eeprom
[addr
] = data
;
2749 flags
= E1000_EERW_DONE
;
2752 core
->mac
[EERD
] = flags
|
2753 (addr
<< E1000_EERW_ADDR_SHIFT
) |
2754 (data
<< E1000_EERW_DATA_SHIFT
);
2758 e1000e_set_rxdctl(E1000ECore
*core
, int index
, uint32_t val
)
2760 core
->mac
[RXDCTL
] = core
->mac
[RXDCTL1
] = val
;
2764 e1000e_set_itr(E1000ECore
*core
, int index
, uint32_t val
)
2766 uint32_t interval
= val
& 0xffff;
2768 trace_e1000e_irq_itr_set(val
);
2770 core
->itr_guest_value
= interval
;
2771 core
->mac
[index
] = MAX(interval
, E1000E_MIN_XITR
);
2775 e1000e_set_eitr(E1000ECore
*core
, int index
, uint32_t val
)
2777 uint32_t interval
= val
& 0xffff;
2778 uint32_t eitr_num
= index
- EITR
;
2780 trace_e1000e_irq_eitr_set(eitr_num
, val
);
2782 core
->eitr_guest_value
[eitr_num
] = interval
;
2783 core
->mac
[index
] = MAX(interval
, E1000E_MIN_XITR
);
2787 e1000e_set_psrctl(E1000ECore
*core
, int index
, uint32_t val
)
2789 if ((val
& E1000_PSRCTL_BSIZE0_MASK
) == 0) {
2790 hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
2793 if ((val
& E1000_PSRCTL_BSIZE1_MASK
) == 0) {
2794 hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
2797 core
->mac
[PSRCTL
] = val
;
2801 e1000e_update_rx_offloads(E1000ECore
*core
)
2803 int cso_state
= e1000e_rx_l4_cso_enabled(core
);
2805 trace_e1000e_rx_set_cso(cso_state
);
2807 if (core
->has_vnet
) {
2808 qemu_set_offload(qemu_get_queue(core
->owner_nic
)->peer
,
2809 cso_state
, 0, 0, 0, 0);
2814 e1000e_set_rxcsum(E1000ECore
*core
, int index
, uint32_t val
)
2816 core
->mac
[RXCSUM
] = val
;
2817 e1000e_update_rx_offloads(core
);
2821 e1000e_set_gcr(E1000ECore
*core
, int index
, uint32_t val
)
2823 uint32_t ro_bits
= core
->mac
[GCR
] & E1000_GCR_RO_BITS
;
2824 core
->mac
[GCR
] = (val
& ~E1000_GCR_RO_BITS
) | ro_bits
;
2827 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2828 static uint32_t (*e1000e_macreg_readops
[])(E1000ECore
*, int) = {
2830 e1000e_getreg(WUFC
),
2831 e1000e_getreg(MANC
),
2832 e1000e_getreg(TOTL
),
2833 e1000e_getreg(RDT0
),
2834 e1000e_getreg(RDBAH0
),
2835 e1000e_getreg(TDBAL1
),
2836 e1000e_getreg(RDLEN0
),
2837 e1000e_getreg(RDH1
),
2838 e1000e_getreg(LATECOL
),
2840 e1000e_getreg(XONTXC
),
2842 e1000e_getreg(GORCL
),
2843 e1000e_getreg(MGTPRC
),
2844 e1000e_getreg(EERD
),
2845 e1000e_getreg(EIAC
),
2846 e1000e_getreg(PSRCTL
),
2847 e1000e_getreg(MANC2H
),
2848 e1000e_getreg(RXCSUM
),
2849 e1000e_getreg(GSCL_3
),
2850 e1000e_getreg(GSCN_2
),
2851 e1000e_getreg(RSRPD
),
2852 e1000e_getreg(RDBAL1
),
2853 e1000e_getreg(FCAH
),
2854 e1000e_getreg(FCRTH
),
2855 e1000e_getreg(FLOP
),
2856 e1000e_getreg(FLASHT
),
2857 e1000e_getreg(RXSTMPH
),
2858 e1000e_getreg(TXSTMPL
),
2859 e1000e_getreg(TIMADJL
),
2860 e1000e_getreg(TXDCTL
),
2861 e1000e_getreg(RDH0
),
2862 e1000e_getreg(TDT1
),
2863 e1000e_getreg(TNCRS
),
2866 e1000e_getreg(GSCL_2
),
2867 e1000e_getreg(RDBAH1
),
2868 e1000e_getreg(FLSWDATA
),
2869 e1000e_getreg(RXSATRH
),
2870 e1000e_getreg(TIPG
),
2871 e1000e_getreg(FLMNGCTL
),
2872 e1000e_getreg(FLMNGCNT
),
2873 e1000e_getreg(TSYNCTXCTL
),
2874 e1000e_getreg(EXTCNF_SIZE
),
2875 e1000e_getreg(EXTCNF_CTRL
),
2876 e1000e_getreg(EEMNGDATA
),
2877 e1000e_getreg(CTRL_EXT
),
2878 e1000e_getreg(SYSTIMH
),
2879 e1000e_getreg(EEMNGCTL
),
2880 e1000e_getreg(FLMNGDATA
),
2881 e1000e_getreg(TSYNCRXCTL
),
2883 e1000e_getreg(LEDCTL
),
2884 e1000e_getreg(STATUS
),
2885 e1000e_getreg(TCTL
),
2886 e1000e_getreg(TDBAL
),
2887 e1000e_getreg(TDLEN
),
2888 e1000e_getreg(TDH1
),
2889 e1000e_getreg(RADV
),
2890 e1000e_getreg(ECOL
),
2892 e1000e_getreg(RLEC
),
2893 e1000e_getreg(XOFFTXC
),
2895 e1000e_getreg(RNBC
),
2896 e1000e_getreg(MGTPTC
),
2897 e1000e_getreg(TIMINCA
),
2898 e1000e_getreg(RXCFGL
),
2899 e1000e_getreg(MFUTP01
),
2900 e1000e_getreg(FACTPS
),
2901 e1000e_getreg(GSCL_1
),
2902 e1000e_getreg(GSCN_0
),
2903 e1000e_getreg(GCR2
),
2904 e1000e_getreg(RDT1
),
2905 e1000e_getreg(PBACLR
),
2906 e1000e_getreg(FCTTV
),
2907 e1000e_getreg(EEWR
),
2908 e1000e_getreg(FLSWCTL
),
2909 e1000e_getreg(RXDCTL1
),
2910 e1000e_getreg(RXSATRL
),
2911 e1000e_getreg(SYSTIML
),
2912 e1000e_getreg(RXUDP
),
2913 e1000e_getreg(TORL
),
2914 e1000e_getreg(TDLEN1
),
2917 e1000e_getreg(EECD
),
2918 e1000e_getreg(MFUTP23
),
2919 e1000e_getreg(RAID
),
2920 e1000e_getreg(FCRTV
),
2921 e1000e_getreg(TXDCTL1
),
2922 e1000e_getreg(RCTL
),
2924 e1000e_getreg(MDIC
),
2925 e1000e_getreg(FCRUC
),
2927 e1000e_getreg(RDBAL0
),
2928 e1000e_getreg(TDBAH1
),
2929 e1000e_getreg(RDTR
),
2931 e1000e_getreg(COLC
),
2932 e1000e_getreg(CEXTERR
),
2933 e1000e_getreg(XOFFRXC
),
2934 e1000e_getreg(IPAV
),
2935 e1000e_getreg(GOTCL
),
2936 e1000e_getreg(MGTPDC
),
2938 e1000e_getreg(IVAR
),
2939 e1000e_getreg(POEMB
),
2940 e1000e_getreg(MFVAL
),
2941 e1000e_getreg(FUNCTAG
),
2942 e1000e_getreg(GSCL_4
),
2943 e1000e_getreg(GSCN_3
),
2944 e1000e_getreg(MRQC
),
2945 e1000e_getreg(RDLEN1
),
2948 e1000e_getreg(FLOL
),
2949 e1000e_getreg(RXDCTL
),
2950 e1000e_getreg(RXSTMPL
),
2951 e1000e_getreg(TXSTMPH
),
2952 e1000e_getreg(TIMADJH
),
2953 e1000e_getreg(FCRTL
),
2954 e1000e_getreg(TDBAH
),
2955 e1000e_getreg(TADV
),
2956 e1000e_getreg(XONRXC
),
2957 e1000e_getreg(TSCTFC
),
2958 e1000e_getreg(RFCTL
),
2959 e1000e_getreg(GSCN_1
),
2960 e1000e_getreg(FCAL
),
2961 e1000e_getreg(FLSWCNT
),
2963 [TOTH
] = e1000e_mac_read_clr8
,
2964 [GOTCH
] = e1000e_mac_read_clr8
,
2965 [PRC64
] = e1000e_mac_read_clr4
,
2966 [PRC255
] = e1000e_mac_read_clr4
,
2967 [PRC1023
] = e1000e_mac_read_clr4
,
2968 [PTC64
] = e1000e_mac_read_clr4
,
2969 [PTC255
] = e1000e_mac_read_clr4
,
2970 [PTC1023
] = e1000e_mac_read_clr4
,
2971 [GPRC
] = e1000e_mac_read_clr4
,
2972 [TPT
] = e1000e_mac_read_clr4
,
2973 [RUC
] = e1000e_mac_read_clr4
,
2974 [BPRC
] = e1000e_mac_read_clr4
,
2975 [MPTC
] = e1000e_mac_read_clr4
,
2976 [IAC
] = e1000e_mac_read_clr4
,
2977 [ICR
] = e1000e_mac_icr_read
,
2978 [RDFH
] = E1000E_LOW_BITS_READ(13),
2979 [RDFHS
] = E1000E_LOW_BITS_READ(13),
2980 [RDFPC
] = E1000E_LOW_BITS_READ(13),
2981 [TDFH
] = E1000E_LOW_BITS_READ(13),
2982 [TDFHS
] = E1000E_LOW_BITS_READ(13),
2983 [STATUS
] = e1000e_get_status
,
2984 [TARC0
] = e1000e_get_tarc
,
2985 [PBS
] = E1000E_LOW_BITS_READ(6),
2986 [ICS
] = e1000e_mac_ics_read
,
2987 [AIT
] = E1000E_LOW_BITS_READ(16),
2988 [TORH
] = e1000e_mac_read_clr8
,
2989 [GORCH
] = e1000e_mac_read_clr8
,
2990 [PRC127
] = e1000e_mac_read_clr4
,
2991 [PRC511
] = e1000e_mac_read_clr4
,
2992 [PRC1522
] = e1000e_mac_read_clr4
,
2993 [PTC127
] = e1000e_mac_read_clr4
,
2994 [PTC511
] = e1000e_mac_read_clr4
,
2995 [PTC1522
] = e1000e_mac_read_clr4
,
2996 [GPTC
] = e1000e_mac_read_clr4
,
2997 [TPR
] = e1000e_mac_read_clr4
,
2998 [ROC
] = e1000e_mac_read_clr4
,
2999 [MPRC
] = e1000e_mac_read_clr4
,
3000 [BPTC
] = e1000e_mac_read_clr4
,
3001 [TSCTC
] = e1000e_mac_read_clr4
,
3002 [ITR
] = e1000e_mac_itr_read
,
3003 [RDFT
] = E1000E_LOW_BITS_READ(13),
3004 [RDFTS
] = E1000E_LOW_BITS_READ(13),
3005 [TDFPC
] = E1000E_LOW_BITS_READ(13),
3006 [TDFT
] = E1000E_LOW_BITS_READ(13),
3007 [TDFTS
] = E1000E_LOW_BITS_READ(13),
3008 [CTRL
] = e1000e_get_ctrl
,
3009 [TARC1
] = e1000e_get_tarc
,
3010 [SWSM
] = e1000e_mac_swsm_read
,
3011 [IMS
] = e1000e_mac_ims_read
,
3013 [CRCERRS
... MPC
] = e1000e_mac_readreg
,
3014 [IP6AT
... IP6AT
+ 3] = e1000e_mac_readreg
,
3015 [IP4AT
... IP4AT
+ 6] = e1000e_mac_readreg
,
3016 [RA
... RA
+ 31] = e1000e_mac_readreg
,
3017 [WUPM
... WUPM
+ 31] = e1000e_mac_readreg
,
3018 [MTA
... MTA
+ 127] = e1000e_mac_readreg
,
3019 [VFTA
... VFTA
+ 127] = e1000e_mac_readreg
,
3020 [FFMT
... FFMT
+ 254] = E1000E_LOW_BITS_READ(4),
3021 [FFVT
... FFVT
+ 254] = e1000e_mac_readreg
,
3022 [MDEF
... MDEF
+ 7] = e1000e_mac_readreg
,
3023 [FFLT
... FFLT
+ 10] = E1000E_LOW_BITS_READ(11),
3024 [FTFT
... FTFT
+ 254] = e1000e_mac_readreg
,
3025 [PBM
... PBM
+ 10239] = e1000e_mac_readreg
,
3026 [RETA
... RETA
+ 31] = e1000e_mac_readreg
,
3027 [RSSRK
... RSSRK
+ 31] = e1000e_mac_readreg
,
3028 [MAVTV0
... MAVTV3
] = e1000e_mac_readreg
,
3029 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = e1000e_mac_eitr_read
3031 enum { E1000E_NREADOPS
= ARRAY_SIZE(e1000e_macreg_readops
) };
3033 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3034 static void (*e1000e_macreg_writeops
[])(E1000ECore
*, int, uint32_t) = {
3036 e1000e_putreg(SWSM
),
3037 e1000e_putreg(WUFC
),
3038 e1000e_putreg(RDBAH1
),
3039 e1000e_putreg(TDBAH
),
3040 e1000e_putreg(TXDCTL
),
3041 e1000e_putreg(RDBAH0
),
3042 e1000e_putreg(LEDCTL
),
3043 e1000e_putreg(FCAL
),
3044 e1000e_putreg(FCRUC
),
3046 e1000e_putreg(TDFH
),
3047 e1000e_putreg(TDFT
),
3048 e1000e_putreg(TDFHS
),
3049 e1000e_putreg(TDFTS
),
3050 e1000e_putreg(TDFPC
),
3053 e1000e_putreg(RDFH
),
3054 e1000e_putreg(RDFT
),
3055 e1000e_putreg(RDFHS
),
3056 e1000e_putreg(RDFTS
),
3057 e1000e_putreg(RDFPC
),
3058 e1000e_putreg(IPAV
),
3059 e1000e_putreg(TDBAH1
),
3060 e1000e_putreg(TIMINCA
),
3062 e1000e_putreg(EIAC
),
3063 e1000e_putreg(IVAR
),
3064 e1000e_putreg(TARC0
),
3065 e1000e_putreg(TARC1
),
3066 e1000e_putreg(FLSWDATA
),
3067 e1000e_putreg(POEMB
),
3069 e1000e_putreg(MFUTP01
),
3070 e1000e_putreg(MFUTP23
),
3071 e1000e_putreg(MANC
),
3072 e1000e_putreg(MANC2H
),
3073 e1000e_putreg(MFVAL
),
3074 e1000e_putreg(EXTCNF_CTRL
),
3075 e1000e_putreg(FACTPS
),
3076 e1000e_putreg(FUNCTAG
),
3077 e1000e_putreg(GSCL_1
),
3078 e1000e_putreg(GSCL_2
),
3079 e1000e_putreg(GSCL_3
),
3080 e1000e_putreg(GSCL_4
),
3081 e1000e_putreg(GSCN_0
),
3082 e1000e_putreg(GSCN_1
),
3083 e1000e_putreg(GSCN_2
),
3084 e1000e_putreg(GSCN_3
),
3085 e1000e_putreg(GCR2
),
3086 e1000e_putreg(MRQC
),
3087 e1000e_putreg(FLOP
),
3088 e1000e_putreg(FLOL
),
3089 e1000e_putreg(FLSWCTL
),
3090 e1000e_putreg(FLSWCNT
),
3092 e1000e_putreg(RXDCTL1
),
3093 e1000e_putreg(TXDCTL1
),
3094 e1000e_putreg(TIPG
),
3095 e1000e_putreg(RXSTMPH
),
3096 e1000e_putreg(RXSTMPL
),
3097 e1000e_putreg(RXSATRL
),
3098 e1000e_putreg(RXSATRH
),
3099 e1000e_putreg(TXSTMPL
),
3100 e1000e_putreg(TXSTMPH
),
3101 e1000e_putreg(SYSTIML
),
3102 e1000e_putreg(SYSTIMH
),
3103 e1000e_putreg(TIMADJL
),
3104 e1000e_putreg(TIMADJH
),
3105 e1000e_putreg(RXUDP
),
3106 e1000e_putreg(RXCFGL
),
3107 e1000e_putreg(TSYNCRXCTL
),
3108 e1000e_putreg(TSYNCTXCTL
),
3109 e1000e_putreg(FLSWDATA
),
3110 e1000e_putreg(EXTCNF_SIZE
),
3111 e1000e_putreg(EEMNGCTL
),
3114 [TDH1
] = e1000e_set_16bit
,
3115 [TDT1
] = e1000e_set_tdt
,
3116 [TCTL
] = e1000e_set_tctl
,
3117 [TDT
] = e1000e_set_tdt
,
3118 [MDIC
] = e1000e_set_mdic
,
3119 [ICS
] = e1000e_set_ics
,
3120 [TDH
] = e1000e_set_16bit
,
3121 [RDH0
] = e1000e_set_16bit
,
3122 [RDT0
] = e1000e_set_rdt
,
3123 [IMC
] = e1000e_set_imc
,
3124 [IMS
] = e1000e_set_ims
,
3125 [ICR
] = e1000e_set_icr
,
3126 [EECD
] = e1000e_set_eecd
,
3127 [RCTL
] = e1000e_set_rx_control
,
3128 [CTRL
] = e1000e_set_ctrl
,
3129 [RDTR
] = e1000e_set_rdtr
,
3130 [RADV
] = e1000e_set_16bit
,
3131 [TADV
] = e1000e_set_16bit
,
3132 [ITR
] = e1000e_set_itr
,
3133 [EERD
] = e1000e_set_eerd
,
3134 [GCR
] = e1000e_set_gcr
,
3135 [PSRCTL
] = e1000e_set_psrctl
,
3136 [RXCSUM
] = e1000e_set_rxcsum
,
3137 [RAID
] = e1000e_set_16bit
,
3138 [RSRPD
] = e1000e_set_12bit
,
3139 [TIDV
] = e1000e_set_tidv
,
3140 [TDLEN1
] = e1000e_set_dlen
,
3141 [TDLEN
] = e1000e_set_dlen
,
3142 [RDLEN0
] = e1000e_set_dlen
,
3143 [RDLEN1
] = e1000e_set_dlen
,
3144 [TDBAL
] = e1000e_set_dbal
,
3145 [TDBAL1
] = e1000e_set_dbal
,
3146 [RDBAL0
] = e1000e_set_dbal
,
3147 [RDBAL1
] = e1000e_set_dbal
,
3148 [RDH1
] = e1000e_set_16bit
,
3149 [RDT1
] = e1000e_set_rdt
,
3150 [STATUS
] = e1000e_set_status
,
3151 [PBACLR
] = e1000e_set_pbaclr
,
3152 [CTRL_EXT
] = e1000e_set_ctrlext
,
3153 [FCAH
] = e1000e_set_16bit
,
3154 [FCT
] = e1000e_set_16bit
,
3155 [FCTTV
] = e1000e_set_16bit
,
3156 [FCRTV
] = e1000e_set_16bit
,
3157 [FCRTH
] = e1000e_set_fcrth
,
3158 [FCRTL
] = e1000e_set_fcrtl
,
3159 [VET
] = e1000e_set_vet
,
3160 [RXDCTL
] = e1000e_set_rxdctl
,
3161 [FLASHT
] = e1000e_set_16bit
,
3162 [EEWR
] = e1000e_set_eewr
,
3163 [CTRL_DUP
] = e1000e_set_ctrl
,
3164 [RFCTL
] = e1000e_set_rfctl
,
3165 [RA
+ 1] = e1000e_mac_setmacaddr
,
3167 [IP6AT
... IP6AT
+ 3] = e1000e_mac_writereg
,
3168 [IP4AT
... IP4AT
+ 6] = e1000e_mac_writereg
,
3169 [RA
+ 2 ... RA
+ 31] = e1000e_mac_writereg
,
3170 [WUPM
... WUPM
+ 31] = e1000e_mac_writereg
,
3171 [MTA
... MTA
+ 127] = e1000e_mac_writereg
,
3172 [VFTA
... VFTA
+ 127] = e1000e_mac_writereg
,
3173 [FFMT
... FFMT
+ 254] = e1000e_mac_writereg
,
3174 [FFVT
... FFVT
+ 254] = e1000e_mac_writereg
,
3175 [PBM
... PBM
+ 10239] = e1000e_mac_writereg
,
3176 [MDEF
... MDEF
+ 7] = e1000e_mac_writereg
,
3177 [FFLT
... FFLT
+ 10] = e1000e_mac_writereg
,
3178 [FTFT
... FTFT
+ 254] = e1000e_mac_writereg
,
3179 [RETA
... RETA
+ 31] = e1000e_mac_writereg
,
3180 [RSSRK
... RSSRK
+ 31] = e1000e_mac_writereg
,
3181 [MAVTV0
... MAVTV3
] = e1000e_mac_writereg
,
3182 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = e1000e_set_eitr
3184 enum { E1000E_NWRITEOPS
= ARRAY_SIZE(e1000e_macreg_writeops
) };
3186 enum { MAC_ACCESS_PARTIAL
= 1 };
3188 /* The array below combines alias offsets of the index values for the
3189 * MAC registers that have aliases, with the indication of not fully
3190 * implemented registers (lowest bit). This combination is possible
3191 * because all of the offsets are even. */
3192 static const uint16_t mac_reg_access
[E1000E_MAC_SIZE
] = {
3193 /* Alias index offsets */
3194 [FCRTL_A
] = 0x07fe, [FCRTH_A
] = 0x0802,
3195 [RDH0_A
] = 0x09bc, [RDT0_A
] = 0x09bc, [RDTR_A
] = 0x09c6,
3196 [RDFH_A
] = 0xe904, [RDFT_A
] = 0xe904,
3197 [TDH_A
] = 0x0cf8, [TDT_A
] = 0x0cf8, [TIDV_A
] = 0x0cf8,
3198 [TDFH_A
] = 0xed00, [TDFT_A
] = 0xed00,
3199 [RA_A
... RA_A
+ 31] = 0x14f0,
3200 [VFTA_A
... VFTA_A
+ 127] = 0x1400,
3201 [RDBAL0_A
... RDLEN0_A
] = 0x09bc,
3202 [TDBAL_A
... TDLEN_A
] = 0x0cf8,
3203 /* Access options */
3204 [RDFH
] = MAC_ACCESS_PARTIAL
, [RDFT
] = MAC_ACCESS_PARTIAL
,
3205 [RDFHS
] = MAC_ACCESS_PARTIAL
, [RDFTS
] = MAC_ACCESS_PARTIAL
,
3206 [RDFPC
] = MAC_ACCESS_PARTIAL
,
3207 [TDFH
] = MAC_ACCESS_PARTIAL
, [TDFT
] = MAC_ACCESS_PARTIAL
,
3208 [TDFHS
] = MAC_ACCESS_PARTIAL
, [TDFTS
] = MAC_ACCESS_PARTIAL
,
3209 [TDFPC
] = MAC_ACCESS_PARTIAL
, [EECD
] = MAC_ACCESS_PARTIAL
,
3210 [PBM
] = MAC_ACCESS_PARTIAL
, [FLA
] = MAC_ACCESS_PARTIAL
,
3211 [FCAL
] = MAC_ACCESS_PARTIAL
, [FCAH
] = MAC_ACCESS_PARTIAL
,
3212 [FCT
] = MAC_ACCESS_PARTIAL
, [FCTTV
] = MAC_ACCESS_PARTIAL
,
3213 [FCRTV
] = MAC_ACCESS_PARTIAL
, [FCRTL
] = MAC_ACCESS_PARTIAL
,
3214 [FCRTH
] = MAC_ACCESS_PARTIAL
, [TXDCTL
] = MAC_ACCESS_PARTIAL
,
3215 [TXDCTL1
] = MAC_ACCESS_PARTIAL
,
3216 [MAVTV0
... MAVTV3
] = MAC_ACCESS_PARTIAL
3220 e1000e_core_write(E1000ECore
*core
, hwaddr addr
, uint64_t val
, unsigned size
)
3222 uint16_t index
= e1000e_get_reg_index_with_offset(mac_reg_access
, addr
);
3224 if (index
< E1000E_NWRITEOPS
&& e1000e_macreg_writeops
[index
]) {
3225 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
3226 trace_e1000e_wrn_regs_write_trivial(index
<< 2);
3228 trace_e1000e_core_write(index
<< 2, size
, val
);
3229 e1000e_macreg_writeops
[index
](core
, index
, val
);
3230 } else if (index
< E1000E_NREADOPS
&& e1000e_macreg_readops
[index
]) {
3231 trace_e1000e_wrn_regs_write_ro(index
<< 2, size
, val
);
3233 trace_e1000e_wrn_regs_write_unknown(index
<< 2, size
, val
);
3238 e1000e_core_read(E1000ECore
*core
, hwaddr addr
, unsigned size
)
3241 uint16_t index
= e1000e_get_reg_index_with_offset(mac_reg_access
, addr
);
3243 if (index
< E1000E_NREADOPS
&& e1000e_macreg_readops
[index
]) {
3244 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
3245 trace_e1000e_wrn_regs_read_trivial(index
<< 2);
3247 val
= e1000e_macreg_readops
[index
](core
, index
);
3248 trace_e1000e_core_read(index
<< 2, size
, val
);
3251 trace_e1000e_wrn_regs_read_unknown(index
<< 2, size
);
3257 e1000e_autoneg_pause(E1000ECore
*core
)
3259 timer_del(core
->autoneg_timer
);
3263 e1000e_autoneg_resume(E1000ECore
*core
)
3265 if (e1000e_have_autoneg(core
) &&
3266 !(core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
)) {
3267 qemu_get_queue(core
->owner_nic
)->link_down
= false;
3268 timer_mod(core
->autoneg_timer
,
3269 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
) + 500);
3274 e1000e_vm_state_change(void *opaque
, int running
, RunState state
)
3276 E1000ECore
*core
= opaque
;
3279 trace_e1000e_vm_state_running();
3280 e1000e_intrmgr_resume(core
);
3281 e1000e_autoneg_resume(core
);
3283 trace_e1000e_vm_state_stopped();
3284 e1000e_autoneg_pause(core
);
3285 e1000e_intrmgr_pause(core
);
3290 e1000e_core_pci_realize(E1000ECore
*core
,
3291 const uint16_t *eeprom_templ
,
3292 uint32_t eeprom_size
,
3293 const uint8_t *macaddr
)
3297 core
->autoneg_timer
= timer_new_ms(QEMU_CLOCK_VIRTUAL
,
3298 e1000e_autoneg_timer
, core
);
3299 e1000e_intrmgr_pci_realize(core
);
3302 qemu_add_vm_change_state_handler(e1000e_vm_state_change
, core
);
3304 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
3305 net_tx_pkt_init(&core
->tx
[i
].tx_pkt
, core
->owner
,
3306 E1000E_MAX_TX_FRAGS
, core
->has_vnet
);
3309 net_rx_pkt_init(&core
->rx_pkt
, core
->has_vnet
);
3311 e1000x_core_prepare_eeprom(core
->eeprom
,
3314 PCI_DEVICE_GET_CLASS(core
->owner
)->device_id
,
3316 e1000e_update_rx_offloads(core
);
3320 e1000e_core_pci_uninit(E1000ECore
*core
)
3324 timer_del(core
->autoneg_timer
);
3325 timer_free(core
->autoneg_timer
);
3327 e1000e_intrmgr_pci_unint(core
);
3329 qemu_del_vm_change_state_handler(core
->vmstate
);
3331 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
3332 net_tx_pkt_reset(core
->tx
[i
].tx_pkt
);
3333 net_tx_pkt_uninit(core
->tx
[i
].tx_pkt
);
3336 net_rx_pkt_uninit(core
->rx_pkt
);
3339 static const uint16_t
3340 e1000e_phy_reg_init
[E1000E_PHY_PAGES
][E1000E_PHY_PAGE_SIZE
] = {
3342 [PHY_CTRL
] = MII_CR_SPEED_SELECT_MSB
|
3343 MII_CR_FULL_DUPLEX
|
3346 [PHY_STATUS
] = MII_SR_EXTENDED_CAPS
|
3347 MII_SR_LINK_STATUS
|
3348 MII_SR_AUTONEG_CAPS
|
3349 MII_SR_PREAMBLE_SUPPRESS
|
3350 MII_SR_EXTENDED_STATUS
|
3351 MII_SR_10T_HD_CAPS
|
3352 MII_SR_10T_FD_CAPS
|
3353 MII_SR_100X_HD_CAPS
|
3354 MII_SR_100X_FD_CAPS
,
3357 [PHY_ID2
] = E1000_PHY_ID2_82574x
,
3358 [PHY_AUTONEG_ADV
] = 0xde1,
3359 [PHY_LP_ABILITY
] = 0x7e0,
3360 [PHY_AUTONEG_EXP
] = BIT(2),
3361 [PHY_NEXT_PAGE_TX
] = BIT(0) | BIT(13),
3362 [PHY_1000T_CTRL
] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3363 [PHY_1000T_STATUS
] = 0x3c00,
3364 [PHY_EXT_STATUS
] = BIT(12) | BIT(13),
3366 [PHY_COPPER_CTRL1
] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3368 [PHY_COPPER_STAT1
] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3371 [PHY_MAC_CTRL1
] = BIT(3) | BIT(7),
3372 [PHY_MAC_CTRL2
] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3375 [PHY_LED_TIMER_CTRL
] = BIT(0) | BIT(2) | BIT(14)
3379 static const uint32_t e1000e_mac_reg_init
[] = {
3381 [LEDCTL
] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3382 [EXTCNF_CTRL
] = BIT(3),
3383 [EEMNGCTL
] = BIT(31),
3385 [FLSWCTL
] = BIT(30) | BIT(31),
3388 [RXDCTL1
] = BIT(16),
3389 [TIPG
] = 0x8 | (0x8 << 10) | (0x6 << 20),
3392 [CTRL
] = E1000_CTRL_FD
| E1000_CTRL_SWDPIN2
| E1000_CTRL_SWDPIN0
|
3393 E1000_CTRL_SPD_1000
| E1000_CTRL_SLU
|
3394 E1000_CTRL_ADVD3WUC
,
3395 [STATUS
] = E1000_STATUS_ASDV_1000
| E1000_STATUS_LU
,
3396 [PSRCTL
] = (2 << E1000_PSRCTL_BSIZE0_SHIFT
) |
3397 (4 << E1000_PSRCTL_BSIZE1_SHIFT
) |
3398 (4 << E1000_PSRCTL_BSIZE2_SHIFT
),
3399 [TARC0
] = 0x3 | E1000_TARC_ENABLE
,
3400 [TARC1
] = 0x3 | E1000_TARC_ENABLE
,
3401 [EECD
] = E1000_EECD_AUTO_RD
| E1000_EECD_PRES
,
3402 [EERD
] = E1000_EERW_DONE
,
3403 [EEWR
] = E1000_EERW_DONE
,
3404 [GCR
] = E1000_L0S_ADJUST
|
3405 E1000_L1_ENTRY_LATENCY_MSB
|
3406 E1000_L1_ENTRY_LATENCY_LSB
,
3413 [MANC
] = E1000_MANC_DIS_IP_CHK_ARP
,
3414 [FACTPS
] = E1000_FACTPS_LAN0_ON
| 0x20000000,
3416 [RXCSUM
] = E1000_RXCSUM_IPOFLD
| E1000_RXCSUM_TUOFLD
,
3417 [ITR
] = E1000E_MIN_XITR
,
3418 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = E1000E_MIN_XITR
,
3422 e1000e_core_reset(E1000ECore
*core
)
3426 timer_del(core
->autoneg_timer
);
3428 e1000e_intrmgr_reset(core
);
3430 memset(core
->phy
, 0, sizeof core
->phy
);
3431 memmove(core
->phy
, e1000e_phy_reg_init
, sizeof e1000e_phy_reg_init
);
3432 memset(core
->mac
, 0, sizeof core
->mac
);
3433 memmove(core
->mac
, e1000e_mac_reg_init
, sizeof e1000e_mac_reg_init
);
3435 core
->rxbuf_min_shift
= 1 + E1000_RING_DESC_LEN_SHIFT
;
3437 if (qemu_get_queue(core
->owner_nic
)->link_down
) {
3438 e1000e_link_down(core
);
3441 e1000x_reset_mac_addr(core
->owner_nic
, core
->mac
, core
->permanent_mac
);
3443 for (i
= 0; i
< ARRAY_SIZE(core
->tx
); i
++) {
3444 net_tx_pkt_reset(core
->tx
[i
].tx_pkt
);
3445 memset(&core
->tx
[i
].props
, 0, sizeof(core
->tx
[i
].props
));
3446 core
->tx
[i
].skip_cp
= false;
3450 void e1000e_core_pre_save(E1000ECore
*core
)
3453 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
3456 * If link is down and auto-negotiation is supported and ongoing,
3457 * complete auto-negotiation immediately. This allows us to look
3458 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3460 if (nc
->link_down
&& e1000e_have_autoneg(core
)) {
3461 core
->phy
[0][PHY_STATUS
] |= MII_SR_AUTONEG_COMPLETE
;
3462 e1000e_update_flowctl_status(core
);
3465 for (i
= 0; i
< ARRAY_SIZE(core
->tx
); i
++) {
3466 if (net_tx_pkt_has_fragments(core
->tx
[i
].tx_pkt
)) {
3467 core
->tx
[i
].skip_cp
= true;
3473 e1000e_core_post_load(E1000ECore
*core
)
3475 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
3477 /* nc.link_down can't be migrated, so infer link_down according
3478 * to link status bit in core.mac[STATUS].
3480 nc
->link_down
= (core
->mac
[STATUS
] & E1000_STATUS_LU
) == 0;