1 #include "qemu/osdep.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/cpu_ldst.h"
13 #include <zlib.h> /* For crc32 */
14 #include "exec/semihost.h"
15 #include "sysemu/kvm.h"
17 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19 #ifndef CONFIG_USER_ONLY
20 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
21 int access_type
, ARMMMUIdx mmu_idx
,
22 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
23 target_ulong
*page_size
, uint32_t *fsr
,
26 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
27 int access_type
, ARMMMUIdx mmu_idx
,
28 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
29 target_ulong
*page_size_ptr
, uint32_t *fsr
,
32 /* Definitions for the PMCCNTR and PMCR registers */
38 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
42 /* VFP data registers are always little-endian. */
43 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
45 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
48 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
49 /* Aliases for Q regs. */
52 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
53 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
57 switch (reg
- nregs
) {
58 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
59 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
60 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
65 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
69 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
71 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
74 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
77 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
78 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
82 switch (reg
- nregs
) {
83 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
84 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
85 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
90 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
94 /* 128 bit FP register */
95 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
96 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
100 stl_p(buf
, vfp_get_fpsr(env
));
104 stl_p(buf
, vfp_get_fpcr(env
));
111 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
115 /* 128 bit FP register */
116 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
117 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
121 vfp_set_fpsr(env
, ldl_p(buf
));
125 vfp_set_fpcr(env
, ldl_p(buf
));
132 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
134 assert(ri
->fieldoffset
);
135 if (cpreg_field_is_64bit(ri
)) {
136 return CPREG_FIELD64(env
, ri
);
138 return CPREG_FIELD32(env
, ri
);
142 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
145 assert(ri
->fieldoffset
);
146 if (cpreg_field_is_64bit(ri
)) {
147 CPREG_FIELD64(env
, ri
) = value
;
149 CPREG_FIELD32(env
, ri
) = value
;
153 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
155 return (char *)env
+ ri
->fieldoffset
;
158 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
160 /* Raw read of a coprocessor register (as needed for migration, etc). */
161 if (ri
->type
& ARM_CP_CONST
) {
162 return ri
->resetvalue
;
163 } else if (ri
->raw_readfn
) {
164 return ri
->raw_readfn(env
, ri
);
165 } else if (ri
->readfn
) {
166 return ri
->readfn(env
, ri
);
168 return raw_read(env
, ri
);
172 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
175 /* Raw write of a coprocessor register (as needed for migration, etc).
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
180 if (ri
->type
& ARM_CP_CONST
) {
182 } else if (ri
->raw_writefn
) {
183 ri
->raw_writefn(env
, ri
, v
);
184 } else if (ri
->writefn
) {
185 ri
->writefn(env
, ri
, v
);
187 raw_write(env
, ri
, v
);
191 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
204 if ((ri
->type
& ARM_CP_CONST
) ||
206 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
212 bool write_cpustate_to_list(ARMCPU
*cpu
)
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
218 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
219 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
220 const ARMCPRegInfo
*ri
;
222 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
227 if (ri
->type
& ARM_CP_NO_RAW
) {
230 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
235 bool write_list_to_cpustate(ARMCPU
*cpu
)
240 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
241 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
242 uint64_t v
= cpu
->cpreg_values
[i
];
243 const ARMCPRegInfo
*ri
;
245 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (ri
->type
& ARM_CP_NO_RAW
) {
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
257 write_raw_cp_reg(&cpu
->env
, ri
, v
);
258 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
265 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
267 ARMCPU
*cpu
= opaque
;
269 const ARMCPRegInfo
*ri
;
271 regidx
= *(uint32_t *)key
;
272 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
274 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
275 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
276 /* The value array need not be initialized at this point */
277 cpu
->cpreg_array_len
++;
281 static void count_cpreg(gpointer key
, gpointer opaque
)
283 ARMCPU
*cpu
= opaque
;
285 const ARMCPRegInfo
*ri
;
287 regidx
= *(uint32_t *)key
;
288 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
290 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
291 cpu
->cpreg_array_len
++;
295 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
297 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
298 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
309 void init_cpreg_list(ARMCPU
*cpu
)
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
317 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
318 keys
= g_list_sort(keys
, cpreg_key_compare
);
320 cpu
->cpreg_array_len
= 0;
322 g_list_foreach(keys
, count_cpreg
, cpu
);
324 arraylen
= cpu
->cpreg_array_len
;
325 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
326 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
327 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
328 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
329 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
330 cpu
->cpreg_array_len
= 0;
332 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
334 assert(cpu
->cpreg_array_len
== arraylen
);
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
347 const ARMCPRegInfo
*ri
,
350 bool secure
= arm_is_secure_below_el3(env
);
352 assert(!arm_el_is_aa64(env
, 3));
354 return CP_ACCESS_TRAP_UNCATEGORIZED
;
359 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
360 const ARMCPRegInfo
*ri
,
363 if (!arm_el_is_aa64(env
, 3)) {
364 return access_el3_aa32ns(env
, ri
, isread
);
369 /* Some secure-only AArch32 registers trap to EL3 if used from
370 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
371 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
372 * We assume that the .access field is set to PL1_RW.
374 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
375 const ARMCPRegInfo
*ri
,
378 if (arm_current_el(env
) == 3) {
381 if (arm_is_secure_below_el3(env
)) {
382 return CP_ACCESS_TRAP_EL3
;
384 /* This will be EL1 NS and EL2 NS, which just UNDEF */
385 return CP_ACCESS_TRAP_UNCATEGORIZED
;
388 /* Check for traps to "powerdown debug" registers, which are controlled
391 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
394 int el
= arm_current_el(env
);
396 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDOSA
)
397 && !arm_is_secure_below_el3(env
)) {
398 return CP_ACCESS_TRAP_EL2
;
400 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
401 return CP_ACCESS_TRAP_EL3
;
406 /* Check for traps to "debug ROM" registers, which are controlled
407 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
409 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
412 int el
= arm_current_el(env
);
414 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDRA
)
415 && !arm_is_secure_below_el3(env
)) {
416 return CP_ACCESS_TRAP_EL2
;
418 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
419 return CP_ACCESS_TRAP_EL3
;
424 /* Check for traps to general debug registers, which are controlled
425 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
427 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
430 int el
= arm_current_el(env
);
432 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDA
)
433 && !arm_is_secure_below_el3(env
)) {
434 return CP_ACCESS_TRAP_EL2
;
436 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
437 return CP_ACCESS_TRAP_EL3
;
442 /* Check for traps to performance monitor registers, which are controlled
443 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
445 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
448 int el
= arm_current_el(env
);
450 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
451 && !arm_is_secure_below_el3(env
)) {
452 return CP_ACCESS_TRAP_EL2
;
454 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
455 return CP_ACCESS_TRAP_EL3
;
460 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
462 ARMCPU
*cpu
= arm_env_get_cpu(env
);
464 raw_write(env
, ri
, value
);
465 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
468 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
470 ARMCPU
*cpu
= arm_env_get_cpu(env
);
472 if (raw_read(env
, ri
) != value
) {
473 /* Unlike real hardware the qemu TLB uses virtual addresses,
474 * not modified virtual addresses, so this causes a TLB flush.
476 tlb_flush(CPU(cpu
), 1);
477 raw_write(env
, ri
, value
);
481 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
484 ARMCPU
*cpu
= arm_env_get_cpu(env
);
486 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
487 && !extended_addresses_enabled(env
)) {
488 /* For VMSA (when not using the LPAE long descriptor page table
489 * format) this register includes the ASID, so do a TLB flush.
490 * For PMSA it is purely a process ID and no action is needed.
492 tlb_flush(CPU(cpu
), 1);
494 raw_write(env
, ri
, value
);
497 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
500 /* Invalidate all (TLBIALL) */
501 ARMCPU
*cpu
= arm_env_get_cpu(env
);
503 tlb_flush(CPU(cpu
), 1);
506 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
509 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
510 ARMCPU
*cpu
= arm_env_get_cpu(env
);
512 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
515 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
518 /* Invalidate by ASID (TLBIASID) */
519 ARMCPU
*cpu
= arm_env_get_cpu(env
);
521 tlb_flush(CPU(cpu
), value
== 0);
524 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
527 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
528 ARMCPU
*cpu
= arm_env_get_cpu(env
);
530 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
533 /* IS variants of TLB operations must affect all cores */
534 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
539 CPU_FOREACH(other_cs
) {
540 tlb_flush(other_cs
, 1);
544 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
549 CPU_FOREACH(other_cs
) {
550 tlb_flush(other_cs
, value
== 0);
554 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
559 CPU_FOREACH(other_cs
) {
560 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
564 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
569 CPU_FOREACH(other_cs
) {
570 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
574 static const ARMCPRegInfo cp_reginfo
[] = {
575 /* Define the secure and non-secure FCSE identifier CP registers
576 * separately because there is no secure bank in V8 (no _EL3). This allows
577 * the secure register to be properly reset and migrated. There is also no
578 * v8 EL1 version of the register so the non-secure instance stands alone.
580 { .name
= "FCSEIDR(NS)",
581 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
582 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
583 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
584 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
585 { .name
= "FCSEIDR(S)",
586 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
587 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
588 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
589 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
590 /* Define the secure and non-secure context identifier CP registers
591 * separately because there is no secure bank in V8 (no _EL3). This allows
592 * the secure register to be properly reset and migrated. In the
593 * non-secure case, the 32-bit register will have reset and migration
594 * disabled during registration as it is handled by the 64-bit instance.
596 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
597 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
598 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
599 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
600 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
601 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
602 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
603 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
604 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
605 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
609 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
610 /* NB: Some of these registers exist in v8 but with more precise
611 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
613 /* MMU Domain access control / MPU write buffer control */
615 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
616 .access
= PL1_RW
, .resetvalue
= 0,
617 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
618 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
619 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
620 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
621 * For v6 and v5, these mappings are overly broad.
623 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
624 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
625 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
626 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
627 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
628 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
629 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
630 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
631 /* Cache maintenance ops; some of this space may be overridden later. */
632 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
633 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
634 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
638 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
639 /* Not all pre-v6 cores implemented this WFI, so this is slightly
642 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
643 .access
= PL1_W
, .type
= ARM_CP_WFI
},
647 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
648 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
649 * is UNPREDICTABLE; we choose to NOP as most implementations do).
651 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
652 .access
= PL1_W
, .type
= ARM_CP_WFI
},
653 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
654 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
655 * OMAPCP will override this space.
657 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
658 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
660 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
661 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
663 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
664 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
665 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
667 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
668 * implementing it as RAZ means the "debug architecture version" bits
669 * will read as a reserved value, which should cause Linux to not try
670 * to use the debug hardware.
672 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
673 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
674 /* MMU TLB control. Note that the wildcarding means we cover not just
675 * the unified TLB ops but also the dside/iside/inner-shareable variants.
677 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
678 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
679 .type
= ARM_CP_NO_RAW
},
680 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
681 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
682 .type
= ARM_CP_NO_RAW
},
683 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
684 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
685 .type
= ARM_CP_NO_RAW
},
686 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
687 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
688 .type
= ARM_CP_NO_RAW
},
689 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
690 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
691 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
692 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
696 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
701 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
702 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
703 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
704 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
705 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
707 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
708 /* VFP coprocessor: cp10 & cp11 [23:20] */
709 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
711 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
712 /* ASEDIS [31] bit is RAO/WI */
716 /* VFPv3 and upwards with NEON implement 32 double precision
717 * registers (D0-D31).
719 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
720 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
721 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
727 env
->cp15
.cpacr_el1
= value
;
730 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
733 if (arm_feature(env
, ARM_FEATURE_V8
)) {
734 /* Check if CPACR accesses are to be trapped to EL2 */
735 if (arm_current_el(env
) == 1 &&
736 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
737 return CP_ACCESS_TRAP_EL2
;
738 /* Check if CPACR accesses are to be trapped to EL3 */
739 } else if (arm_current_el(env
) < 3 &&
740 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
741 return CP_ACCESS_TRAP_EL3
;
748 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
751 /* Check if CPTR accesses are set to trap to EL3 */
752 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
753 return CP_ACCESS_TRAP_EL3
;
759 static const ARMCPRegInfo v6_cp_reginfo
[] = {
760 /* prefetch by MVA in v6, NOP in v7 */
761 { .name
= "MVA_prefetch",
762 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
763 .access
= PL1_W
, .type
= ARM_CP_NOP
},
764 /* We need to break the TB after ISB to execute self-modifying code
765 * correctly and also to take any pending interrupts immediately.
766 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
768 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
769 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
770 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
771 .access
= PL0_W
, .type
= ARM_CP_NOP
},
772 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
773 .access
= PL0_W
, .type
= ARM_CP_NOP
},
774 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
776 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
777 offsetof(CPUARMState
, cp15
.ifar_ns
) },
779 /* Watchpoint Fault Address Register : should actually only be present
780 * for 1136, 1176, 11MPCore.
782 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
783 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
784 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
785 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
786 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
787 .resetvalue
= 0, .writefn
= cpacr_write
},
791 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
794 /* Performance monitor registers user accessibility is controlled
795 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
796 * trapping to EL2 or EL3 for other accesses.
798 int el
= arm_current_el(env
);
800 if (el
== 0 && !env
->cp15
.c9_pmuserenr
) {
801 return CP_ACCESS_TRAP
;
803 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
804 && !arm_is_secure_below_el3(env
)) {
805 return CP_ACCESS_TRAP_EL2
;
807 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
808 return CP_ACCESS_TRAP_EL3
;
814 #ifndef CONFIG_USER_ONLY
816 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
818 /* This does not support checking PMCCFILTR_EL0 register */
820 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
827 void pmccntr_sync(CPUARMState
*env
)
831 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
832 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
834 if (env
->cp15
.c9_pmcr
& PMCRD
) {
835 /* Increment once every 64 processor clock cycles */
839 if (arm_ccnt_enabled(env
)) {
840 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
844 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
850 /* The counter has been reset */
851 env
->cp15
.c15_ccnt
= 0;
854 /* only the DP, X, D and E bits are writable */
855 env
->cp15
.c9_pmcr
&= ~0x39;
856 env
->cp15
.c9_pmcr
|= (value
& 0x39);
861 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
863 uint64_t total_ticks
;
865 if (!arm_ccnt_enabled(env
)) {
866 /* Counter is disabled, do not change value */
867 return env
->cp15
.c15_ccnt
;
870 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
871 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
873 if (env
->cp15
.c9_pmcr
& PMCRD
) {
874 /* Increment once every 64 processor clock cycles */
877 return total_ticks
- env
->cp15
.c15_ccnt
;
880 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
883 uint64_t total_ticks
;
885 if (!arm_ccnt_enabled(env
)) {
886 /* Counter is disabled, set the absolute value */
887 env
->cp15
.c15_ccnt
= value
;
891 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
892 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
894 if (env
->cp15
.c9_pmcr
& PMCRD
) {
895 /* Increment once every 64 processor clock cycles */
898 env
->cp15
.c15_ccnt
= total_ticks
- value
;
901 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
904 uint64_t cur_val
= pmccntr_read(env
, NULL
);
906 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
909 #else /* CONFIG_USER_ONLY */
911 void pmccntr_sync(CPUARMState
*env
)
917 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
921 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
925 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
929 env
->cp15
.c9_pmcnten
|= value
;
932 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
936 env
->cp15
.c9_pmcnten
&= ~value
;
939 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
942 env
->cp15
.c9_pmovsr
&= ~value
;
945 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
948 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
951 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
954 env
->cp15
.c9_pmuserenr
= value
& 1;
957 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
960 /* We have no event counters so only the C bit can be changed */
962 env
->cp15
.c9_pminten
|= value
;
965 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
969 env
->cp15
.c9_pminten
&= ~value
;
972 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
975 /* Note that even though the AArch64 view of this register has bits
976 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
977 * architectural requirements for bits which are RES0 only in some
978 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
979 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
981 raw_write(env
, ri
, value
& ~0x1FULL
);
984 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
986 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
987 * For bits that vary between AArch32/64, code needs to check the
988 * current execution mode before directly using the feature bit.
990 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
992 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
993 valid_mask
&= ~SCR_HCE
;
995 /* On ARMv7, SMD (or SCD as it is called in v7) is only
996 * supported if EL2 exists. The bit is UNK/SBZP when
997 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
998 * when EL2 is unavailable.
999 * On ARMv8, this bit is always available.
1001 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1002 !arm_feature(env
, ARM_FEATURE_V8
)) {
1003 valid_mask
&= ~SCR_SMD
;
1007 /* Clear all-context RES0 bits. */
1008 value
&= valid_mask
;
1009 raw_write(env
, ri
, value
);
1012 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1014 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1016 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1019 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1020 ri
->secure
& ARM_CP_SECSTATE_S
);
1022 return cpu
->ccsidr
[index
];
1025 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1028 raw_write(env
, ri
, value
& 0xf);
1031 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1033 CPUState
*cs
= ENV_GET_CPU(env
);
1036 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1039 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1042 /* External aborts are not possible in QEMU so A bit is always clear */
1046 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1047 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1048 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1049 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1050 /* Performance monitors are implementation defined in v7,
1051 * but with an ARM recommended set of registers, which we
1052 * follow (although we don't actually implement any counters)
1054 * Performance registers fall into three categories:
1055 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1056 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1057 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1058 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1059 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1061 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1062 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1063 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1064 .writefn
= pmcntenset_write
,
1065 .accessfn
= pmreg_access
,
1066 .raw_writefn
= raw_write
},
1067 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1068 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1069 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1070 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1071 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1072 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1074 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1075 .accessfn
= pmreg_access
,
1076 .writefn
= pmcntenclr_write
,
1077 .type
= ARM_CP_ALIAS
},
1078 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1079 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1080 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1081 .type
= ARM_CP_ALIAS
,
1082 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1083 .writefn
= pmcntenclr_write
},
1084 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1085 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1086 .accessfn
= pmreg_access
,
1087 .writefn
= pmovsr_write
,
1088 .raw_writefn
= raw_write
},
1089 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1090 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1091 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1092 .type
= ARM_CP_ALIAS
,
1093 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1094 .writefn
= pmovsr_write
,
1095 .raw_writefn
= raw_write
},
1096 /* Unimplemented so WI. */
1097 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1098 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
1099 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1100 * We choose to RAZ/WI.
1102 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1103 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1104 .accessfn
= pmreg_access
},
1105 #ifndef CONFIG_USER_ONLY
1106 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1107 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
1108 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1109 .accessfn
= pmreg_access
},
1110 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1111 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1112 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1114 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1116 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1117 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1118 .writefn
= pmccfiltr_write
,
1119 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1121 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1123 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1125 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1126 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1127 .raw_writefn
= raw_write
},
1128 /* Unimplemented, RAZ/WI. */
1129 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1130 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1131 .accessfn
= pmreg_access
},
1132 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1133 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
1134 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1136 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1137 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
1138 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
1139 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1140 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1142 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1143 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1144 .access
= PL1_RW
, .accessfn
= access_tpm
,
1145 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1147 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1148 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1149 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1150 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1151 .writefn
= pmintenclr_write
, },
1152 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
1153 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
1154 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1155 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1156 .writefn
= pmintenclr_write
},
1157 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1158 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1159 .access
= PL1_RW
, .writefn
= vbar_write
,
1160 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1161 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1163 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1164 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1165 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1166 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1167 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1168 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1169 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1170 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1171 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1172 * just RAZ for all cores:
1174 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1175 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1176 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1177 /* Auxiliary fault status registers: these also are IMPDEF, and we
1178 * choose to RAZ/WI for all cores.
1180 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1181 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1182 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1183 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1184 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1185 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1186 /* MAIR can just read-as-written because we don't implement caches
1187 * and so don't need to care about memory attributes.
1189 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1190 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1191 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1193 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1194 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1195 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1197 /* For non-long-descriptor page tables these are PRRR and NMRR;
1198 * regardless they still act as reads-as-written for QEMU.
1200 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1201 * allows them to assign the correct fieldoffset based on the endianness
1202 * handled in the field definitions.
1204 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1205 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1206 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1207 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1208 .resetfn
= arm_cp_reset_ignore
},
1209 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1210 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1211 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1212 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1213 .resetfn
= arm_cp_reset_ignore
},
1214 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1215 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1216 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1217 /* 32 bit ITLB invalidates */
1218 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1219 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1220 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1221 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1222 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1223 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1224 /* 32 bit DTLB invalidates */
1225 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1226 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1227 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1228 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1229 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1230 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1231 /* 32 bit TLB invalidates */
1232 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1233 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1234 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1235 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1236 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1237 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1238 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1239 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1243 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1244 /* 32 bit TLB invalidates, Inner Shareable */
1245 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1246 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1247 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1248 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1249 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1250 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1251 .writefn
= tlbiasid_is_write
},
1252 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1253 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1254 .writefn
= tlbimvaa_is_write
},
1258 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1265 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1268 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1269 return CP_ACCESS_TRAP
;
1271 return CP_ACCESS_OK
;
1274 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1275 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1276 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1278 .writefn
= teecr_write
},
1279 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1280 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1281 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1285 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1286 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1287 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1289 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1290 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1292 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1293 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1294 .resetfn
= arm_cp_reset_ignore
},
1295 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1296 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1297 .access
= PL0_R
|PL1_W
,
1298 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1300 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1301 .access
= PL0_R
|PL1_W
,
1302 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1303 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1304 .resetfn
= arm_cp_reset_ignore
},
1305 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1306 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1308 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1309 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1311 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1312 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1317 #ifndef CONFIG_USER_ONLY
1319 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1322 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1323 * Writable only at the highest implemented exception level.
1325 int el
= arm_current_el(env
);
1329 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1330 return CP_ACCESS_TRAP
;
1334 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
1335 arm_is_secure_below_el3(env
)) {
1336 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1337 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1345 if (!isread
&& el
< arm_highest_el(env
)) {
1346 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1349 return CP_ACCESS_OK
;
1352 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
1355 unsigned int cur_el
= arm_current_el(env
);
1356 bool secure
= arm_is_secure(env
);
1358 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1360 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1361 return CP_ACCESS_TRAP
;
1364 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1365 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1366 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1367 return CP_ACCESS_TRAP_EL2
;
1369 return CP_ACCESS_OK
;
1372 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
1375 unsigned int cur_el
= arm_current_el(env
);
1376 bool secure
= arm_is_secure(env
);
1378 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1379 * EL0[PV]TEN is zero.
1382 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1383 return CP_ACCESS_TRAP
;
1386 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1387 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1388 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1389 return CP_ACCESS_TRAP_EL2
;
1391 return CP_ACCESS_OK
;
1394 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1395 const ARMCPRegInfo
*ri
,
1398 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
1401 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1402 const ARMCPRegInfo
*ri
,
1405 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
1408 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1411 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
1414 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1417 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
1420 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1421 const ARMCPRegInfo
*ri
,
1424 /* The AArch64 register view of the secure physical timer is
1425 * always accessible from EL3, and configurably accessible from
1428 switch (arm_current_el(env
)) {
1430 if (!arm_is_secure(env
)) {
1431 return CP_ACCESS_TRAP
;
1433 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1434 return CP_ACCESS_TRAP_EL3
;
1436 return CP_ACCESS_OK
;
1439 return CP_ACCESS_TRAP
;
1441 return CP_ACCESS_OK
;
1443 g_assert_not_reached();
1447 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1449 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1452 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1454 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1457 /* Timer enabled: calculate and set current ISTATUS, irq, and
1458 * reset timer to when ISTATUS next has to change
1460 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1461 cpu
->env
.cp15
.cntvoff_el2
: 0;
1462 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1463 /* Note that this must be unsigned 64 bit arithmetic: */
1464 int istatus
= count
- offset
>= gt
->cval
;
1467 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1468 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1469 (istatus
&& !(gt
->ctl
& 2)));
1471 /* Next transition is when count rolls back over to zero */
1472 nexttick
= UINT64_MAX
;
1474 /* Next transition is when we hit cval */
1475 nexttick
= gt
->cval
+ offset
;
1477 /* Note that the desired next expiry time might be beyond the
1478 * signed-64-bit range of a QEMUTimer -- in this case we just
1479 * set the timer for as far in the future as possible. When the
1480 * timer expires we will reset the timer for any remaining period.
1482 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1483 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1485 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1487 /* Timer disabled: ISTATUS and timer output always clear */
1489 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1490 timer_del(cpu
->gt_timer
[timeridx
]);
1494 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1497 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1499 timer_del(cpu
->gt_timer
[timeridx
]);
1502 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1504 return gt_get_countervalue(env
);
1507 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1509 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1512 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1516 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1517 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1520 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1523 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1525 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1526 (gt_get_countervalue(env
) - offset
));
1529 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1533 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1535 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1536 sextract64(value
, 0, 32);
1537 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1540 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1544 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1545 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1547 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1548 if ((oldval
^ value
) & 1) {
1549 /* Enable toggled */
1550 gt_recalc_timer(cpu
, timeridx
);
1551 } else if ((oldval
^ value
) & 2) {
1552 /* IMASK toggled: don't need to recalculate,
1553 * just set the interrupt line based on ISTATUS
1555 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1556 (oldval
& 4) && !(value
& 2));
1560 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1562 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1565 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1568 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1571 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1573 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1576 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1579 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1582 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1585 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1588 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1590 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1593 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1596 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1599 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1601 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1604 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1607 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1610 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1613 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1616 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1619 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1621 raw_write(env
, ri
, value
);
1622 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1625 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1627 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1630 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1633 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1636 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1638 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1641 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1644 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1647 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1650 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1653 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1655 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1658 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1661 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1664 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1666 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1669 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1672 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1675 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1678 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1681 void arm_gt_ptimer_cb(void *opaque
)
1683 ARMCPU
*cpu
= opaque
;
1685 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1688 void arm_gt_vtimer_cb(void *opaque
)
1690 ARMCPU
*cpu
= opaque
;
1692 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1695 void arm_gt_htimer_cb(void *opaque
)
1697 ARMCPU
*cpu
= opaque
;
1699 gt_recalc_timer(cpu
, GTIMER_HYP
);
1702 void arm_gt_stimer_cb(void *opaque
)
1704 ARMCPU
*cpu
= opaque
;
1706 gt_recalc_timer(cpu
, GTIMER_SEC
);
1709 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1710 /* Note that CNTFRQ is purely reads-as-written for the benefit
1711 * of software; writing it doesn't actually change the timer frequency.
1712 * Our reset value matches the fixed frequency we implement the timer at.
1714 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1715 .type
= ARM_CP_ALIAS
,
1716 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1717 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1719 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1720 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1721 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1722 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1723 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1725 /* overall control: mostly access permissions */
1726 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1727 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1729 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1732 /* per-timer control */
1733 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1734 .secure
= ARM_CP_SECSTATE_NS
,
1735 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1736 .accessfn
= gt_ptimer_access
,
1737 .fieldoffset
= offsetoflow32(CPUARMState
,
1738 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1739 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1741 { .name
= "CNTP_CTL(S)",
1742 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1743 .secure
= ARM_CP_SECSTATE_S
,
1744 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1745 .accessfn
= gt_ptimer_access
,
1746 .fieldoffset
= offsetoflow32(CPUARMState
,
1747 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1748 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1750 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1751 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1752 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1753 .accessfn
= gt_ptimer_access
,
1754 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1756 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1758 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1759 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1760 .accessfn
= gt_vtimer_access
,
1761 .fieldoffset
= offsetoflow32(CPUARMState
,
1762 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1763 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1765 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1766 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1767 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1768 .accessfn
= gt_vtimer_access
,
1769 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1771 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1773 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1774 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1775 .secure
= ARM_CP_SECSTATE_NS
,
1776 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1777 .accessfn
= gt_ptimer_access
,
1778 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1780 { .name
= "CNTP_TVAL(S)",
1781 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1782 .secure
= ARM_CP_SECSTATE_S
,
1783 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1784 .accessfn
= gt_ptimer_access
,
1785 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1787 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1788 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1789 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1790 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1791 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1793 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1794 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1795 .accessfn
= gt_vtimer_access
,
1796 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1798 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1799 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1800 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1801 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1802 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1804 /* The counter itself */
1805 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1806 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1807 .accessfn
= gt_pct_access
,
1808 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1810 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1811 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1812 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1813 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1815 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1816 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1817 .accessfn
= gt_vct_access
,
1818 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1820 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1821 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1822 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1823 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1825 /* Comparison value, indicating when the timer goes off */
1826 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1827 .secure
= ARM_CP_SECSTATE_NS
,
1828 .access
= PL1_RW
| PL0_R
,
1829 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1830 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1831 .accessfn
= gt_ptimer_access
,
1832 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1834 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1835 .secure
= ARM_CP_SECSTATE_S
,
1836 .access
= PL1_RW
| PL0_R
,
1837 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1838 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1839 .accessfn
= gt_ptimer_access
,
1840 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1842 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1843 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1844 .access
= PL1_RW
| PL0_R
,
1846 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1847 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1848 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1850 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1851 .access
= PL1_RW
| PL0_R
,
1852 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1853 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1854 .accessfn
= gt_vtimer_access
,
1855 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1857 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1858 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1859 .access
= PL1_RW
| PL0_R
,
1861 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1862 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1863 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1865 /* Secure timer -- this is actually restricted to only EL3
1866 * and configurably Secure-EL1 via the accessfn.
1868 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1869 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1870 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1871 .accessfn
= gt_stimer_access
,
1872 .readfn
= gt_sec_tval_read
,
1873 .writefn
= gt_sec_tval_write
,
1874 .resetfn
= gt_sec_timer_reset
,
1876 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1877 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1878 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1879 .accessfn
= gt_stimer_access
,
1880 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1882 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1884 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1885 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1886 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1887 .accessfn
= gt_stimer_access
,
1888 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1889 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1895 /* In user-mode none of the generic timer registers are accessible,
1896 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1897 * so instead just don't register any of them.
1899 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1905 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1907 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1908 raw_write(env
, ri
, value
);
1909 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1910 raw_write(env
, ri
, value
& 0xfffff6ff);
1912 raw_write(env
, ri
, value
& 0xfffff1ff);
1916 #ifndef CONFIG_USER_ONLY
1917 /* get_phys_addr() isn't present for user-mode-only targets */
1919 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1923 /* The ATS12NSO* operations must trap to EL3 if executed in
1924 * Secure EL1 (which can only happen if EL3 is AArch64).
1925 * They are simply UNDEF if executed from NS EL1.
1926 * They function normally from EL2 or EL3.
1928 if (arm_current_el(env
) == 1) {
1929 if (arm_is_secure_below_el3(env
)) {
1930 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1932 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1935 return CP_ACCESS_OK
;
1938 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1939 int access_type
, ARMMMUIdx mmu_idx
)
1942 target_ulong page_size
;
1947 MemTxAttrs attrs
= {};
1948 ARMMMUFaultInfo fi
= {};
1950 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1951 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
1952 if (extended_addresses_enabled(env
)) {
1953 /* fsr is a DFSR/IFSR value for the long descriptor
1954 * translation table format, but with WnR always clear.
1955 * Convert it to a 64-bit PAR.
1957 par64
= (1 << 11); /* LPAE bit always set */
1959 par64
|= phys_addr
& ~0xfffULL
;
1960 if (!attrs
.secure
) {
1961 par64
|= (1 << 9); /* NS */
1963 /* We don't set the ATTR or SH fields in the PAR. */
1966 par64
|= (fsr
& 0x3f) << 1; /* FS */
1967 /* Note that S2WLK and FSTAGE are always zero, because we don't
1968 * implement virtualization and therefore there can't be a stage 2
1973 /* fsr is a DFSR/IFSR value for the short descriptor
1974 * translation table format (with WnR always clear).
1975 * Convert it to a 32-bit PAR.
1978 /* We do not set any attribute bits in the PAR */
1979 if (page_size
== (1 << 24)
1980 && arm_feature(env
, ARM_FEATURE_V7
)) {
1981 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1983 par64
= phys_addr
& 0xfffff000;
1985 if (!attrs
.secure
) {
1986 par64
|= (1 << 9); /* NS */
1989 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1990 ((fsr
& 0xf) << 1) | 1;
1996 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1998 int access_type
= ri
->opc2
& 1;
2001 int el
= arm_current_el(env
);
2002 bool secure
= arm_is_secure_below_el3(env
);
2004 switch (ri
->opc2
& 6) {
2006 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2009 mmu_idx
= ARMMMUIdx_S1E3
;
2012 mmu_idx
= ARMMMUIdx_S1NSE1
;
2015 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2018 g_assert_not_reached();
2022 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2025 mmu_idx
= ARMMMUIdx_S1SE0
;
2028 mmu_idx
= ARMMMUIdx_S1NSE0
;
2031 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2034 g_assert_not_reached();
2038 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2039 mmu_idx
= ARMMMUIdx_S12NSE1
;
2042 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2043 mmu_idx
= ARMMMUIdx_S12NSE0
;
2046 g_assert_not_reached();
2049 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
2051 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2054 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2057 int access_type
= ri
->opc2
& 1;
2060 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
2062 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2065 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2068 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
2069 return CP_ACCESS_TRAP
;
2071 return CP_ACCESS_OK
;
2074 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2077 int access_type
= ri
->opc2
& 1;
2079 int secure
= arm_is_secure_below_el3(env
);
2081 switch (ri
->opc2
& 6) {
2084 case 0: /* AT S1E1R, AT S1E1W */
2085 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2087 case 4: /* AT S1E2R, AT S1E2W */
2088 mmu_idx
= ARMMMUIdx_S1E2
;
2090 case 6: /* AT S1E3R, AT S1E3W */
2091 mmu_idx
= ARMMMUIdx_S1E3
;
2094 g_assert_not_reached();
2097 case 2: /* AT S1E0R, AT S1E0W */
2098 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2100 case 4: /* AT S12E1R, AT S12E1W */
2101 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
2103 case 6: /* AT S12E0R, AT S12E0W */
2104 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
2107 g_assert_not_reached();
2110 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
2114 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
2115 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
2116 .access
= PL1_RW
, .resetvalue
= 0,
2117 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
2118 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
2119 .writefn
= par_write
},
2120 #ifndef CONFIG_USER_ONLY
2121 /* This underdecoding is safe because the reginfo is NO_RAW. */
2122 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
2123 .access
= PL1_W
, .accessfn
= ats_access
,
2124 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
2129 /* Return basic MPU access permission bits. */
2130 static uint32_t simple_mpu_ap_bits(uint32_t val
)
2137 for (i
= 0; i
< 16; i
+= 2) {
2138 ret
|= (val
>> i
) & mask
;
2144 /* Pad basic MPU access permission bits to extended format. */
2145 static uint32_t extended_mpu_ap_bits(uint32_t val
)
2152 for (i
= 0; i
< 16; i
+= 2) {
2153 ret
|= (val
& mask
) << i
;
2159 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2162 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2165 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2167 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2170 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2173 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2176 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2178 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2181 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2183 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2189 u32p
+= env
->cp15
.c6_rgnr
;
2193 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2196 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2197 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2203 u32p
+= env
->cp15
.c6_rgnr
;
2204 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2208 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2210 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2211 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2217 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2220 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2223 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2224 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2226 if (value
>= nrgs
) {
2227 qemu_log_mask(LOG_GUEST_ERROR
,
2228 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2229 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2233 raw_write(env
, ri
, value
);
2236 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2237 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2238 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2239 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2240 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2241 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2242 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2243 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2244 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2245 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2246 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2247 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2248 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2249 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2251 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2252 .writefn
= pmsav7_rgnr_write
},
2256 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2257 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2258 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2259 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2260 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2261 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2262 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2263 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2264 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2265 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2267 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2269 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2271 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2273 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2275 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2276 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2278 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2279 /* Protection region base and size registers */
2280 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2281 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2282 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2283 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2284 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2285 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2286 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2287 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2288 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2289 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2290 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2291 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2292 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2293 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2294 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2295 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2296 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2297 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2298 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2299 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2300 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2301 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2302 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2303 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2307 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2310 TCR
*tcr
= raw_ptr(env
, ri
);
2311 int maskshift
= extract32(value
, 0, 3);
2313 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2314 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2315 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2316 * using Long-desciptor translation table format */
2317 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2318 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2319 /* In an implementation that includes the Security Extensions
2320 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2321 * Short-descriptor translation table format.
2323 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2329 /* Update the masks corresponding to the TCR bank being written
2330 * Note that we always calculate mask and base_mask, but
2331 * they are only used for short-descriptor tables (ie if EAE is 0);
2332 * for long-descriptor tables the TCR fields are used differently
2333 * and the mask and base_mask values are meaningless.
2335 tcr
->raw_tcr
= value
;
2336 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2337 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2340 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2343 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2345 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2346 /* With LPAE the TTBCR could result in a change of ASID
2347 * via the TTBCR.A1 bit, so do a TLB flush.
2349 tlb_flush(CPU(cpu
), 1);
2351 vmsa_ttbcr_raw_write(env
, ri
, value
);
2354 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2356 TCR
*tcr
= raw_ptr(env
, ri
);
2358 /* Reset both the TCR as well as the masks corresponding to the bank of
2359 * the TCR being reset.
2363 tcr
->base_mask
= 0xffffc000u
;
2366 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2369 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2370 TCR
*tcr
= raw_ptr(env
, ri
);
2372 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2373 tlb_flush(CPU(cpu
), 1);
2374 tcr
->raw_tcr
= value
;
2377 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2380 /* 64 bit accesses to the TTBRs can change the ASID and so we
2381 * must flush the TLB.
2383 if (cpreg_field_is_64bit(ri
)) {
2384 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2386 tlb_flush(CPU(cpu
), 1);
2388 raw_write(env
, ri
, value
);
2391 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2394 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2395 CPUState
*cs
= CPU(cpu
);
2397 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2398 if (raw_read(env
, ri
) != value
) {
2399 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2400 ARMMMUIdx_S2NS
, -1);
2401 raw_write(env
, ri
, value
);
2405 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2406 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2407 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2408 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2409 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2410 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2411 .access
= PL1_RW
, .resetvalue
= 0,
2412 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2413 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2414 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2415 .access
= PL1_RW
, .resetvalue
= 0,
2416 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2417 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2418 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2419 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2420 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2425 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2426 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2427 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2429 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2430 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2431 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2432 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2433 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2434 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2435 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2436 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2437 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2438 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2439 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2440 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2441 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2442 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2443 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2444 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2445 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2446 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2447 .raw_writefn
= vmsa_ttbcr_raw_write
,
2448 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2449 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2453 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2456 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2457 /* The OS_TYPE bit in this register changes the reported CPUID! */
2458 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2459 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2462 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2465 env
->cp15
.c15_threadid
= value
& 0xffff;
2468 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2471 /* Wait-for-interrupt (deprecated) */
2472 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2475 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2478 /* On OMAP there are registers indicating the max/min index of dcache lines
2479 * containing a dirty line; cache flush operations have to reset these.
2481 env
->cp15
.c15_i_max
= 0x000;
2482 env
->cp15
.c15_i_min
= 0xff0;
2485 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2486 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2487 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2488 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2490 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2491 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2492 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2494 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2495 .writefn
= omap_ticonfig_write
},
2496 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2498 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2499 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2500 .access
= PL1_RW
, .resetvalue
= 0xff0,
2501 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2502 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2504 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2505 .writefn
= omap_threadid_write
},
2506 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2507 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2508 .type
= ARM_CP_NO_RAW
,
2509 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2510 /* TODO: Peripheral port remap register:
2511 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2512 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2515 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2516 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2517 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2518 .writefn
= omap_cachemaint_write
},
2519 { .name
= "C9", .cp
= 15, .crn
= 9,
2520 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2521 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2525 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2528 env
->cp15
.c15_cpar
= value
& 0x3fff;
2531 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2532 { .name
= "XSCALE_CPAR",
2533 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2534 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2535 .writefn
= xscale_cpar_write
, },
2536 { .name
= "XSCALE_AUXCR",
2537 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2538 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2540 /* XScale specific cache-lockdown: since we have no cache we NOP these
2541 * and hope the guest does not really rely on cache behaviour.
2543 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2544 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2545 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2546 { .name
= "XSCALE_UNLOCK_ICACHE",
2547 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2548 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2549 { .name
= "XSCALE_DCACHE_LOCK",
2550 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2551 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2552 { .name
= "XSCALE_UNLOCK_DCACHE",
2553 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2554 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2558 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2559 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2560 * implementation of this implementation-defined space.
2561 * Ideally this should eventually disappear in favour of actually
2562 * implementing the correct behaviour for all cores.
2564 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2565 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2567 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2572 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2573 /* Cache status: RAZ because we have no cache so it's always clean */
2574 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2575 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2580 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2581 /* We never have a a block transfer operation in progress */
2582 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2583 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2585 /* The cache ops themselves: these all NOP for QEMU */
2586 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2587 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2588 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2589 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2590 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2591 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2592 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2593 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2594 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2595 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2596 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2597 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2601 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2602 /* The cache test-and-clean instructions always return (1 << 30)
2603 * to indicate that there are no dirty cache lines.
2605 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2606 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2607 .resetvalue
= (1 << 30) },
2608 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2609 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2610 .resetvalue
= (1 << 30) },
2614 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2615 /* Ignore ReadBuffer accesses */
2616 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2617 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2618 .access
= PL1_RW
, .resetvalue
= 0,
2619 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2623 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2625 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2626 unsigned int cur_el
= arm_current_el(env
);
2627 bool secure
= arm_is_secure(env
);
2629 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2630 return env
->cp15
.vpidr_el2
;
2632 return raw_read(env
, ri
);
2635 static uint64_t mpidr_read_val(CPUARMState
*env
)
2637 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2638 uint64_t mpidr
= cpu
->mp_affinity
;
2640 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2641 mpidr
|= (1U << 31);
2642 /* Cores which are uniprocessor (non-coherent)
2643 * but still implement the MP extensions set
2644 * bit 30. (For instance, Cortex-R5).
2646 if (cpu
->mp_is_up
) {
2647 mpidr
|= (1u << 30);
2653 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2655 unsigned int cur_el
= arm_current_el(env
);
2656 bool secure
= arm_is_secure(env
);
2658 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2659 return env
->cp15
.vmpidr_el2
;
2661 return mpidr_read_val(env
);
2664 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2665 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2666 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2667 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2671 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2673 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2674 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2675 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2677 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2678 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2679 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2681 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2682 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2683 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2684 offsetof(CPUARMState
, cp15
.par_ns
)} },
2685 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2686 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2687 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2688 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2689 .writefn
= vmsa_ttbr_write
, },
2690 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2691 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2692 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2693 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2694 .writefn
= vmsa_ttbr_write
, },
2698 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2700 return vfp_get_fpcr(env
);
2703 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2706 vfp_set_fpcr(env
, value
);
2709 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2711 return vfp_get_fpsr(env
);
2714 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2717 vfp_set_fpsr(env
, value
);
2720 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2723 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2724 return CP_ACCESS_TRAP
;
2726 return CP_ACCESS_OK
;
2729 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2732 env
->daif
= value
& PSTATE_DAIF
;
2735 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2736 const ARMCPRegInfo
*ri
,
2739 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2740 * SCTLR_EL1.UCI is set.
2742 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2743 return CP_ACCESS_TRAP
;
2745 return CP_ACCESS_OK
;
2748 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2749 * Page D4-1736 (DDI0487A.b)
2752 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2755 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2756 CPUState
*cs
= CPU(cpu
);
2758 if (arm_is_secure_below_el3(env
)) {
2759 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2761 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2765 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2768 bool sec
= arm_is_secure_below_el3(env
);
2771 CPU_FOREACH(other_cs
) {
2773 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2775 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2776 ARMMMUIdx_S12NSE0
, -1);
2781 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2784 /* Note that the 'ALL' scope must invalidate both stage 1 and
2785 * stage 2 translations, whereas most other scopes only invalidate
2786 * stage 1 translations.
2788 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2789 CPUState
*cs
= CPU(cpu
);
2791 if (arm_is_secure_below_el3(env
)) {
2792 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2794 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2795 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2796 ARMMMUIdx_S2NS
, -1);
2798 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2803 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2806 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2807 CPUState
*cs
= CPU(cpu
);
2809 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2812 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2815 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2816 CPUState
*cs
= CPU(cpu
);
2818 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2821 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2824 /* Note that the 'ALL' scope must invalidate both stage 1 and
2825 * stage 2 translations, whereas most other scopes only invalidate
2826 * stage 1 translations.
2828 bool sec
= arm_is_secure_below_el3(env
);
2829 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2832 CPU_FOREACH(other_cs
) {
2834 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2835 } else if (has_el2
) {
2836 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2837 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2839 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2840 ARMMMUIdx_S12NSE0
, -1);
2845 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2850 CPU_FOREACH(other_cs
) {
2851 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2855 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2860 CPU_FOREACH(other_cs
) {
2861 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2865 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2868 /* Invalidate by VA, EL1&0 (AArch64 version).
2869 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2870 * since we don't support flush-for-specific-ASID-only or
2871 * flush-last-level-only.
2873 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2874 CPUState
*cs
= CPU(cpu
);
2875 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2877 if (arm_is_secure_below_el3(env
)) {
2878 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2879 ARMMMUIdx_S1SE0
, -1);
2881 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2882 ARMMMUIdx_S12NSE0
, -1);
2886 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2889 /* Invalidate by VA, EL2
2890 * Currently handles both VAE2 and VALE2, since we don't support
2891 * flush-last-level-only.
2893 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2894 CPUState
*cs
= CPU(cpu
);
2895 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2897 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2900 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2903 /* Invalidate by VA, EL3
2904 * Currently handles both VAE3 and VALE3, since we don't support
2905 * flush-last-level-only.
2907 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2908 CPUState
*cs
= CPU(cpu
);
2909 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2911 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2914 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2917 bool sec
= arm_is_secure_below_el3(env
);
2919 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2921 CPU_FOREACH(other_cs
) {
2923 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2924 ARMMMUIdx_S1SE0
, -1);
2926 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2927 ARMMMUIdx_S12NSE0
, -1);
2932 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2936 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2938 CPU_FOREACH(other_cs
) {
2939 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2943 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2947 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2949 CPU_FOREACH(other_cs
) {
2950 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2954 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2957 /* Invalidate by IPA. This has to invalidate any structures that
2958 * contain only stage 2 translation information, but does not need
2959 * to apply to structures that contain combined stage 1 and stage 2
2960 * translation information.
2961 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2963 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2964 CPUState
*cs
= CPU(cpu
);
2967 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2971 pageaddr
= sextract64(value
<< 12, 0, 48);
2973 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2976 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2982 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2986 pageaddr
= sextract64(value
<< 12, 0, 48);
2988 CPU_FOREACH(other_cs
) {
2989 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2993 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2996 /* We don't implement EL2, so the only control on DC ZVA is the
2997 * bit in the SCTLR which can prohibit access for EL0.
2999 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
3000 return CP_ACCESS_TRAP
;
3002 return CP_ACCESS_OK
;
3005 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3007 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3008 int dzp_bit
= 1 << 4;
3010 /* DZP indicates whether DC ZVA access is allowed */
3011 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
3014 return cpu
->dcz_blocksize
| dzp_bit
;
3017 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3020 if (!(env
->pstate
& PSTATE_SP
)) {
3021 /* Access to SP_EL0 is undefined if it's being used as
3022 * the stack pointer.
3024 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3026 return CP_ACCESS_OK
;
3029 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3031 return env
->pstate
& PSTATE_SP
;
3034 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
3036 update_spsel(env
, val
);
3039 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3042 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3044 if (raw_read(env
, ri
) == value
) {
3045 /* Skip the TLB flush if nothing actually changed; Linux likes
3046 * to do a lot of pointless SCTLR writes.
3051 raw_write(env
, ri
, value
);
3052 /* ??? Lots of these bits are not implemented. */
3053 /* This may enable/disable the MMU, so do a TLB flush. */
3054 tlb_flush(CPU(cpu
), 1);
3057 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3060 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
3061 return CP_ACCESS_TRAP_FP_EL2
;
3063 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
3064 return CP_ACCESS_TRAP_FP_EL3
;
3066 return CP_ACCESS_OK
;
3069 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3072 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
3075 static const ARMCPRegInfo v8_cp_reginfo
[] = {
3076 /* Minimal set of EL0-visible registers. This will need to be expanded
3077 * significantly for system emulation of AArch64 CPUs.
3079 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
3080 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
3081 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
3082 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
3083 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
3084 .type
= ARM_CP_NO_RAW
,
3085 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
3086 .fieldoffset
= offsetof(CPUARMState
, daif
),
3087 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
3088 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
3089 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
3090 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
3091 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
3092 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
3093 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
3094 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
3095 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
3096 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
3097 .readfn
= aa64_dczid_read
},
3098 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
3099 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
3100 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
3101 #ifndef CONFIG_USER_ONLY
3102 /* Avoid overhead of an access check that always passes in user-mode */
3103 .accessfn
= aa64_zva_access
,
3106 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
3107 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
3108 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
3109 /* Cache ops: all NOPs since we don't emulate caches */
3110 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
3111 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3112 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3113 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
3114 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3115 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3116 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
3117 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
3118 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3119 .accessfn
= aa64_cacheop_access
},
3120 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
3121 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3122 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3123 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
3124 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3125 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3126 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
3127 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
3128 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3129 .accessfn
= aa64_cacheop_access
},
3130 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
3131 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3132 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3133 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
3134 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
3135 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3136 .accessfn
= aa64_cacheop_access
},
3137 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
3138 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
3139 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3140 .accessfn
= aa64_cacheop_access
},
3141 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
3142 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3143 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3144 /* TLBI operations */
3145 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
3146 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
3147 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3148 .writefn
= tlbi_aa64_vmalle1is_write
},
3149 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
3150 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
3151 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3152 .writefn
= tlbi_aa64_vae1is_write
},
3153 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
3154 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
3155 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3156 .writefn
= tlbi_aa64_vmalle1is_write
},
3157 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
3158 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
3159 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3160 .writefn
= tlbi_aa64_vae1is_write
},
3161 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
3162 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3163 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3164 .writefn
= tlbi_aa64_vae1is_write
},
3165 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
3166 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3167 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3168 .writefn
= tlbi_aa64_vae1is_write
},
3169 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3170 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3171 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3172 .writefn
= tlbi_aa64_vmalle1_write
},
3173 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3174 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3175 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3176 .writefn
= tlbi_aa64_vae1_write
},
3177 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3178 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3179 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3180 .writefn
= tlbi_aa64_vmalle1_write
},
3181 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3182 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3183 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3184 .writefn
= tlbi_aa64_vae1_write
},
3185 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3186 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3187 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3188 .writefn
= tlbi_aa64_vae1_write
},
3189 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3190 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3191 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3192 .writefn
= tlbi_aa64_vae1_write
},
3193 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3194 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3195 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3196 .writefn
= tlbi_aa64_ipas2e1is_write
},
3197 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3198 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3199 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3200 .writefn
= tlbi_aa64_ipas2e1is_write
},
3201 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3202 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3203 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3204 .writefn
= tlbi_aa64_alle1is_write
},
3205 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3206 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3207 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3208 .writefn
= tlbi_aa64_alle1is_write
},
3209 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3210 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3211 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3212 .writefn
= tlbi_aa64_ipas2e1_write
},
3213 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3214 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3215 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3216 .writefn
= tlbi_aa64_ipas2e1_write
},
3217 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3218 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3219 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3220 .writefn
= tlbi_aa64_alle1_write
},
3221 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3222 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3223 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3224 .writefn
= tlbi_aa64_alle1is_write
},
3225 #ifndef CONFIG_USER_ONLY
3226 /* 64 bit address translation operations */
3227 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3228 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3229 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3230 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3231 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3232 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3233 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3234 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3235 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3236 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3237 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3238 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3239 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3240 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3241 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3242 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3243 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3244 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3245 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3246 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3247 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3248 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3249 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3250 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3251 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3252 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3253 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3254 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3255 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3256 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3257 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3258 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3259 .type
= ARM_CP_ALIAS
,
3260 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3261 .access
= PL1_RW
, .resetvalue
= 0,
3262 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3263 .writefn
= par_write
},
3265 /* TLB invalidate last level of translation table walk */
3266 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3267 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3268 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3269 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3270 .writefn
= tlbimvaa_is_write
},
3271 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3272 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3273 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3274 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3275 /* 32 bit cache operations */
3276 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3277 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3278 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3279 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3280 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3281 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3282 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3283 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3284 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3285 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3286 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3287 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3288 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3289 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3290 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3291 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3292 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3293 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3294 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3295 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3296 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3297 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3298 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3299 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3300 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3301 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3302 /* MMU Domain access control / MPU write buffer control */
3303 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3304 .access
= PL1_RW
, .resetvalue
= 0,
3305 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3306 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3307 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3308 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3309 .type
= ARM_CP_ALIAS
,
3310 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3312 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3313 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3314 .type
= ARM_CP_ALIAS
,
3315 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3317 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3318 /* We rely on the access checks not allowing the guest to write to the
3319 * state field when SPSel indicates that it's being used as the stack
3322 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3323 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3324 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3325 .type
= ARM_CP_ALIAS
,
3326 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3327 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3328 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3329 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3330 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3331 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3332 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3333 .type
= ARM_CP_NO_RAW
,
3334 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3335 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3336 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3337 .type
= ARM_CP_ALIAS
,
3338 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3339 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3340 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3341 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3342 .access
= PL2_RW
, .resetvalue
= 0,
3343 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3344 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3345 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3346 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3347 .access
= PL2_RW
, .resetvalue
= 0,
3348 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3349 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3350 .type
= ARM_CP_ALIAS
,
3351 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3353 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3354 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3355 .type
= ARM_CP_ALIAS
,
3356 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3358 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3359 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3360 .type
= ARM_CP_ALIAS
,
3361 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3363 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3364 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3365 .type
= ARM_CP_ALIAS
,
3366 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3368 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3369 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
3370 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
3372 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
3373 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
3374 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
3375 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3376 .writefn
= sdcr_write
,
3377 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
3381 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3382 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3383 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3384 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3386 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3387 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3388 .type
= ARM_CP_NO_RAW
,
3389 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3391 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3392 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3393 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3394 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3395 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3396 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3397 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3399 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3400 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3401 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3402 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3403 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3404 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3406 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3407 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3408 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3410 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3411 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3412 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3414 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3415 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3416 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3418 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3419 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3420 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3421 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3422 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3423 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3424 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3425 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3426 .cp
= 15, .opc1
= 6, .crm
= 2,
3427 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3428 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3429 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3430 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3431 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3432 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3433 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3434 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3435 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3436 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3437 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3438 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3439 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3440 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3441 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3442 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3444 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3445 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3446 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3447 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3448 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3449 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3450 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3451 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3453 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3454 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3455 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3456 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3457 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3459 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3460 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3461 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3462 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3463 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3464 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3465 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3466 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3467 .access
= PL2_RW
, .accessfn
= access_tda
,
3468 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3469 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3470 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3471 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3472 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3476 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3478 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3479 uint64_t valid_mask
= HCR_MASK
;
3481 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3482 valid_mask
&= ~HCR_HCD
;
3484 valid_mask
&= ~HCR_TSC
;
3487 /* Clear RES0 bits. */
3488 value
&= valid_mask
;
3490 /* These bits change the MMU setup:
3491 * HCR_VM enables stage 2 translation
3492 * HCR_PTW forbids certain page-table setups
3493 * HCR_DC Disables stage1 and enables stage2 translation
3495 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3496 tlb_flush(CPU(cpu
), 1);
3498 raw_write(env
, ri
, value
);
3501 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3502 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3503 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3504 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3505 .writefn
= hcr_write
},
3506 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3507 .type
= ARM_CP_ALIAS
,
3508 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3510 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3511 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3512 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3513 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3514 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3515 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3516 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3517 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3518 .type
= ARM_CP_ALIAS
,
3519 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3521 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
3522 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3523 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3524 .access
= PL2_RW
, .writefn
= vbar_write
,
3525 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3527 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3528 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3529 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3530 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3531 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3532 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3533 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3534 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3535 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3536 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3537 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3539 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3540 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3541 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3542 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3543 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3544 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3545 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3547 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3548 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3549 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3550 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3552 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3553 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3554 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3556 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3557 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3558 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3560 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3561 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3562 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3563 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3564 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3565 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3566 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3567 .type
= ARM_CP_ALIAS
,
3568 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3569 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3570 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3571 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3573 /* no .writefn needed as this can't cause an ASID change;
3574 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3576 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3577 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3578 .cp
= 15, .opc1
= 6, .crm
= 2,
3579 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3580 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3581 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3582 .writefn
= vttbr_write
},
3583 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3584 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3585 .access
= PL2_RW
, .writefn
= vttbr_write
,
3586 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3587 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3588 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3589 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3590 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3591 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3592 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3593 .access
= PL2_RW
, .resetvalue
= 0,
3594 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3595 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3596 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3597 .access
= PL2_RW
, .resetvalue
= 0,
3598 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3599 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3600 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3601 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3602 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3603 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3604 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3605 .writefn
= tlbi_aa64_alle2_write
},
3606 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3607 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3608 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3609 .writefn
= tlbi_aa64_vae2_write
},
3610 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3611 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3612 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3613 .writefn
= tlbi_aa64_vae2_write
},
3614 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3615 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3616 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3617 .writefn
= tlbi_aa64_alle2is_write
},
3618 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3619 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3620 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3621 .writefn
= tlbi_aa64_vae2is_write
},
3622 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3623 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3624 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3625 .writefn
= tlbi_aa64_vae2is_write
},
3626 #ifndef CONFIG_USER_ONLY
3627 /* Unlike the other EL2-related AT operations, these must
3628 * UNDEF from EL3 if EL2 is not implemented, which is why we
3629 * define them here rather than with the rest of the AT ops.
3631 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3632 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3633 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3634 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3635 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3636 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3637 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3638 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3639 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3640 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3641 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3642 * to behave as if SCR.NS was 1.
3644 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3646 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3647 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3649 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3650 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3651 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3652 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3653 * reset values as IMPDEF. We choose to reset to 3 to comply with
3654 * both ARMv7 and ARMv8.
3656 .access
= PL2_RW
, .resetvalue
= 3,
3657 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3658 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3659 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3660 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3661 .writefn
= gt_cntvoff_write
,
3662 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3663 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3664 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3665 .writefn
= gt_cntvoff_write
,
3666 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3667 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3668 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3669 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3670 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3671 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3672 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3673 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3674 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3675 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3676 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3677 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3678 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
3679 .resetfn
= gt_hyp_timer_reset
,
3680 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3681 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3683 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3685 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3687 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3689 /* The only field of MDCR_EL2 that has a defined architectural reset value
3690 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3691 * don't impelment any PMU event counters, so using zero as a reset
3692 * value for MDCR_EL2 is okay
3694 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3695 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3696 .access
= PL2_RW
, .resetvalue
= 0,
3697 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3698 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3699 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3700 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3701 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3702 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3703 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3705 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3709 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3712 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3713 * At Secure EL1 it traps to EL3.
3715 if (arm_current_el(env
) == 3) {
3716 return CP_ACCESS_OK
;
3718 if (arm_is_secure_below_el3(env
)) {
3719 return CP_ACCESS_TRAP_EL3
;
3721 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3723 return CP_ACCESS_OK
;
3725 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3728 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3729 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3730 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3731 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3732 .resetvalue
= 0, .writefn
= scr_write
},
3733 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3734 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3735 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3736 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3737 .writefn
= scr_write
},
3738 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3739 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3740 .access
= PL3_RW
, .resetvalue
= 0,
3741 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3743 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3744 .access
= PL3_RW
, .resetvalue
= 0,
3745 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3746 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3747 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3748 .writefn
= vbar_write
, .resetvalue
= 0,
3749 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3750 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3751 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3752 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3753 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3754 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3755 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3756 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3757 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3758 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3759 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3760 .type
= ARM_CP_ALIAS
,
3761 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3763 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3764 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3765 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3766 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3767 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3768 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3769 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3770 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3771 .type
= ARM_CP_ALIAS
,
3772 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3774 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
3775 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3776 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3777 .access
= PL3_RW
, .writefn
= vbar_write
,
3778 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3780 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3781 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3782 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3783 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3784 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3785 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3786 .access
= PL3_RW
, .resetvalue
= 0,
3787 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3788 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3789 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3790 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3792 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3793 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3794 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3796 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3797 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3798 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3800 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3801 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3802 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3803 .writefn
= tlbi_aa64_alle3is_write
},
3804 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3805 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3806 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3807 .writefn
= tlbi_aa64_vae3is_write
},
3808 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3809 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3810 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3811 .writefn
= tlbi_aa64_vae3is_write
},
3812 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3813 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3814 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3815 .writefn
= tlbi_aa64_alle3_write
},
3816 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3817 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3818 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3819 .writefn
= tlbi_aa64_vae3_write
},
3820 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3821 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3822 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3823 .writefn
= tlbi_aa64_vae3_write
},
3827 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3830 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3831 * but the AArch32 CTR has its own reginfo struct)
3833 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3834 return CP_ACCESS_TRAP
;
3836 return CP_ACCESS_OK
;
3839 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3842 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3843 * read via a bit in OSLSR_EL1.
3847 if (ri
->state
== ARM_CP_STATE_AA32
) {
3848 oslock
= (value
== 0xC5ACCE55);
3853 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
3856 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3857 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3858 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3859 * unlike DBGDRAR it is never accessible from EL0.
3860 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3863 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3864 .access
= PL0_R
, .accessfn
= access_tdra
,
3865 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3866 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3867 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3868 .access
= PL1_R
, .accessfn
= access_tdra
,
3869 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3870 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3871 .access
= PL0_R
, .accessfn
= access_tdra
,
3872 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3873 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3874 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3875 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3876 .access
= PL1_RW
, .accessfn
= access_tda
,
3877 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3879 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3880 * We don't implement the configurable EL0 access.
3882 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3883 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3884 .type
= ARM_CP_ALIAS
,
3885 .access
= PL1_R
, .accessfn
= access_tda
,
3886 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3887 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3888 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3889 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3890 .accessfn
= access_tdosa
,
3891 .writefn
= oslar_write
},
3892 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
3893 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
3894 .access
= PL1_R
, .resetvalue
= 10,
3895 .accessfn
= access_tdosa
,
3896 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
3897 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3898 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3899 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3900 .access
= PL1_RW
, .accessfn
= access_tdosa
,
3901 .type
= ARM_CP_NOP
},
3902 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3903 * implement vector catch debug events yet.
3906 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3907 .access
= PL1_RW
, .accessfn
= access_tda
,
3908 .type
= ARM_CP_NOP
},
3912 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3913 /* 64 bit access versions of the (dummy) debug registers */
3914 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3915 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3916 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3917 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3921 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3923 CPUARMState
*env
= &cpu
->env
;
3925 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3926 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3928 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3930 if (env
->cpu_watchpoint
[n
]) {
3931 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3932 env
->cpu_watchpoint
[n
] = NULL
;
3935 if (!extract64(wcr
, 0, 1)) {
3936 /* E bit clear : watchpoint disabled */
3940 switch (extract64(wcr
, 3, 2)) {
3942 /* LSC 00 is reserved and must behave as if the wp is disabled */
3945 flags
|= BP_MEM_READ
;
3948 flags
|= BP_MEM_WRITE
;
3951 flags
|= BP_MEM_ACCESS
;
3955 /* Attempts to use both MASK and BAS fields simultaneously are
3956 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3957 * thus generating a watchpoint for every byte in the masked region.
3959 mask
= extract64(wcr
, 24, 4);
3960 if (mask
== 1 || mask
== 2) {
3961 /* Reserved values of MASK; we must act as if the mask value was
3962 * some non-reserved value, or as if the watchpoint were disabled.
3963 * We choose the latter.
3967 /* Watchpoint covers an aligned area up to 2GB in size */
3969 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3970 * whether the watchpoint fires when the unmasked bits match; we opt
3971 * to generate the exceptions.
3975 /* Watchpoint covers bytes defined by the byte address select bits */
3976 int bas
= extract64(wcr
, 5, 8);
3980 /* This must act as if the watchpoint is disabled */
3984 if (extract64(wvr
, 2, 1)) {
3985 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3986 * ignored, and BAS[3:0] define which bytes to watch.
3990 /* The BAS bits are supposed to be programmed to indicate a contiguous
3991 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3992 * we fire for each byte in the word/doubleword addressed by the WVR.
3993 * We choose to ignore any non-zero bits after the first range of 1s.
3995 basstart
= ctz32(bas
);
3996 len
= cto32(bas
>> basstart
);
4000 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
4001 &env
->cpu_watchpoint
[n
]);
4004 void hw_watchpoint_update_all(ARMCPU
*cpu
)
4007 CPUARMState
*env
= &cpu
->env
;
4009 /* Completely clear out existing QEMU watchpoints and our array, to
4010 * avoid possible stale entries following migration load.
4012 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
4013 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
4015 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
4016 hw_watchpoint_update(cpu
, i
);
4020 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4023 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4026 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4027 * register reads and behaves as if values written are sign extended.
4028 * Bits [1:0] are RES0.
4030 value
= sextract64(value
, 0, 49) & ~3ULL;
4032 raw_write(env
, ri
, value
);
4033 hw_watchpoint_update(cpu
, i
);
4036 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4039 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4042 raw_write(env
, ri
, value
);
4043 hw_watchpoint_update(cpu
, i
);
4046 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
4048 CPUARMState
*env
= &cpu
->env
;
4049 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
4050 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
4055 if (env
->cpu_breakpoint
[n
]) {
4056 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
4057 env
->cpu_breakpoint
[n
] = NULL
;
4060 if (!extract64(bcr
, 0, 1)) {
4061 /* E bit clear : watchpoint disabled */
4065 bt
= extract64(bcr
, 20, 4);
4068 case 4: /* unlinked address mismatch (reserved if AArch64) */
4069 case 5: /* linked address mismatch (reserved if AArch64) */
4070 qemu_log_mask(LOG_UNIMP
,
4071 "arm: address mismatch breakpoint types not implemented");
4073 case 0: /* unlinked address match */
4074 case 1: /* linked address match */
4076 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4077 * we behave as if the register was sign extended. Bits [1:0] are
4078 * RES0. The BAS field is used to allow setting breakpoints on 16
4079 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4080 * a bp will fire if the addresses covered by the bp and the addresses
4081 * covered by the insn overlap but the insn doesn't start at the
4082 * start of the bp address range. We choose to require the insn and
4083 * the bp to have the same address. The constraints on writing to
4084 * BAS enforced in dbgbcr_write mean we have only four cases:
4085 * 0b0000 => no breakpoint
4086 * 0b0011 => breakpoint on addr
4087 * 0b1100 => breakpoint on addr + 2
4088 * 0b1111 => breakpoint on addr
4089 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4091 int bas
= extract64(bcr
, 5, 4);
4092 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
4101 case 2: /* unlinked context ID match */
4102 case 8: /* unlinked VMID match (reserved if no EL2) */
4103 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4104 qemu_log_mask(LOG_UNIMP
,
4105 "arm: unlinked context breakpoint types not implemented");
4107 case 9: /* linked VMID match (reserved if no EL2) */
4108 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4109 case 3: /* linked context ID match */
4111 /* We must generate no events for Linked context matches (unless
4112 * they are linked to by some other bp/wp, which is handled in
4113 * updates for the linking bp/wp). We choose to also generate no events
4114 * for reserved values.
4119 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
4122 void hw_breakpoint_update_all(ARMCPU
*cpu
)
4125 CPUARMState
*env
= &cpu
->env
;
4127 /* Completely clear out existing QEMU breakpoints and our array, to
4128 * avoid possible stale entries following migration load.
4130 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
4131 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
4133 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
4134 hw_breakpoint_update(cpu
, i
);
4138 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4141 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4144 raw_write(env
, ri
, value
);
4145 hw_breakpoint_update(cpu
, i
);
4148 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4151 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4154 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4157 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
4158 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
4160 raw_write(env
, ri
, value
);
4161 hw_breakpoint_update(cpu
, i
);
4164 static void define_debug_regs(ARMCPU
*cpu
)
4166 /* Define v7 and v8 architectural debug registers.
4167 * These are just dummy implementations for now.
4170 int wrps
, brps
, ctx_cmps
;
4171 ARMCPRegInfo dbgdidr
= {
4172 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
4173 .access
= PL0_R
, .accessfn
= access_tda
,
4174 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
4177 /* Note that all these register fields hold "number of Xs minus 1". */
4178 brps
= extract32(cpu
->dbgdidr
, 24, 4);
4179 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
4180 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
4182 assert(ctx_cmps
<= brps
);
4184 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4185 * of the debug registers such as number of breakpoints;
4186 * check that if they both exist then they agree.
4188 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
4189 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
4190 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
4191 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
4194 define_one_arm_cp_reg(cpu
, &dbgdidr
);
4195 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
4197 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
4198 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
4201 for (i
= 0; i
< brps
+ 1; i
++) {
4202 ARMCPRegInfo dbgregs
[] = {
4203 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4204 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4205 .access
= PL1_RW
, .accessfn
= access_tda
,
4206 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4207 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4209 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4210 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4211 .access
= PL1_RW
, .accessfn
= access_tda
,
4212 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4213 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4217 define_arm_cp_regs(cpu
, dbgregs
);
4220 for (i
= 0; i
< wrps
+ 1; i
++) {
4221 ARMCPRegInfo dbgregs
[] = {
4222 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4223 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4224 .access
= PL1_RW
, .accessfn
= access_tda
,
4225 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4226 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4228 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4229 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4230 .access
= PL1_RW
, .accessfn
= access_tda
,
4231 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4232 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4236 define_arm_cp_regs(cpu
, dbgregs
);
4240 void register_cp_regs_for_features(ARMCPU
*cpu
)
4242 /* Register all the coprocessor registers based on feature bits */
4243 CPUARMState
*env
= &cpu
->env
;
4244 if (arm_feature(env
, ARM_FEATURE_M
)) {
4245 /* M profile has no coprocessor registers */
4249 define_arm_cp_regs(cpu
, cp_reginfo
);
4250 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4251 /* Must go early as it is full of wildcards that may be
4252 * overridden by later definitions.
4254 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4257 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4258 /* The ID registers all have impdef reset values */
4259 ARMCPRegInfo v6_idregs
[] = {
4260 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4261 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4262 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4263 .resetvalue
= cpu
->id_pfr0
},
4264 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4265 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4266 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4267 .resetvalue
= cpu
->id_pfr1
},
4268 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4269 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4270 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4271 .resetvalue
= cpu
->id_dfr0
},
4272 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4273 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4274 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4275 .resetvalue
= cpu
->id_afr0
},
4276 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4277 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4278 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4279 .resetvalue
= cpu
->id_mmfr0
},
4280 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4281 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4282 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4283 .resetvalue
= cpu
->id_mmfr1
},
4284 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4285 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4286 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4287 .resetvalue
= cpu
->id_mmfr2
},
4288 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4289 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4290 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4291 .resetvalue
= cpu
->id_mmfr3
},
4292 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4293 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4294 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4295 .resetvalue
= cpu
->id_isar0
},
4296 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4297 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4298 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4299 .resetvalue
= cpu
->id_isar1
},
4300 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4301 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4302 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4303 .resetvalue
= cpu
->id_isar2
},
4304 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4305 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4306 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4307 .resetvalue
= cpu
->id_isar3
},
4308 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4309 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4310 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4311 .resetvalue
= cpu
->id_isar4
},
4312 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4313 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4314 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4315 .resetvalue
= cpu
->id_isar5
},
4316 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
4317 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
4318 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4319 .resetvalue
= cpu
->id_mmfr4
},
4320 /* 7 is as yet unallocated and must RAZ */
4321 { .name
= "ID_ISAR7_RESERVED", .state
= ARM_CP_STATE_BOTH
,
4322 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
4323 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4327 define_arm_cp_regs(cpu
, v6_idregs
);
4328 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4330 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4332 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4333 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4335 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4336 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4337 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4339 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4340 /* v7 performance monitor control register: same implementor
4341 * field as main ID register, and we implement only the cycle
4344 #ifndef CONFIG_USER_ONLY
4345 ARMCPRegInfo pmcr
= {
4346 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4348 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4349 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4350 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4351 .raw_writefn
= raw_write
,
4353 ARMCPRegInfo pmcr64
= {
4354 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4355 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4356 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4358 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4359 .resetvalue
= cpu
->midr
& 0xff000000,
4360 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4362 define_one_arm_cp_reg(cpu
, &pmcr
);
4363 define_one_arm_cp_reg(cpu
, &pmcr64
);
4365 ARMCPRegInfo clidr
= {
4366 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4367 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4368 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4370 define_one_arm_cp_reg(cpu
, &clidr
);
4371 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4372 define_debug_regs(cpu
);
4374 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4376 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4377 /* AArch64 ID registers, which all have impdef reset values.
4378 * Note that within the ID register ranges the unused slots
4379 * must all RAZ, not UNDEF; future architecture versions may
4380 * define new registers here.
4382 ARMCPRegInfo v8_idregs
[] = {
4383 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4384 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4385 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4386 .resetvalue
= cpu
->id_aa64pfr0
},
4387 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4388 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4389 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4390 .resetvalue
= cpu
->id_aa64pfr1
},
4391 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4392 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
4393 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4395 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4396 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
4397 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4399 { .name
= "ID_AA64PFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4400 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
4401 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4403 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4404 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
4405 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4407 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4408 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
4409 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4411 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4412 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
4413 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4415 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4416 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4417 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4418 /* We mask out the PMUVer field, because we don't currently
4419 * implement the PMU. Not advertising it prevents the guest
4420 * from trying to use it and getting UNDEFs on registers we
4423 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4424 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4425 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4426 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4427 .resetvalue
= cpu
->id_aa64dfr1
},
4428 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4429 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
4430 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4432 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4433 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
4434 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4436 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4437 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4438 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4439 .resetvalue
= cpu
->id_aa64afr0
},
4440 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4441 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4442 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4443 .resetvalue
= cpu
->id_aa64afr1
},
4444 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4445 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
4446 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4448 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4449 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
4450 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4452 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4453 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4454 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4455 .resetvalue
= cpu
->id_aa64isar0
},
4456 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4457 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4458 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4459 .resetvalue
= cpu
->id_aa64isar1
},
4460 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4461 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
4462 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4464 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4465 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
4466 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4468 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4469 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
4470 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4472 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4473 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
4474 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4476 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4477 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
4478 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4480 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4481 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
4482 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4484 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4485 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4486 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4487 .resetvalue
= cpu
->id_aa64mmfr0
},
4488 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4489 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4490 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4491 .resetvalue
= cpu
->id_aa64mmfr1
},
4492 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4493 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
4494 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4496 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4497 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
4498 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4500 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4501 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
4502 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4504 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4505 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
4506 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4508 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4509 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
4510 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4512 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4513 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
4514 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4516 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4517 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4518 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4519 .resetvalue
= cpu
->mvfr0
},
4520 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4521 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4522 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4523 .resetvalue
= cpu
->mvfr1
},
4524 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4525 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4526 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4527 .resetvalue
= cpu
->mvfr2
},
4528 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4529 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
4530 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4532 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4533 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
4534 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4536 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4537 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
4538 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4540 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4541 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
4542 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4544 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4545 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
4546 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4548 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
4549 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
4550 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4551 .resetvalue
= cpu
->pmceid0
},
4552 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
4553 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
4554 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4555 .resetvalue
= cpu
->pmceid0
},
4556 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
4557 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
4558 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4559 .resetvalue
= cpu
->pmceid1
},
4560 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
4561 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
4562 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4563 .resetvalue
= cpu
->pmceid1
},
4566 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4567 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4568 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4569 ARMCPRegInfo rvbar
= {
4570 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4571 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4572 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4574 define_one_arm_cp_reg(cpu
, &rvbar
);
4576 define_arm_cp_regs(cpu
, v8_idregs
);
4577 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4579 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4580 uint64_t vmpidr_def
= mpidr_read_val(env
);
4581 ARMCPRegInfo vpidr_regs
[] = {
4582 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4583 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4584 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4585 .resetvalue
= cpu
->midr
,
4586 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4587 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4588 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4589 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4590 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4591 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4592 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4593 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4594 .resetvalue
= vmpidr_def
,
4595 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4596 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4597 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4599 .resetvalue
= vmpidr_def
,
4600 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4603 define_arm_cp_regs(cpu
, vpidr_regs
);
4604 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4605 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4606 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4607 ARMCPRegInfo rvbar
= {
4608 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4609 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4610 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4612 define_one_arm_cp_reg(cpu
, &rvbar
);
4615 /* If EL2 is missing but higher ELs are enabled, we need to
4616 * register the no_el2 reginfos.
4618 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4619 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4620 * of MIDR_EL1 and MPIDR_EL1.
4622 ARMCPRegInfo vpidr_regs
[] = {
4623 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4624 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4625 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4626 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4627 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4628 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4629 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4630 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4631 .type
= ARM_CP_NO_RAW
,
4632 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4635 define_arm_cp_regs(cpu
, vpidr_regs
);
4636 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4639 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4640 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4641 ARMCPRegInfo el3_regs
[] = {
4642 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4643 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4644 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
4645 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4646 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
4648 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4649 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
4650 .resetvalue
= cpu
->reset_sctlr
},
4654 define_arm_cp_regs(cpu
, el3_regs
);
4656 /* The behaviour of NSACR is sufficiently various that we don't
4657 * try to describe it in a single reginfo:
4658 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4659 * reads as constant 0xc00 from NS EL1 and NS EL2
4660 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4661 * if v7 without EL3, register doesn't exist
4662 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4664 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4665 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4666 ARMCPRegInfo nsacr
= {
4667 .name
= "NSACR", .type
= ARM_CP_CONST
,
4668 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4669 .access
= PL1_RW
, .accessfn
= nsacr_access
,
4672 define_one_arm_cp_reg(cpu
, &nsacr
);
4674 ARMCPRegInfo nsacr
= {
4676 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4677 .access
= PL3_RW
| PL1_R
,
4679 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
4681 define_one_arm_cp_reg(cpu
, &nsacr
);
4684 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4685 ARMCPRegInfo nsacr
= {
4686 .name
= "NSACR", .type
= ARM_CP_CONST
,
4687 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4691 define_one_arm_cp_reg(cpu
, &nsacr
);
4695 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4696 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4697 /* PMSAv6 not implemented */
4698 assert(arm_feature(env
, ARM_FEATURE_V7
));
4699 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4700 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4702 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4705 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4706 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4708 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4709 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4711 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4712 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4714 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4715 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4717 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4718 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4720 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4721 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4723 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4724 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4726 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4727 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4729 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4730 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4732 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4733 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4735 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4736 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4738 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4739 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4741 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4742 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4743 * be read-only (ie write causes UNDEF exception).
4746 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4747 /* Pre-v8 MIDR space.
4748 * Note that the MIDR isn't a simple constant register because
4749 * of the TI925 behaviour where writes to another register can
4750 * cause the MIDR value to change.
4752 * Unimplemented registers in the c15 0 0 0 space default to
4753 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4754 * and friends override accordingly.
4757 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4758 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4759 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4760 .readfn
= midr_read
,
4761 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4762 .type
= ARM_CP_OVERRIDE
},
4763 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4765 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4766 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4768 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4769 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4771 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4772 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4774 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4775 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4777 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4778 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4781 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4782 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4783 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4784 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4785 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4786 .readfn
= midr_read
},
4787 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4788 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4789 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4790 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4791 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4792 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4793 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4794 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4795 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4796 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4799 ARMCPRegInfo id_cp_reginfo
[] = {
4800 /* These are common to v8 and pre-v8 */
4802 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4803 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4804 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4805 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4806 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4807 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4808 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4810 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4811 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4814 /* TLBTR is specific to VMSA */
4815 ARMCPRegInfo id_tlbtr_reginfo
= {
4817 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4818 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4820 /* MPUIR is specific to PMSA V6+ */
4821 ARMCPRegInfo id_mpuir_reginfo
= {
4823 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4824 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4825 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4827 ARMCPRegInfo crn0_wi_reginfo
= {
4828 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4829 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4830 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4832 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4833 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4835 /* Register the blanket "writes ignored" value first to cover the
4836 * whole space. Then update the specific ID registers to allow write
4837 * access, so that they ignore writes rather than causing them to
4840 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4841 for (r
= id_pre_v8_midr_cp_reginfo
;
4842 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4845 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4848 id_tlbtr_reginfo
.access
= PL1_RW
;
4849 id_tlbtr_reginfo
.access
= PL1_RW
;
4851 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4852 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4854 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4856 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4857 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4858 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4859 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4860 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4864 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4865 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4868 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4869 ARMCPRegInfo auxcr_reginfo
[] = {
4870 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4871 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4872 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4873 .resetvalue
= cpu
->reset_auxcr
},
4874 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4875 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4876 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4878 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4879 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4880 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4884 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4887 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4888 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4889 /* 32 bit view is [31:18] 0...0 [43:32]. */
4890 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4891 | extract64(cpu
->reset_cbar
, 32, 12);
4892 ARMCPRegInfo cbar_reginfo
[] = {
4894 .type
= ARM_CP_CONST
,
4895 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4896 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4897 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4898 .type
= ARM_CP_CONST
,
4899 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4900 .access
= PL1_R
, .resetvalue
= cbar32
},
4903 /* We don't implement a r/w 64 bit CBAR currently */
4904 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4905 define_arm_cp_regs(cpu
, cbar_reginfo
);
4907 ARMCPRegInfo cbar
= {
4909 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4910 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4911 .fieldoffset
= offsetof(CPUARMState
,
4912 cp15
.c15_config_base_address
)
4914 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4915 cbar
.access
= PL1_R
;
4916 cbar
.fieldoffset
= 0;
4917 cbar
.type
= ARM_CP_CONST
;
4919 define_one_arm_cp_reg(cpu
, &cbar
);
4923 /* Generic registers whose values depend on the implementation */
4925 ARMCPRegInfo sctlr
= {
4926 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4927 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4929 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4930 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4931 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4932 .raw_writefn
= raw_write
,
4934 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4935 /* Normally we would always end the TB on an SCTLR write, but Linux
4936 * arch/arm/mach-pxa/sleep.S expects two instructions following
4937 * an MMU enable to execute from cache. Imitate this behaviour.
4939 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4941 define_one_arm_cp_reg(cpu
, &sctlr
);
4945 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4947 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4950 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4952 CPUState
*cs
= CPU(cpu
);
4953 CPUARMState
*env
= &cpu
->env
;
4955 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4956 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4957 aarch64_fpu_gdb_set_reg
,
4958 34, "aarch64-fpu.xml", 0);
4959 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4960 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4961 51, "arm-neon.xml", 0);
4962 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4963 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4964 35, "arm-vfp3.xml", 0);
4965 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4966 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4967 19, "arm-vfp.xml", 0);
4971 /* Sort alphabetically by type name, except for "any". */
4972 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4974 ObjectClass
*class_a
= (ObjectClass
*)a
;
4975 ObjectClass
*class_b
= (ObjectClass
*)b
;
4976 const char *name_a
, *name_b
;
4978 name_a
= object_class_get_name(class_a
);
4979 name_b
= object_class_get_name(class_b
);
4980 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4982 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4985 return strcmp(name_a
, name_b
);
4989 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4991 ObjectClass
*oc
= data
;
4992 CPUListState
*s
= user_data
;
4993 const char *typename
;
4996 typename
= object_class_get_name(oc
);
4997 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4998 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
5003 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
5007 .cpu_fprintf
= cpu_fprintf
,
5011 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5012 list
= g_slist_sort(list
, arm_cpu_list_compare
);
5013 (*cpu_fprintf
)(f
, "Available CPUs:\n");
5014 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
5017 /* The 'host' CPU type is dynamically registered only if KVM is
5018 * enabled, so we have to special-case it here:
5020 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
5024 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
5026 ObjectClass
*oc
= data
;
5027 CpuDefinitionInfoList
**cpu_list
= user_data
;
5028 CpuDefinitionInfoList
*entry
;
5029 CpuDefinitionInfo
*info
;
5030 const char *typename
;
5032 typename
= object_class_get_name(oc
);
5033 info
= g_malloc0(sizeof(*info
));
5034 info
->name
= g_strndup(typename
,
5035 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5037 entry
= g_malloc0(sizeof(*entry
));
5038 entry
->value
= info
;
5039 entry
->next
= *cpu_list
;
5043 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
5045 CpuDefinitionInfoList
*cpu_list
= NULL
;
5048 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5049 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
5055 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
5056 void *opaque
, int state
, int secstate
,
5057 int crm
, int opc1
, int opc2
)
5059 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5060 * add a single reginfo struct to the hash table.
5062 uint32_t *key
= g_new(uint32_t, 1);
5063 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
5064 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
5065 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
5067 /* Reset the secure state to the specific incoming state. This is
5068 * necessary as the register may have been defined with both states.
5070 r2
->secure
= secstate
;
5072 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5073 /* Register is banked (using both entries in array).
5074 * Overwriting fieldoffset as the array is only used to define
5075 * banked registers but later only fieldoffset is used.
5077 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
5080 if (state
== ARM_CP_STATE_AA32
) {
5081 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5082 /* If the register is banked then we don't need to migrate or
5083 * reset the 32-bit instance in certain cases:
5085 * 1) If the register has both 32-bit and 64-bit instances then we
5086 * can count on the 64-bit instance taking care of the
5088 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5089 * taking care of the secure bank. This requires that separate
5090 * 32 and 64-bit definitions are provided.
5092 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
5093 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
5094 r2
->type
|= ARM_CP_ALIAS
;
5096 } else if ((secstate
!= r
->secure
) && !ns
) {
5097 /* The register is not banked so we only want to allow migration of
5098 * the non-secure instance.
5100 r2
->type
|= ARM_CP_ALIAS
;
5103 if (r
->state
== ARM_CP_STATE_BOTH
) {
5104 /* We assume it is a cp15 register if the .cp field is left unset.
5110 #ifdef HOST_WORDS_BIGENDIAN
5111 if (r2
->fieldoffset
) {
5112 r2
->fieldoffset
+= sizeof(uint32_t);
5117 if (state
== ARM_CP_STATE_AA64
) {
5118 /* To allow abbreviation of ARMCPRegInfo
5119 * definitions, we treat cp == 0 as equivalent to
5120 * the value for "standard guest-visible sysreg".
5121 * STATE_BOTH definitions are also always "standard
5122 * sysreg" in their AArch64 view (the .cp value may
5123 * be non-zero for the benefit of the AArch32 view).
5125 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
5126 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
5128 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
5129 r2
->opc0
, opc1
, opc2
);
5131 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
5134 r2
->opaque
= opaque
;
5136 /* reginfo passed to helpers is correct for the actual access,
5137 * and is never ARM_CP_STATE_BOTH:
5140 /* Make sure reginfo passed to helpers for wildcarded regs
5141 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5146 /* By convention, for wildcarded registers only the first
5147 * entry is used for migration; the others are marked as
5148 * ALIAS so we don't try to transfer the register
5149 * multiple times. Special registers (ie NOP/WFI) are
5150 * never migratable and not even raw-accessible.
5152 if ((r
->type
& ARM_CP_SPECIAL
)) {
5153 r2
->type
|= ARM_CP_NO_RAW
;
5155 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
5156 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
5157 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
5158 r2
->type
|= ARM_CP_ALIAS
;
5161 /* Check that raw accesses are either forbidden or handled. Note that
5162 * we can't assert this earlier because the setup of fieldoffset for
5163 * banked registers has to be done first.
5165 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
5166 assert(!raw_accessors_invalid(r2
));
5169 /* Overriding of an existing definition must be explicitly
5172 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
5173 ARMCPRegInfo
*oldreg
;
5174 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
5175 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
5176 fprintf(stderr
, "Register redefined: cp=%d %d bit "
5177 "crn=%d crm=%d opc1=%d opc2=%d, "
5178 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
5179 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
5180 oldreg
->name
, r2
->name
);
5181 g_assert_not_reached();
5184 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
5188 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
5189 const ARMCPRegInfo
*r
, void *opaque
)
5191 /* Define implementations of coprocessor registers.
5192 * We store these in a hashtable because typically
5193 * there are less than 150 registers in a space which
5194 * is 16*16*16*8*8 = 262144 in size.
5195 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5196 * If a register is defined twice then the second definition is
5197 * used, so this can be used to define some generic registers and
5198 * then override them with implementation specific variations.
5199 * At least one of the original and the second definition should
5200 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5201 * against accidental use.
5203 * The state field defines whether the register is to be
5204 * visible in the AArch32 or AArch64 execution state. If the
5205 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5206 * reginfo structure for the AArch32 view, which sees the lower
5207 * 32 bits of the 64 bit register.
5209 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5210 * be wildcarded. AArch64 registers are always considered to be 64
5211 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5212 * the register, if any.
5214 int crm
, opc1
, opc2
, state
;
5215 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
5216 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
5217 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
5218 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
5219 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
5220 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
5221 /* 64 bit registers have only CRm and Opc1 fields */
5222 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
5223 /* op0 only exists in the AArch64 encodings */
5224 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
5225 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5226 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
5227 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5228 * encodes a minimum access level for the register. We roll this
5229 * runtime check into our general permission check code, so check
5230 * here that the reginfo's specified permissions are strict enough
5231 * to encompass the generic architectural permission check.
5233 if (r
->state
!= ARM_CP_STATE_AA32
) {
5236 case 0: case 1: case 2:
5249 /* unallocated encoding, so not possible */
5257 /* min_EL EL1, secure mode only (we don't check the latter) */
5261 /* broken reginfo with out-of-range opc1 */
5265 /* assert our permissions are not too lax (stricter is fine) */
5266 assert((r
->access
& ~mask
) == 0);
5269 /* Check that the register definition has enough info to handle
5270 * reads and writes if they are permitted.
5272 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
5273 if (r
->access
& PL3_R
) {
5274 assert((r
->fieldoffset
||
5275 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5278 if (r
->access
& PL3_W
) {
5279 assert((r
->fieldoffset
||
5280 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5284 /* Bad type field probably means missing sentinel at end of reg list */
5285 assert(cptype_valid(r
->type
));
5286 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
5287 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
5288 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
5289 for (state
= ARM_CP_STATE_AA32
;
5290 state
<= ARM_CP_STATE_AA64
; state
++) {
5291 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
5294 if (state
== ARM_CP_STATE_AA32
) {
5295 /* Under AArch32 CP registers can be common
5296 * (same for secure and non-secure world) or banked.
5298 switch (r
->secure
) {
5299 case ARM_CP_SECSTATE_S
:
5300 case ARM_CP_SECSTATE_NS
:
5301 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5302 r
->secure
, crm
, opc1
, opc2
);
5305 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5308 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5314 /* AArch64 registers get mapped to non-secure instance
5316 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5326 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
5327 const ARMCPRegInfo
*regs
, void *opaque
)
5329 /* Define a whole list of registers */
5330 const ARMCPRegInfo
*r
;
5331 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5332 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
5336 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
5338 return g_hash_table_lookup(cpregs
, &encoded_cp
);
5341 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5344 /* Helper coprocessor write function for write-ignore registers */
5347 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5349 /* Helper coprocessor write function for read-as-zero registers */
5353 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
5355 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5358 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
5360 /* Return true if it is not valid for us to switch to
5361 * this CPU mode (ie all the UNPREDICTABLE cases in
5362 * the ARM ARM CPSRWriteByInstr pseudocode).
5365 /* Changes to or from Hyp via MSR and CPS are illegal. */
5366 if (write_type
== CPSRWriteByInstr
&&
5367 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
5368 mode
== ARM_CPU_MODE_HYP
)) {
5373 case ARM_CPU_MODE_USR
:
5375 case ARM_CPU_MODE_SYS
:
5376 case ARM_CPU_MODE_SVC
:
5377 case ARM_CPU_MODE_ABT
:
5378 case ARM_CPU_MODE_UND
:
5379 case ARM_CPU_MODE_IRQ
:
5380 case ARM_CPU_MODE_FIQ
:
5381 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5382 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5384 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5385 * and CPS are treated as illegal mode changes.
5387 if (write_type
== CPSRWriteByInstr
&&
5388 (env
->cp15
.hcr_el2
& HCR_TGE
) &&
5389 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
5390 !arm_is_secure_below_el3(env
)) {
5394 case ARM_CPU_MODE_HYP
:
5395 return !arm_feature(env
, ARM_FEATURE_EL2
)
5396 || arm_current_el(env
) < 2 || arm_is_secure(env
);
5397 case ARM_CPU_MODE_MON
:
5398 return arm_current_el(env
) < 3;
5404 uint32_t cpsr_read(CPUARMState
*env
)
5407 ZF
= (env
->ZF
== 0);
5408 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
5409 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
5410 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
5411 | ((env
->condexec_bits
& 0xfc) << 8)
5412 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
5415 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
5416 CPSRWriteType write_type
)
5418 uint32_t changed_daif
;
5420 if (mask
& CPSR_NZCV
) {
5421 env
->ZF
= (~val
) & CPSR_Z
;
5423 env
->CF
= (val
>> 29) & 1;
5424 env
->VF
= (val
<< 3) & 0x80000000;
5427 env
->QF
= ((val
& CPSR_Q
) != 0);
5429 env
->thumb
= ((val
& CPSR_T
) != 0);
5430 if (mask
& CPSR_IT_0_1
) {
5431 env
->condexec_bits
&= ~3;
5432 env
->condexec_bits
|= (val
>> 25) & 3;
5434 if (mask
& CPSR_IT_2_7
) {
5435 env
->condexec_bits
&= 3;
5436 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5438 if (mask
& CPSR_GE
) {
5439 env
->GE
= (val
>> 16) & 0xf;
5442 /* In a V7 implementation that includes the security extensions but does
5443 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5444 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5445 * bits respectively.
5447 * In a V8 implementation, it is permitted for privileged software to
5448 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5450 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
5451 arm_feature(env
, ARM_FEATURE_EL3
) &&
5452 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5453 !arm_is_secure(env
)) {
5455 changed_daif
= (env
->daif
^ val
) & mask
;
5457 if (changed_daif
& CPSR_A
) {
5458 /* Check to see if we are allowed to change the masking of async
5459 * abort exceptions from a non-secure state.
5461 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5462 qemu_log_mask(LOG_GUEST_ERROR
,
5463 "Ignoring attempt to switch CPSR_A flag from "
5464 "non-secure world with SCR.AW bit clear\n");
5469 if (changed_daif
& CPSR_F
) {
5470 /* Check to see if we are allowed to change the masking of FIQ
5471 * exceptions from a non-secure state.
5473 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5474 qemu_log_mask(LOG_GUEST_ERROR
,
5475 "Ignoring attempt to switch CPSR_F flag from "
5476 "non-secure world with SCR.FW bit clear\n");
5480 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5481 * If this bit is set software is not allowed to mask
5482 * FIQs, but is allowed to set CPSR_F to 0.
5484 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5486 qemu_log_mask(LOG_GUEST_ERROR
,
5487 "Ignoring attempt to enable CPSR_F flag "
5488 "(non-maskable FIQ [NMFI] support enabled)\n");
5494 env
->daif
&= ~(CPSR_AIF
& mask
);
5495 env
->daif
|= val
& CPSR_AIF
& mask
;
5497 if (write_type
!= CPSRWriteRaw
&&
5498 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
5499 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
5500 /* Note that we can only get here in USR mode if this is a
5501 * gdb stub write; for this case we follow the architectural
5502 * behaviour for guest writes in USR mode of ignoring an attempt
5503 * to switch mode. (Those are caught by translate.c for writes
5504 * triggered by guest instructions.)
5507 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
5508 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5509 * v7, and has defined behaviour in v8:
5510 * + leave CPSR.M untouched
5511 * + allow changes to the other CPSR fields
5513 * For user changes via the GDB stub, we don't set PSTATE.IL,
5514 * as this would be unnecessarily harsh for a user error.
5517 if (write_type
!= CPSRWriteByGDBStub
&&
5518 arm_feature(env
, ARM_FEATURE_V8
)) {
5523 switch_mode(env
, val
& CPSR_M
);
5526 mask
&= ~CACHED_CPSR_BITS
;
5527 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5530 /* Sign/zero extend */
5531 uint32_t HELPER(sxtb16
)(uint32_t x
)
5534 res
= (uint16_t)(int8_t)x
;
5535 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5539 uint32_t HELPER(uxtb16
)(uint32_t x
)
5542 res
= (uint16_t)(uint8_t)x
;
5543 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5547 uint32_t HELPER(clz
)(uint32_t x
)
5552 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5556 if (num
== INT_MIN
&& den
== -1)
5561 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5568 uint32_t HELPER(rbit
)(uint32_t x
)
5573 #if defined(CONFIG_USER_ONLY)
5575 /* These should probably raise undefined insn exceptions. */
5576 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5578 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5580 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5583 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5585 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5587 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5591 void switch_mode(CPUARMState
*env
, int mode
)
5593 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5595 if (mode
!= ARM_CPU_MODE_USR
) {
5596 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5600 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5601 uint32_t cur_el
, bool secure
)
5606 void aarch64_sync_64_to_32(CPUARMState
*env
)
5608 g_assert_not_reached();
5613 void switch_mode(CPUARMState
*env
, int mode
)
5618 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5619 if (mode
== old_mode
)
5622 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5623 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5624 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5625 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5626 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5627 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5630 i
= bank_number(old_mode
);
5631 env
->banked_r13
[i
] = env
->regs
[13];
5632 env
->banked_r14
[i
] = env
->regs
[14];
5633 env
->banked_spsr
[i
] = env
->spsr
;
5635 i
= bank_number(mode
);
5636 env
->regs
[13] = env
->banked_r13
[i
];
5637 env
->regs
[14] = env
->banked_r14
[i
];
5638 env
->spsr
= env
->banked_spsr
[i
];
5641 /* Physical Interrupt Target EL Lookup Table
5643 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5645 * The below multi-dimensional table is used for looking up the target
5646 * exception level given numerous condition criteria. Specifically, the
5647 * target EL is based on SCR and HCR routing controls as well as the
5648 * currently executing EL and secure state.
5651 * target_el_table[2][2][2][2][2][4]
5652 * | | | | | +--- Current EL
5653 * | | | | +------ Non-secure(0)/Secure(1)
5654 * | | | +--------- HCR mask override
5655 * | | +------------ SCR exec state control
5656 * | +--------------- SCR mask override
5657 * +------------------ 32-bit(0)/64-bit(1) EL3
5659 * The table values are as such:
5663 * The ARM ARM target EL table includes entries indicating that an "exception
5664 * is not taken". The two cases where this is applicable are:
5665 * 1) An exception is taken from EL3 but the SCR does not have the exception
5667 * 2) An exception is taken from EL2 but the HCR does not have the exception
5669 * In these two cases, the below table contain a target of EL1. This value is
5670 * returned as it is expected that the consumer of the table data will check
5671 * for "target EL >= current EL" to ensure the exception is not taken.
5675 * BIT IRQ IMO Non-secure Secure
5676 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5678 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5679 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5680 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5681 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5682 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5683 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5684 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5685 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5686 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5687 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5688 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5689 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5690 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5691 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5692 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5693 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5694 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5698 * Determine the target EL for physical exceptions
5700 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5701 uint32_t cur_el
, bool secure
)
5703 CPUARMState
*env
= cs
->env_ptr
;
5708 /* Is the highest EL AArch64? */
5709 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5711 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5712 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5714 /* Either EL2 is the highest EL (and so the EL2 register width
5715 * is given by is64); or there is no EL2 or EL3, in which case
5716 * the value of 'rw' does not affect the table lookup anyway.
5723 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5724 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5727 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5728 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5731 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5732 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5736 /* If HCR.TGE is set then HCR is treated as being 1 */
5737 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5739 /* Perform a table-lookup for the target EL given the current state */
5740 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5742 assert(target_el
> 0);
5747 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5749 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5752 stl_phys(cs
->as
, env
->regs
[13], val
);
5755 static uint32_t v7m_pop(CPUARMState
*env
)
5757 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5760 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5765 /* Switch to V7M main or process stack pointer. */
5766 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5769 if (env
->v7m
.current_sp
!= process
) {
5770 tmp
= env
->v7m
.other_sp
;
5771 env
->v7m
.other_sp
= env
->regs
[13];
5772 env
->regs
[13] = tmp
;
5773 env
->v7m
.current_sp
= process
;
5777 static void do_v7m_exception_exit(CPUARMState
*env
)
5782 type
= env
->regs
[15];
5783 if (env
->v7m
.exception
!= 0)
5784 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5786 /* Switch to the target stack. */
5787 switch_v7m_sp(env
, (type
& 4) != 0);
5788 /* Pop registers. */
5789 env
->regs
[0] = v7m_pop(env
);
5790 env
->regs
[1] = v7m_pop(env
);
5791 env
->regs
[2] = v7m_pop(env
);
5792 env
->regs
[3] = v7m_pop(env
);
5793 env
->regs
[12] = v7m_pop(env
);
5794 env
->regs
[14] = v7m_pop(env
);
5795 env
->regs
[15] = v7m_pop(env
);
5796 if (env
->regs
[15] & 1) {
5797 qemu_log_mask(LOG_GUEST_ERROR
,
5798 "M profile return from interrupt with misaligned "
5799 "PC is UNPREDICTABLE\n");
5800 /* Actual hardware seems to ignore the lsbit, and there are several
5801 * RTOSes out there which incorrectly assume the r15 in the stack
5802 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5804 env
->regs
[15] &= ~1U;
5806 xpsr
= v7m_pop(env
);
5807 xpsr_write(env
, xpsr
, 0xfffffdff);
5808 /* Undo stack alignment. */
5811 /* ??? The exception return type specifies Thread/Handler mode. However
5812 this is also implied by the xPSR value. Not sure what to do
5813 if there is a mismatch. */
5814 /* ??? Likewise for mismatches between the CONTROL register and the stack
5818 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5820 ARMCPU
*cpu
= ARM_CPU(cs
);
5821 CPUARMState
*env
= &cpu
->env
;
5822 uint32_t xpsr
= xpsr_read(env
);
5826 arm_log_exception(cs
->exception_index
);
5829 if (env
->v7m
.current_sp
)
5831 if (env
->v7m
.exception
== 0)
5834 /* For exceptions we just mark as pending on the NVIC, and let that
5836 /* TODO: Need to escalate if the current priority is higher than the
5837 one we're raising. */
5838 switch (cs
->exception_index
) {
5840 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5843 /* The PC already points to the next instruction. */
5844 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5846 case EXCP_PREFETCH_ABORT
:
5847 case EXCP_DATA_ABORT
:
5848 /* TODO: if we implemented the MPU registers, this is where we
5849 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5851 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5854 if (semihosting_enabled()) {
5856 nr
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
)) & 0xff;
5859 qemu_log_mask(CPU_LOG_INT
,
5860 "...handling as semihosting call 0x%x\n",
5862 env
->regs
[0] = do_arm_semihosting(env
);
5866 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5869 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5871 case EXCP_EXCEPTION_EXIT
:
5872 do_v7m_exception_exit(env
);
5875 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5876 return; /* Never happens. Keep compiler happy. */
5879 /* Align stack pointer. */
5880 /* ??? Should only do this if Configuration Control Register
5881 STACKALIGN bit is set. */
5882 if (env
->regs
[13] & 4) {
5886 /* Switch to the handler mode. */
5887 v7m_push(env
, xpsr
);
5888 v7m_push(env
, env
->regs
[15]);
5889 v7m_push(env
, env
->regs
[14]);
5890 v7m_push(env
, env
->regs
[12]);
5891 v7m_push(env
, env
->regs
[3]);
5892 v7m_push(env
, env
->regs
[2]);
5893 v7m_push(env
, env
->regs
[1]);
5894 v7m_push(env
, env
->regs
[0]);
5895 switch_v7m_sp(env
, 0);
5897 env
->condexec_bits
= 0;
5899 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5900 env
->regs
[15] = addr
& 0xfffffffe;
5901 env
->thumb
= addr
& 1;
5904 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5905 * register set. This is necessary when switching between AArch32 and AArch64
5908 void aarch64_sync_32_to_64(CPUARMState
*env
)
5911 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5913 /* We can blanket copy R[0:7] to X[0:7] */
5914 for (i
= 0; i
< 8; i
++) {
5915 env
->xregs
[i
] = env
->regs
[i
];
5918 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5919 * Otherwise, they come from the banked user regs.
5921 if (mode
== ARM_CPU_MODE_FIQ
) {
5922 for (i
= 8; i
< 13; i
++) {
5923 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5926 for (i
= 8; i
< 13; i
++) {
5927 env
->xregs
[i
] = env
->regs
[i
];
5931 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5932 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5933 * from the mode banked register.
5935 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5936 env
->xregs
[13] = env
->regs
[13];
5937 env
->xregs
[14] = env
->regs
[14];
5939 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5940 /* HYP is an exception in that it is copied from r14 */
5941 if (mode
== ARM_CPU_MODE_HYP
) {
5942 env
->xregs
[14] = env
->regs
[14];
5944 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5948 if (mode
== ARM_CPU_MODE_HYP
) {
5949 env
->xregs
[15] = env
->regs
[13];
5951 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5954 if (mode
== ARM_CPU_MODE_IRQ
) {
5955 env
->xregs
[16] = env
->regs
[14];
5956 env
->xregs
[17] = env
->regs
[13];
5958 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5959 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5962 if (mode
== ARM_CPU_MODE_SVC
) {
5963 env
->xregs
[18] = env
->regs
[14];
5964 env
->xregs
[19] = env
->regs
[13];
5966 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5967 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5970 if (mode
== ARM_CPU_MODE_ABT
) {
5971 env
->xregs
[20] = env
->regs
[14];
5972 env
->xregs
[21] = env
->regs
[13];
5974 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5975 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5978 if (mode
== ARM_CPU_MODE_UND
) {
5979 env
->xregs
[22] = env
->regs
[14];
5980 env
->xregs
[23] = env
->regs
[13];
5982 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5983 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5986 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5987 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5988 * FIQ bank for r8-r14.
5990 if (mode
== ARM_CPU_MODE_FIQ
) {
5991 for (i
= 24; i
< 31; i
++) {
5992 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5995 for (i
= 24; i
< 29; i
++) {
5996 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5998 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5999 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
6002 env
->pc
= env
->regs
[15];
6005 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6006 * register set. This is necessary when switching between AArch32 and AArch64
6009 void aarch64_sync_64_to_32(CPUARMState
*env
)
6012 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
6014 /* We can blanket copy X[0:7] to R[0:7] */
6015 for (i
= 0; i
< 8; i
++) {
6016 env
->regs
[i
] = env
->xregs
[i
];
6019 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6020 * Otherwise, we copy x8-x12 into the banked user regs.
6022 if (mode
== ARM_CPU_MODE_FIQ
) {
6023 for (i
= 8; i
< 13; i
++) {
6024 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
6027 for (i
= 8; i
< 13; i
++) {
6028 env
->regs
[i
] = env
->xregs
[i
];
6032 /* Registers r13 & r14 depend on the current mode.
6033 * If we are in a given mode, we copy the corresponding x registers to r13
6034 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6037 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
6038 env
->regs
[13] = env
->xregs
[13];
6039 env
->regs
[14] = env
->xregs
[14];
6041 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
6043 /* HYP is an exception in that it does not have its own banked r14 but
6044 * shares the USR r14
6046 if (mode
== ARM_CPU_MODE_HYP
) {
6047 env
->regs
[14] = env
->xregs
[14];
6049 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
6053 if (mode
== ARM_CPU_MODE_HYP
) {
6054 env
->regs
[13] = env
->xregs
[15];
6056 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
6059 if (mode
== ARM_CPU_MODE_IRQ
) {
6060 env
->regs
[14] = env
->xregs
[16];
6061 env
->regs
[13] = env
->xregs
[17];
6063 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
6064 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
6067 if (mode
== ARM_CPU_MODE_SVC
) {
6068 env
->regs
[14] = env
->xregs
[18];
6069 env
->regs
[13] = env
->xregs
[19];
6071 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
6072 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
6075 if (mode
== ARM_CPU_MODE_ABT
) {
6076 env
->regs
[14] = env
->xregs
[20];
6077 env
->regs
[13] = env
->xregs
[21];
6079 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
6080 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
6083 if (mode
== ARM_CPU_MODE_UND
) {
6084 env
->regs
[14] = env
->xregs
[22];
6085 env
->regs
[13] = env
->xregs
[23];
6087 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
6088 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
6091 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6092 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6093 * FIQ bank for r8-r14.
6095 if (mode
== ARM_CPU_MODE_FIQ
) {
6096 for (i
= 24; i
< 31; i
++) {
6097 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
6100 for (i
= 24; i
< 29; i
++) {
6101 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
6103 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
6104 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
6107 env
->regs
[15] = env
->pc
;
6110 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
6112 ARMCPU
*cpu
= ARM_CPU(cs
);
6113 CPUARMState
*env
= &cpu
->env
;
6120 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6121 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
6123 case EC_BREAKPOINT_SAME_EL
:
6127 case EC_WATCHPOINT_SAME_EL
:
6133 case EC_VECTORCATCH
:
6142 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
6145 /* TODO: Vectored interrupt controller. */
6146 switch (cs
->exception_index
) {
6148 new_mode
= ARM_CPU_MODE_UND
;
6157 new_mode
= ARM_CPU_MODE_SVC
;
6160 /* The PC already points to the next instruction. */
6164 env
->exception
.fsr
= 2;
6165 /* Fall through to prefetch abort. */
6166 case EXCP_PREFETCH_ABORT
:
6167 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
6168 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
6169 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
6170 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
6171 new_mode
= ARM_CPU_MODE_ABT
;
6173 mask
= CPSR_A
| CPSR_I
;
6176 case EXCP_DATA_ABORT
:
6177 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
6178 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
6179 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
6181 (uint32_t)env
->exception
.vaddress
);
6182 new_mode
= ARM_CPU_MODE_ABT
;
6184 mask
= CPSR_A
| CPSR_I
;
6188 new_mode
= ARM_CPU_MODE_IRQ
;
6190 /* Disable IRQ and imprecise data aborts. */
6191 mask
= CPSR_A
| CPSR_I
;
6193 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
6194 /* IRQ routed to monitor mode */
6195 new_mode
= ARM_CPU_MODE_MON
;
6200 new_mode
= ARM_CPU_MODE_FIQ
;
6202 /* Disable FIQ, IRQ and imprecise data aborts. */
6203 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6204 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
6205 /* FIQ routed to monitor mode */
6206 new_mode
= ARM_CPU_MODE_MON
;
6211 new_mode
= ARM_CPU_MODE_MON
;
6213 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6217 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6218 return; /* Never happens. Keep compiler happy. */
6221 if (new_mode
== ARM_CPU_MODE_MON
) {
6222 addr
+= env
->cp15
.mvbar
;
6223 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
6224 /* High vectors. When enabled, base address cannot be remapped. */
6227 /* ARM v7 architectures provide a vector base address register to remap
6228 * the interrupt vector table.
6229 * This register is only followed in non-monitor mode, and is banked.
6230 * Note: only bits 31:5 are valid.
6232 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
6235 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
6236 env
->cp15
.scr_el3
&= ~SCR_NS
;
6239 switch_mode (env
, new_mode
);
6240 /* For exceptions taken to AArch32 we must clear the SS bit in both
6241 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6243 env
->uncached_cpsr
&= ~PSTATE_SS
;
6244 env
->spsr
= cpsr_read(env
);
6245 /* Clear IT bits. */
6246 env
->condexec_bits
= 0;
6247 /* Switch to the new mode, and to the correct instruction set. */
6248 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
6249 /* Set new mode endianness */
6250 env
->uncached_cpsr
&= ~CPSR_E
;
6251 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
6252 env
->uncached_cpsr
|= ~CPSR_E
;
6255 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6256 * and we should just guard the thumb mode on V4 */
6257 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
6258 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
6260 env
->regs
[14] = env
->regs
[15] + offset
;
6261 env
->regs
[15] = addr
;
6264 /* Handle exception entry to a target EL which is using AArch64 */
6265 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
6267 ARMCPU
*cpu
= ARM_CPU(cs
);
6268 CPUARMState
*env
= &cpu
->env
;
6269 unsigned int new_el
= env
->exception
.target_el
;
6270 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
6271 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
6273 if (arm_current_el(env
) < new_el
) {
6274 /* Entry vector offset depends on whether the implemented EL
6275 * immediately lower than the target level is using AArch32 or AArch64
6281 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
6284 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
6287 is_aa64
= is_a64(env
);
6290 g_assert_not_reached();
6298 } else if (pstate_read(env
) & PSTATE_SP
) {
6302 switch (cs
->exception_index
) {
6303 case EXCP_PREFETCH_ABORT
:
6304 case EXCP_DATA_ABORT
:
6305 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
6306 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
6307 env
->cp15
.far_el
[new_el
]);
6315 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
6326 qemu_log_mask(CPU_LOG_INT
,
6327 "...handling as semihosting call 0x%" PRIx64
"\n",
6329 env
->xregs
[0] = do_arm_semihosting(env
);
6332 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6336 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
6337 aarch64_save_sp(env
, arm_current_el(env
));
6338 env
->elr_el
[new_el
] = env
->pc
;
6340 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
6342 env
->cp15
.esr_el
[new_el
] |= 1 << 25;
6344 env
->elr_el
[new_el
] = env
->regs
[15];
6346 aarch64_sync_32_to_64(env
);
6348 env
->condexec_bits
= 0;
6350 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
6351 env
->elr_el
[new_el
]);
6353 pstate_write(env
, PSTATE_DAIF
| new_mode
);
6355 aarch64_restore_sp(env
, new_el
);
6359 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
6360 new_el
, env
->pc
, pstate_read(env
));
6363 static inline bool check_for_semihosting(CPUState
*cs
)
6365 /* Check whether this exception is a semihosting call; if so
6366 * then handle it and return true; otherwise return false.
6368 ARMCPU
*cpu
= ARM_CPU(cs
);
6369 CPUARMState
*env
= &cpu
->env
;
6372 if (cs
->exception_index
== EXCP_SEMIHOST
) {
6373 /* This is always the 64-bit semihosting exception.
6374 * The "is this usermode" and "is semihosting enabled"
6375 * checks have been done at translate time.
6377 qemu_log_mask(CPU_LOG_INT
,
6378 "...handling as semihosting call 0x%" PRIx64
"\n",
6380 env
->xregs
[0] = do_arm_semihosting(env
);
6387 /* Only intercept calls from privileged modes, to provide some
6388 * semblance of security.
6390 if (!semihosting_enabled() ||
6391 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
)) {
6395 switch (cs
->exception_index
) {
6397 /* Check for semihosting interrupt. */
6399 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, arm_sctlr_b(env
))
6405 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, arm_sctlr_b(env
))
6407 if (imm
== 0x123456) {
6413 /* See if this is a semihosting syscall. */
6415 imm
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
))
6427 qemu_log_mask(CPU_LOG_INT
,
6428 "...handling as semihosting call 0x%x\n",
6430 env
->regs
[0] = do_arm_semihosting(env
);
6435 /* Handle a CPU exception for A and R profile CPUs.
6436 * Do any appropriate logging, handle PSCI calls, and then hand off
6437 * to the AArch64-entry or AArch32-entry function depending on the
6438 * target exception level's register width.
6440 void arm_cpu_do_interrupt(CPUState
*cs
)
6442 ARMCPU
*cpu
= ARM_CPU(cs
);
6443 CPUARMState
*env
= &cpu
->env
;
6444 unsigned int new_el
= env
->exception
.target_el
;
6448 arm_log_exception(cs
->exception_index
);
6449 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
6451 if (qemu_loglevel_mask(CPU_LOG_INT
)
6452 && !excp_is_internal(cs
->exception_index
)) {
6453 qemu_log_mask(CPU_LOG_INT
, "...with ESR %x/0x%" PRIx32
"\n",
6454 env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
,
6455 env
->exception
.syndrome
);
6458 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
6459 arm_handle_psci_call(cpu
);
6460 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
6464 /* Semihosting semantics depend on the register width of the
6465 * code that caused the exception, not the target exception level,
6466 * so must be handled here.
6468 if (check_for_semihosting(cs
)) {
6472 assert(!excp_is_internal(cs
->exception_index
));
6473 if (arm_el_is_aa64(env
, new_el
)) {
6474 arm_cpu_do_interrupt_aarch64(cs
);
6476 arm_cpu_do_interrupt_aarch32(cs
);
6479 if (!kvm_enabled()) {
6480 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
6484 /* Return the exception level which controls this address translation regime */
6485 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6488 case ARMMMUIdx_S2NS
:
6489 case ARMMMUIdx_S1E2
:
6491 case ARMMMUIdx_S1E3
:
6493 case ARMMMUIdx_S1SE0
:
6494 return arm_el_is_aa64(env
, 3) ? 1 : 3;
6495 case ARMMMUIdx_S1SE1
:
6496 case ARMMMUIdx_S1NSE0
:
6497 case ARMMMUIdx_S1NSE1
:
6500 g_assert_not_reached();
6504 /* Return true if this address translation regime is secure */
6505 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6508 case ARMMMUIdx_S12NSE0
:
6509 case ARMMMUIdx_S12NSE1
:
6510 case ARMMMUIdx_S1NSE0
:
6511 case ARMMMUIdx_S1NSE1
:
6512 case ARMMMUIdx_S1E2
:
6513 case ARMMMUIdx_S2NS
:
6515 case ARMMMUIdx_S1E3
:
6516 case ARMMMUIdx_S1SE0
:
6517 case ARMMMUIdx_S1SE1
:
6520 g_assert_not_reached();
6524 /* Return the SCTLR value which controls this address translation regime */
6525 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6527 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
6530 /* Return true if the specified stage of address translation is disabled */
6531 static inline bool regime_translation_disabled(CPUARMState
*env
,
6534 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6535 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
6537 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
6540 static inline bool regime_translation_big_endian(CPUARMState
*env
,
6543 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
6546 /* Return the TCR controlling this translation regime */
6547 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6549 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6550 return &env
->cp15
.vtcr_el2
;
6552 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
6555 /* Return the TTBR associated with this translation regime */
6556 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6559 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6560 return env
->cp15
.vttbr_el2
;
6563 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
6565 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
6569 /* Return true if the translation regime is using LPAE format page tables */
6570 static inline bool regime_using_lpae_format(CPUARMState
*env
,
6573 int el
= regime_el(env
, mmu_idx
);
6574 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
6577 if (arm_feature(env
, ARM_FEATURE_LPAE
)
6578 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
6584 /* Returns true if the stage 1 translation regime is using LPAE format page
6585 * tables. Used when raising alignment exceptions, whose FSR changes depending
6586 * on whether the long or short descriptor format is in use. */
6587 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6589 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6590 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6593 return regime_using_lpae_format(env
, mmu_idx
);
6596 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6599 case ARMMMUIdx_S1SE0
:
6600 case ARMMMUIdx_S1NSE0
:
6604 case ARMMMUIdx_S12NSE0
:
6605 case ARMMMUIdx_S12NSE1
:
6606 g_assert_not_reached();
6610 /* Translate section/page access permissions to page
6611 * R/W protection flags
6614 * @mmu_idx: MMU index indicating required translation regime
6615 * @ap: The 3-bit access permissions (AP[2:0])
6616 * @domain_prot: The 2-bit domain access permissions
6618 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6619 int ap
, int domain_prot
)
6621 bool is_user
= regime_is_user(env
, mmu_idx
);
6623 if (domain_prot
== 3) {
6624 return PAGE_READ
| PAGE_WRITE
;
6629 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6632 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
6634 return is_user
? 0 : PAGE_READ
;
6641 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6646 return PAGE_READ
| PAGE_WRITE
;
6649 return PAGE_READ
| PAGE_WRITE
;
6650 case 4: /* Reserved. */
6653 return is_user
? 0 : PAGE_READ
;
6657 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6662 g_assert_not_reached();
6666 /* Translate section/page access permissions to page
6667 * R/W protection flags.
6669 * @ap: The 2-bit simple AP (AP[2:1])
6670 * @is_user: TRUE if accessing from PL0
6672 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6676 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6678 return PAGE_READ
| PAGE_WRITE
;
6680 return is_user
? 0 : PAGE_READ
;
6684 g_assert_not_reached();
6689 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6691 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6694 /* Translate S2 section/page access permissions to protection flags
6697 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6698 * @xn: XN (execute-never) bit
6700 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
6716 /* Translate section/page access permissions to protection flags
6719 * @mmu_idx: MMU index indicating required translation regime
6720 * @is_aa64: TRUE if AArch64
6721 * @ap: The 2-bit simple AP (AP[2:1])
6722 * @ns: NS (non-secure) bit
6723 * @xn: XN (execute-never) bit
6724 * @pxn: PXN (privileged execute-never) bit
6726 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6727 int ap
, int ns
, int xn
, int pxn
)
6729 bool is_user
= regime_is_user(env
, mmu_idx
);
6730 int prot_rw
, user_rw
;
6734 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6736 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6740 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6743 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6747 /* TODO have_wxn should be replaced with
6748 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6749 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6750 * compatible processors have EL2, which is required for [U]WXN.
6752 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6755 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6759 switch (regime_el(env
, mmu_idx
)) {
6762 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6769 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6770 switch (regime_el(env
, mmu_idx
)) {
6774 xn
= xn
|| !(user_rw
& PAGE_READ
);
6778 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6780 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6781 (uwxn
&& (user_rw
& PAGE_WRITE
));
6791 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6794 return prot_rw
| PAGE_EXEC
;
6797 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6798 uint32_t *table
, uint32_t address
)
6800 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6801 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6803 if (address
& tcr
->mask
) {
6804 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6805 /* Translation table walk disabled for TTBR1 */
6808 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6810 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6811 /* Translation table walk disabled for TTBR0 */
6814 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6816 *table
|= (address
>> 18) & 0x3ffc;
6820 /* Translate a S1 pagetable walk through S2 if needed. */
6821 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6822 hwaddr addr
, MemTxAttrs txattrs
,
6824 ARMMMUFaultInfo
*fi
)
6826 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
6827 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
6828 target_ulong s2size
;
6833 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
6834 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
6846 /* All loads done in the course of a page table walk go through here.
6847 * TODO: rather than ignoring errors from physical memory reads (which
6848 * are external aborts in ARM terminology) we should propagate this
6849 * error out so that we can turn it into a Data Abort if this walk
6850 * was being done for a CPU load/store or an address translation instruction
6851 * (but not if it was for a debug access).
6853 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6854 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6855 ARMMMUFaultInfo
*fi
)
6857 ARMCPU
*cpu
= ARM_CPU(cs
);
6858 CPUARMState
*env
= &cpu
->env
;
6859 MemTxAttrs attrs
= {};
6862 attrs
.secure
= is_secure
;
6863 as
= arm_addressspace(cs
, attrs
);
6864 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6868 if (regime_translation_big_endian(env
, mmu_idx
)) {
6869 return address_space_ldl_be(as
, addr
, attrs
, NULL
);
6871 return address_space_ldl_le(as
, addr
, attrs
, NULL
);
6875 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6876 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6877 ARMMMUFaultInfo
*fi
)
6879 ARMCPU
*cpu
= ARM_CPU(cs
);
6880 CPUARMState
*env
= &cpu
->env
;
6881 MemTxAttrs attrs
= {};
6884 attrs
.secure
= is_secure
;
6885 as
= arm_addressspace(cs
, attrs
);
6886 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6890 if (regime_translation_big_endian(env
, mmu_idx
)) {
6891 return address_space_ldq_be(as
, addr
, attrs
, NULL
);
6893 return address_space_ldq_le(as
, addr
, attrs
, NULL
);
6897 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6898 int access_type
, ARMMMUIdx mmu_idx
,
6899 hwaddr
*phys_ptr
, int *prot
,
6900 target_ulong
*page_size
, uint32_t *fsr
,
6901 ARMMMUFaultInfo
*fi
)
6903 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6914 /* Pagetable walk. */
6915 /* Lookup l1 descriptor. */
6916 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6917 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6921 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6924 domain
= (desc
>> 5) & 0x0f;
6925 if (regime_el(env
, mmu_idx
) == 1) {
6926 dacr
= env
->cp15
.dacr_ns
;
6928 dacr
= env
->cp15
.dacr_s
;
6930 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6932 /* Section translation fault. */
6936 if (domain_prot
== 0 || domain_prot
== 2) {
6938 code
= 9; /* Section domain fault. */
6940 code
= 11; /* Page domain fault. */
6945 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6946 ap
= (desc
>> 10) & 3;
6948 *page_size
= 1024 * 1024;
6950 /* Lookup l2 entry. */
6952 /* Coarse pagetable. */
6953 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6955 /* Fine pagetable. */
6956 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6958 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6961 case 0: /* Page translation fault. */
6964 case 1: /* 64k page. */
6965 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6966 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6967 *page_size
= 0x10000;
6969 case 2: /* 4k page. */
6970 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6971 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6972 *page_size
= 0x1000;
6974 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6976 /* ARMv6/XScale extended small page format */
6977 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6978 || arm_feature(env
, ARM_FEATURE_V6
)) {
6979 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6980 *page_size
= 0x1000;
6982 /* UNPREDICTABLE in ARMv5; we choose to take a
6983 * page translation fault.
6989 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6992 ap
= (desc
>> 4) & 3;
6995 /* Never happens, but compiler isn't smart enough to tell. */
7000 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7001 *prot
|= *prot
? PAGE_EXEC
: 0;
7002 if (!(*prot
& (1 << access_type
))) {
7003 /* Access permission fault. */
7006 *phys_ptr
= phys_addr
;
7009 *fsr
= code
| (domain
<< 4);
7013 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
7014 int access_type
, ARMMMUIdx mmu_idx
,
7015 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7016 target_ulong
*page_size
, uint32_t *fsr
,
7017 ARMMMUFaultInfo
*fi
)
7019 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
7033 /* Pagetable walk. */
7034 /* Lookup l1 descriptor. */
7035 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
7036 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7040 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7043 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
7044 /* Section translation fault, or attempt to use the encoding
7045 * which is Reserved on implementations without PXN.
7050 if ((type
== 1) || !(desc
& (1 << 18))) {
7051 /* Page or Section. */
7052 domain
= (desc
>> 5) & 0x0f;
7054 if (regime_el(env
, mmu_idx
) == 1) {
7055 dacr
= env
->cp15
.dacr_ns
;
7057 dacr
= env
->cp15
.dacr_s
;
7059 domain_prot
= (dacr
>> (domain
* 2)) & 3;
7060 if (domain_prot
== 0 || domain_prot
== 2) {
7062 code
= 9; /* Section domain fault. */
7064 code
= 11; /* Page domain fault. */
7069 if (desc
& (1 << 18)) {
7071 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
7072 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
7073 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
7074 *page_size
= 0x1000000;
7077 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
7078 *page_size
= 0x100000;
7080 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
7081 xn
= desc
& (1 << 4);
7084 ns
= extract32(desc
, 19, 1);
7086 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
7087 pxn
= (desc
>> 2) & 1;
7089 ns
= extract32(desc
, 3, 1);
7090 /* Lookup l2 entry. */
7091 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
7092 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7094 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
7096 case 0: /* Page translation fault. */
7099 case 1: /* 64k page. */
7100 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
7101 xn
= desc
& (1 << 15);
7102 *page_size
= 0x10000;
7104 case 2: case 3: /* 4k page. */
7105 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7107 *page_size
= 0x1000;
7110 /* Never happens, but compiler isn't smart enough to tell. */
7115 if (domain_prot
== 3) {
7116 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7118 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
7121 if (xn
&& access_type
== 2)
7124 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
7125 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
7126 /* The simplified model uses AP[0] as an access control bit. */
7127 if ((ap
& 1) == 0) {
7128 /* Access flag fault. */
7129 code
= (code
== 15) ? 6 : 3;
7132 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
7134 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7139 if (!(*prot
& (1 << access_type
))) {
7140 /* Access permission fault. */
7145 /* The NS bit will (as required by the architecture) have no effect if
7146 * the CPU doesn't support TZ or this is a non-secure translation
7147 * regime, because the attribute will already be non-secure.
7149 attrs
->secure
= false;
7151 *phys_ptr
= phys_addr
;
7154 *fsr
= code
| (domain
<< 4);
7158 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7159 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7162 translation_fault
= 1,
7164 permission_fault
= 3,
7168 * check_s2_mmu_setup
7170 * @is_aa64: True if the translation regime is in AArch64 state
7171 * @startlevel: Suggested starting level
7172 * @inputsize: Bitsize of IPAs
7173 * @stride: Page-table stride (See the ARM ARM)
7175 * Returns true if the suggested S2 translation parameters are OK and
7178 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
7179 int inputsize
, int stride
)
7181 const int grainsize
= stride
+ 3;
7184 /* Negative levels are never allowed. */
7189 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
7190 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
7195 CPUARMState
*env
= &cpu
->env
;
7196 unsigned int pamax
= arm_pamax(cpu
);
7199 case 13: /* 64KB Pages. */
7200 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
7204 case 11: /* 16KB Pages. */
7205 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
7209 case 9: /* 4KB Pages. */
7210 if (level
== 0 && pamax
<= 42) {
7215 g_assert_not_reached();
7218 /* Inputsize checks. */
7219 if (inputsize
> pamax
&&
7220 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
7221 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7225 /* AArch32 only supports 4KB pages. Assert on that. */
7226 assert(stride
== 9);
7235 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
7236 int access_type
, ARMMMUIdx mmu_idx
,
7237 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
7238 target_ulong
*page_size_ptr
, uint32_t *fsr
,
7239 ARMMMUFaultInfo
*fi
)
7241 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7242 CPUState
*cs
= CPU(cpu
);
7243 /* Read an LPAE long-descriptor translation table. */
7244 MMUFaultType fault_type
= translation_fault
;
7251 hwaddr descaddr
, descmask
;
7252 uint32_t tableattrs
;
7253 target_ulong page_size
;
7259 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
7260 int ap
, ns
, xn
, pxn
;
7261 uint32_t el
= regime_el(env
, mmu_idx
);
7262 bool ttbr1_valid
= true;
7263 uint64_t descaddrmask
;
7266 * This code does not handle the different format TCR for VTCR_EL2.
7267 * This code also does not support shareability levels.
7268 * Attribute and permission bit handling should also be checked when adding
7269 * support for those page table walks.
7271 if (arm_el_is_aa64(env
, el
)) {
7275 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7276 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
7279 if (extract64(address
, 55, 1)) {
7280 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
7282 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
7287 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7291 ttbr1_valid
= false;
7296 /* There is no TTBR1 for EL2 */
7298 ttbr1_valid
= false;
7302 /* Determine whether this address is in the region controlled by
7303 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7304 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7305 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7307 if (va_size
== 64) {
7308 /* AArch64 translation. */
7309 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
7310 t0sz
= MIN(t0sz
, 39);
7311 t0sz
= MAX(t0sz
, 16);
7312 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7313 /* AArch32 stage 1 translation. */
7314 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
7316 /* AArch32 stage 2 translation. */
7317 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
7318 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
7319 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4);
7321 /* If the sign-extend bit is not the same as t0sz[3], the result
7322 * is unpredictable. Flag this as a guest error. */
7324 qemu_log_mask(LOG_GUEST_ERROR
,
7325 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7328 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
7329 if (va_size
== 64) {
7330 t1sz
= MIN(t1sz
, 39);
7331 t1sz
= MAX(t1sz
, 16);
7333 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
7334 /* there is a ttbr0 region and we are in it (high bits all zero) */
7336 } else if (ttbr1_valid
&& t1sz
&&
7337 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
7338 /* there is a ttbr1 region and we are in it (high bits all one) */
7341 /* ttbr0 region is "everything not in the ttbr1 region" */
7343 } else if (!t1sz
&& ttbr1_valid
) {
7344 /* ttbr1 region is "everything not in the ttbr0 region" */
7347 /* in the gap between the two regions, this is a Translation fault */
7348 fault_type
= translation_fault
;
7352 /* Note that QEMU ignores shareability and cacheability attributes,
7353 * so we don't need to do anything with the SH, ORGN, IRGN fields
7354 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7355 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7356 * implement any ASID-like capability so we can ignore it (instead
7357 * we will always flush the TLB any time the ASID is changed).
7359 if (ttbr_select
== 0) {
7360 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
7362 epd
= extract32(tcr
->raw_tcr
, 7, 1);
7364 inputsize
= va_size
- t0sz
;
7366 tg
= extract32(tcr
->raw_tcr
, 14, 2);
7367 if (tg
== 1) { /* 64KB pages */
7370 if (tg
== 2) { /* 16KB pages */
7374 /* We should only be here if TTBR1 is valid */
7375 assert(ttbr1_valid
);
7377 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
7378 epd
= extract32(tcr
->raw_tcr
, 23, 1);
7379 inputsize
= va_size
- t1sz
;
7381 tg
= extract32(tcr
->raw_tcr
, 30, 2);
7382 if (tg
== 3) { /* 64KB pages */
7385 if (tg
== 1) { /* 16KB pages */
7390 /* Here we should have set up all the parameters for the translation:
7391 * va_size, inputsize, ttbr, epd, stride, tbi
7395 /* Translation table walk disabled => Translation fault on TLB miss
7396 * Note: This is always 0 on 64-bit EL2 and EL3.
7401 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7402 /* The starting level depends on the virtual address size (which can
7403 * be up to 48 bits) and the translation granule size. It indicates
7404 * the number of strides (stride bits at a time) needed to
7405 * consume the bits of the input address. In the pseudocode this is:
7406 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7407 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7408 * our 'stride + 3' and 'stride' is our 'stride'.
7409 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7410 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7411 * = 4 - (inputsize - 4) / stride;
7413 level
= 4 - (inputsize
- 4) / stride
;
7415 /* For stage 2 translations the starting level is specified by the
7416 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7418 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
7419 uint32_t startlevel
;
7422 if (va_size
== 32 || stride
== 9) {
7423 /* AArch32 or 4KB pages */
7424 startlevel
= 2 - sl0
;
7426 /* 16KB or 64KB pages */
7427 startlevel
= 3 - sl0
;
7430 /* Check that the starting level is valid. */
7431 ok
= check_s2_mmu_setup(cpu
, va_size
== 64, startlevel
,
7434 fault_type
= translation_fault
;
7440 /* Clear the vaddr bits which aren't part of the within-region address,
7441 * so that we don't have to special case things when calculating the
7442 * first descriptor address.
7444 if (va_size
!= inputsize
) {
7445 address
&= (1ULL << inputsize
) - 1;
7448 descmask
= (1ULL << (stride
+ 3)) - 1;
7450 /* Now we can extract the actual base address from the TTBR */
7451 descaddr
= extract64(ttbr
, 0, 48);
7452 descaddr
&= ~((1ULL << (inputsize
- (stride
* (4 - level
)))) - 1);
7454 /* The address field in the descriptor goes up to bit 39 for ARMv7
7455 * but up to bit 47 for ARMv8.
7457 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7458 descaddrmask
= 0xfffffffff000ULL
;
7460 descaddrmask
= 0xfffffff000ULL
;
7463 /* Secure accesses start with the page table in secure memory and
7464 * can be downgraded to non-secure at any step. Non-secure accesses
7465 * remain non-secure. We implement this by just ORing in the NSTable/NS
7466 * bits at each step.
7468 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
7470 uint64_t descriptor
;
7473 descaddr
|= (address
>> (stride
* (4 - level
))) & descmask
;
7475 nstable
= extract32(tableattrs
, 4, 1);
7476 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
7481 if (!(descriptor
& 1) ||
7482 (!(descriptor
& 2) && (level
== 3))) {
7483 /* Invalid, or the Reserved level 3 encoding */
7486 descaddr
= descriptor
& descaddrmask
;
7488 if ((descriptor
& 2) && (level
< 3)) {
7489 /* Table entry. The top five bits are attributes which may
7490 * propagate down through lower levels of the table (and
7491 * which are all arranged so that 0 means "no effect", so
7492 * we can gather them up by ORing in the bits at each level).
7494 tableattrs
|= extract64(descriptor
, 59, 5);
7498 /* Block entry at level 1 or 2, or page entry at level 3.
7499 * These are basically the same thing, although the number
7500 * of bits we pull in from the vaddr varies.
7502 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
7503 descaddr
|= (address
& (page_size
- 1));
7504 /* Extract attributes from the descriptor */
7505 attrs
= extract64(descriptor
, 2, 10)
7506 | (extract64(descriptor
, 52, 12) << 10);
7508 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7509 /* Stage 2 table descriptors do not include any attribute fields */
7512 /* Merge in attributes from table descriptors */
7513 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
7514 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
7515 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7516 * means "force PL1 access only", which means forcing AP[1] to 0.
7518 if (extract32(tableattrs
, 2, 1)) {
7521 attrs
|= nstable
<< 3; /* NS */
7524 /* Here descaddr is the final physical address, and attributes
7527 fault_type
= access_fault
;
7528 if ((attrs
& (1 << 8)) == 0) {
7533 ap
= extract32(attrs
, 4, 2);
7534 xn
= extract32(attrs
, 12, 1);
7536 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7538 *prot
= get_S2prot(env
, ap
, xn
);
7540 ns
= extract32(attrs
, 3, 1);
7541 pxn
= extract32(attrs
, 11, 1);
7542 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
7545 fault_type
= permission_fault
;
7546 if (!(*prot
& (1 << access_type
))) {
7551 /* The NS bit will (as required by the architecture) have no effect if
7552 * the CPU doesn't support TZ or this is a non-secure translation
7553 * regime, because the attribute will already be non-secure.
7555 txattrs
->secure
= false;
7557 *phys_ptr
= descaddr
;
7558 *page_size_ptr
= page_size
;
7562 /* Long-descriptor format IFSR/DFSR value */
7563 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
7564 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7565 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
7569 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
7571 int32_t address
, int *prot
)
7573 *prot
= PAGE_READ
| PAGE_WRITE
;
7575 case 0xF0000000 ... 0xFFFFFFFF:
7576 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
7580 case 0x00000000 ... 0x7FFFFFFF:
7587 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
7588 int access_type
, ARMMMUIdx mmu_idx
,
7589 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7591 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7593 bool is_user
= regime_is_user(env
, mmu_idx
);
7595 *phys_ptr
= address
;
7598 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
7599 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7600 } else { /* MPU enabled */
7601 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
7603 uint32_t base
= env
->pmsav7
.drbar
[n
];
7604 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
7608 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
7613 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
7617 rmask
= (1ull << rsize
) - 1;
7620 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
7621 "to DRSR region size, mask = %" PRIx32
,
7626 if (address
< base
|| address
> base
+ rmask
) {
7630 /* Region matched */
7632 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
7634 uint32_t srdis_mask
;
7636 rsize
-= 3; /* sub region size (power of 2) */
7637 snd
= ((address
- base
) >> rsize
) & 0x7;
7638 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
7640 srdis_mask
= srdis
? 0x3 : 0x0;
7641 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
7642 /* This will check in groups of 2, 4 and then 8, whether
7643 * the subregion bits are consistent. rsize is incremented
7644 * back up to give the region size, considering consistent
7645 * adjacent subregions as one region. Stop testing if rsize
7646 * is already big enough for an entire QEMU page.
7648 int snd_rounded
= snd
& ~(i
- 1);
7649 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
7650 snd_rounded
+ 8, i
);
7651 if (srdis_mask
^ srdis_multi
) {
7654 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
7658 if (rsize
< TARGET_PAGE_BITS
) {
7659 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
7660 "alignment of %" PRIu32
" bits. Minimum is %d\n",
7661 rsize
, TARGET_PAGE_BITS
);
7670 if (n
== -1) { /* no hits */
7671 if (cpu
->pmsav7_dregion
&&
7672 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
7673 /* background fault */
7677 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7678 } else { /* a MPU hit! */
7679 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
7681 if (is_user
) { /* User mode AP bit decoding */
7686 break; /* no access */
7688 *prot
|= PAGE_WRITE
;
7692 *prot
|= PAGE_READ
| PAGE_EXEC
;
7695 qemu_log_mask(LOG_GUEST_ERROR
,
7696 "Bad value for AP bits in DRACR %"
7699 } else { /* Priv. mode AP bits decoding */
7702 break; /* no access */
7706 *prot
|= PAGE_WRITE
;
7710 *prot
|= PAGE_READ
| PAGE_EXEC
;
7713 qemu_log_mask(LOG_GUEST_ERROR
,
7714 "Bad value for AP bits in DRACR %"
7720 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
7721 *prot
&= ~PAGE_EXEC
;
7726 *fsr
= 0x00d; /* Permission fault */
7727 return !(*prot
& (1 << access_type
));
7730 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
7731 int access_type
, ARMMMUIdx mmu_idx
,
7732 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7737 bool is_user
= regime_is_user(env
, mmu_idx
);
7739 *phys_ptr
= address
;
7740 for (n
= 7; n
>= 0; n
--) {
7741 base
= env
->cp15
.c6_region
[n
];
7742 if ((base
& 1) == 0) {
7745 mask
= 1 << ((base
>> 1) & 0x1f);
7746 /* Keep this shift separate from the above to avoid an
7747 (undefined) << 32. */
7748 mask
= (mask
<< 1) - 1;
7749 if (((base
^ address
) & ~mask
) == 0) {
7758 if (access_type
== 2) {
7759 mask
= env
->cp15
.pmsav5_insn_ap
;
7761 mask
= env
->cp15
.pmsav5_data_ap
;
7763 mask
= (mask
>> (n
* 4)) & 0xf;
7773 *prot
= PAGE_READ
| PAGE_WRITE
;
7778 *prot
|= PAGE_WRITE
;
7782 *prot
= PAGE_READ
| PAGE_WRITE
;
7795 /* Bad permission. */
7803 /* get_phys_addr - get the physical address for this virtual address
7805 * Find the physical address corresponding to the given virtual address,
7806 * by doing a translation table walk on MMU based systems or using the
7807 * MPU state on MPU based systems.
7809 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7810 * prot and page_size may not be filled in, and the populated fsr value provides
7811 * information on why the translation aborted, in the format of a
7812 * DFSR/IFSR fault register, with the following caveats:
7813 * * we honour the short vs long DFSR format differences.
7814 * * the WnR bit is never set (the caller must do this).
7815 * * for PSMAv5 based systems we don't bother to return a full FSR format
7819 * @address: virtual address to get physical address for
7820 * @access_type: 0 for read, 1 for write, 2 for execute
7821 * @mmu_idx: MMU index indicating required translation regime
7822 * @phys_ptr: set to the physical address corresponding to the virtual address
7823 * @attrs: set to the memory transaction attributes to use
7824 * @prot: set to the permissions for the page containing phys_ptr
7825 * @page_size: set to the size of the page containing phys_ptr
7826 * @fsr: set to the DFSR/IFSR value on failure
7828 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
7829 int access_type
, ARMMMUIdx mmu_idx
,
7830 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7831 target_ulong
*page_size
, uint32_t *fsr
,
7832 ARMMMUFaultInfo
*fi
)
7834 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7835 /* Call ourselves recursively to do the stage 1 and then stage 2
7838 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7843 ret
= get_phys_addr(env
, address
, access_type
,
7844 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
7845 prot
, page_size
, fsr
, fi
);
7847 /* If S1 fails or S2 is disabled, return early. */
7848 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
7853 /* S1 is done. Now do S2 translation. */
7854 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
7855 phys_ptr
, attrs
, &s2_prot
,
7856 page_size
, fsr
, fi
);
7858 /* Combine the S1 and S2 perms. */
7863 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7865 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7869 /* The page table entries may downgrade secure to non-secure, but
7870 * cannot upgrade an non-secure translation regime's attributes
7873 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
7874 attrs
->user
= regime_is_user(env
, mmu_idx
);
7876 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7877 * In v7 and earlier it affects all stage 1 translations.
7879 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
7880 && !arm_feature(env
, ARM_FEATURE_V8
)) {
7881 if (regime_el(env
, mmu_idx
) == 3) {
7882 address
+= env
->cp15
.fcseidr_s
;
7884 address
+= env
->cp15
.fcseidr_ns
;
7888 /* pmsav7 has special handling for when MPU is disabled so call it before
7889 * the common MMU/MPU disabled check below.
7891 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
7892 arm_feature(env
, ARM_FEATURE_V7
)) {
7893 *page_size
= TARGET_PAGE_SIZE
;
7894 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
7895 phys_ptr
, prot
, fsr
);
7898 if (regime_translation_disabled(env
, mmu_idx
)) {
7899 /* MMU/MPU disabled. */
7900 *phys_ptr
= address
;
7901 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7902 *page_size
= TARGET_PAGE_SIZE
;
7906 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
7908 *page_size
= TARGET_PAGE_SIZE
;
7909 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
7910 phys_ptr
, prot
, fsr
);
7913 if (regime_using_lpae_format(env
, mmu_idx
)) {
7914 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7915 attrs
, prot
, page_size
, fsr
, fi
);
7916 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
7917 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7918 attrs
, prot
, page_size
, fsr
, fi
);
7920 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7921 prot
, page_size
, fsr
, fi
);
7925 /* Walk the page table and (if the mapping exists) add the page
7926 * to the TLB. Return false on success, or true on failure. Populate
7927 * fsr with ARM DFSR/IFSR fault register format value on failure.
7929 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
7930 int access_type
, int mmu_idx
, uint32_t *fsr
,
7931 ARMMMUFaultInfo
*fi
)
7933 ARMCPU
*cpu
= ARM_CPU(cs
);
7934 CPUARMState
*env
= &cpu
->env
;
7936 target_ulong page_size
;
7939 MemTxAttrs attrs
= {};
7941 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7942 &attrs
, &prot
, &page_size
, fsr
, fi
);
7944 /* Map a single [sub]page. */
7945 phys_addr
&= TARGET_PAGE_MASK
;
7946 address
&= TARGET_PAGE_MASK
;
7947 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7948 prot
, mmu_idx
, page_size
);
7955 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
7958 ARMCPU
*cpu
= ARM_CPU(cs
);
7959 CPUARMState
*env
= &cpu
->env
;
7961 target_ulong page_size
;
7965 ARMMMUFaultInfo fi
= {};
7967 *attrs
= (MemTxAttrs
) {};
7969 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7970 attrs
, &prot
, &page_size
, &fsr
, &fi
);
7978 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7980 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7984 return xpsr_read(env
) & 0xf8000000;
7986 return xpsr_read(env
) & 0xf80001ff;
7988 return xpsr_read(env
) & 0xff00fc00;
7990 return xpsr_read(env
) & 0xff00fdff;
7992 return xpsr_read(env
) & 0x000001ff;
7994 return xpsr_read(env
) & 0x0700fc00;
7996 return xpsr_read(env
) & 0x0700edff;
7998 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
8000 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
8001 case 16: /* PRIMASK */
8002 return (env
->daif
& PSTATE_I
) != 0;
8003 case 17: /* BASEPRI */
8004 case 18: /* BASEPRI_MAX */
8005 return env
->v7m
.basepri
;
8006 case 19: /* FAULTMASK */
8007 return (env
->daif
& PSTATE_F
) != 0;
8008 case 20: /* CONTROL */
8009 return env
->v7m
.control
;
8011 /* ??? For debugging only. */
8012 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
8017 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
8019 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8023 xpsr_write(env
, val
, 0xf8000000);
8026 xpsr_write(env
, val
, 0xf8000000);
8029 xpsr_write(env
, val
, 0xfe00fc00);
8032 xpsr_write(env
, val
, 0xfe00fc00);
8035 /* IPSR bits are readonly. */
8038 xpsr_write(env
, val
, 0x0600fc00);
8041 xpsr_write(env
, val
, 0x0600fc00);
8044 if (env
->v7m
.current_sp
)
8045 env
->v7m
.other_sp
= val
;
8047 env
->regs
[13] = val
;
8050 if (env
->v7m
.current_sp
)
8051 env
->regs
[13] = val
;
8053 env
->v7m
.other_sp
= val
;
8055 case 16: /* PRIMASK */
8057 env
->daif
|= PSTATE_I
;
8059 env
->daif
&= ~PSTATE_I
;
8062 case 17: /* BASEPRI */
8063 env
->v7m
.basepri
= val
& 0xff;
8065 case 18: /* BASEPRI_MAX */
8067 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
8068 env
->v7m
.basepri
= val
;
8070 case 19: /* FAULTMASK */
8072 env
->daif
|= PSTATE_F
;
8074 env
->daif
&= ~PSTATE_F
;
8077 case 20: /* CONTROL */
8078 env
->v7m
.control
= val
& 3;
8079 switch_v7m_sp(env
, (val
& 2) != 0);
8082 /* ??? For debugging only. */
8083 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
8090 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
8092 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8093 * Note that we do not implement the (architecturally mandated)
8094 * alignment fault for attempts to use this on Device memory
8095 * (which matches the usual QEMU behaviour of not implementing either
8096 * alignment faults or any memory attribute handling).
8099 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8100 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
8101 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
8103 #ifndef CONFIG_USER_ONLY
8105 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8106 * the block size so we might have to do more than one TLB lookup.
8107 * We know that in fact for any v8 CPU the page size is at least 4K
8108 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8109 * 1K as an artefact of legacy v5 subpage support being present in the
8110 * same QEMU executable.
8112 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
8113 void *hostaddr
[maxidx
];
8115 unsigned mmu_idx
= cpu_mmu_index(env
, false);
8116 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
8118 for (try = 0; try < 2; try++) {
8120 for (i
= 0; i
< maxidx
; i
++) {
8121 hostaddr
[i
] = tlb_vaddr_to_host(env
,
8122 vaddr
+ TARGET_PAGE_SIZE
* i
,
8129 /* If it's all in the TLB it's fair game for just writing to;
8130 * we know we don't need to update dirty status, etc.
8132 for (i
= 0; i
< maxidx
- 1; i
++) {
8133 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
8135 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
8138 /* OK, try a store and see if we can populate the tlb. This
8139 * might cause an exception if the memory isn't writable,
8140 * in which case we will longjmp out of here. We must for
8141 * this purpose use the actual register value passed to us
8142 * so that we get the fault address right.
8144 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
8145 /* Now we can populate the other TLB entries, if any */
8146 for (i
= 0; i
< maxidx
; i
++) {
8147 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
8148 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
8149 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
8154 /* Slow path (probably attempt to do this to an I/O device or
8155 * similar, or clearing of a block of code we have translations
8156 * cached for). Just do a series of byte writes as the architecture
8157 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8158 * memset(), unmap() sequence here because:
8159 * + we'd need to account for the blocksize being larger than a page
8160 * + the direct-RAM access case is almost always going to be dealt
8161 * with in the fastpath code above, so there's no speed benefit
8162 * + we would have to deal with the map returning NULL because the
8163 * bounce buffer was in use
8165 for (i
= 0; i
< blocklen
; i
++) {
8166 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
8170 memset(g2h(vaddr
), 0, blocklen
);
8174 /* Note that signed overflow is undefined in C. The following routines are
8175 careful to use unsigned types where modulo arithmetic is required.
8176 Failure to do so _will_ break on newer gcc. */
8178 /* Signed saturating arithmetic. */
8180 /* Perform 16-bit signed saturating addition. */
8181 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
8186 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
8195 /* Perform 8-bit signed saturating addition. */
8196 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
8201 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
8210 /* Perform 16-bit signed saturating subtraction. */
8211 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
8216 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
8225 /* Perform 8-bit signed saturating subtraction. */
8226 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
8231 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
8240 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8241 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8242 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8243 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8246 #include "op_addsub.h"
8248 /* Unsigned saturating arithmetic. */
8249 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
8258 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
8266 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
8275 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
8283 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8284 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8285 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8286 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8289 #include "op_addsub.h"
8291 /* Signed modulo arithmetic. */
8292 #define SARITH16(a, b, n, op) do { \
8294 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8295 RESULT(sum, n, 16); \
8297 ge |= 3 << (n * 2); \
8300 #define SARITH8(a, b, n, op) do { \
8302 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8303 RESULT(sum, n, 8); \
8309 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8310 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8311 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8312 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8316 #include "op_addsub.h"
8318 /* Unsigned modulo arithmetic. */
8319 #define ADD16(a, b, n) do { \
8321 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8322 RESULT(sum, n, 16); \
8323 if ((sum >> 16) == 1) \
8324 ge |= 3 << (n * 2); \
8327 #define ADD8(a, b, n) do { \
8329 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8330 RESULT(sum, n, 8); \
8331 if ((sum >> 8) == 1) \
8335 #define SUB16(a, b, n) do { \
8337 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8338 RESULT(sum, n, 16); \
8339 if ((sum >> 16) == 0) \
8340 ge |= 3 << (n * 2); \
8343 #define SUB8(a, b, n) do { \
8345 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8346 RESULT(sum, n, 8); \
8347 if ((sum >> 8) == 0) \
8354 #include "op_addsub.h"
8356 /* Halved signed arithmetic. */
8357 #define ADD16(a, b, n) \
8358 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8359 #define SUB16(a, b, n) \
8360 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8361 #define ADD8(a, b, n) \
8362 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8363 #define SUB8(a, b, n) \
8364 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8367 #include "op_addsub.h"
8369 /* Halved unsigned arithmetic. */
8370 #define ADD16(a, b, n) \
8371 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8372 #define SUB16(a, b, n) \
8373 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8374 #define ADD8(a, b, n) \
8375 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8376 #define SUB8(a, b, n) \
8377 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8380 #include "op_addsub.h"
8382 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
8390 /* Unsigned sum of absolute byte differences. */
8391 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
8394 sum
= do_usad(a
, b
);
8395 sum
+= do_usad(a
>> 8, b
>> 8);
8396 sum
+= do_usad(a
>> 16, b
>>16);
8397 sum
+= do_usad(a
>> 24, b
>> 24);
8401 /* For ARMv6 SEL instruction. */
8402 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
8415 return (a
& mask
) | (b
& ~mask
);
8418 /* VFP support. We follow the convention used for VFP instructions:
8419 Single precision routines have a "s" suffix, double precision a
8422 /* Convert host exception flags to vfp form. */
8423 static inline int vfp_exceptbits_from_host(int host_bits
)
8425 int target_bits
= 0;
8427 if (host_bits
& float_flag_invalid
)
8429 if (host_bits
& float_flag_divbyzero
)
8431 if (host_bits
& float_flag_overflow
)
8433 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
8435 if (host_bits
& float_flag_inexact
)
8436 target_bits
|= 0x10;
8437 if (host_bits
& float_flag_input_denormal
)
8438 target_bits
|= 0x80;
8442 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
8447 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
8448 | (env
->vfp
.vec_len
<< 16)
8449 | (env
->vfp
.vec_stride
<< 20);
8450 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
8451 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
8452 fpscr
|= vfp_exceptbits_from_host(i
);
8456 uint32_t vfp_get_fpscr(CPUARMState
*env
)
8458 return HELPER(vfp_get_fpscr
)(env
);
8461 /* Convert vfp exception flags to target form. */
8462 static inline int vfp_exceptbits_to_host(int target_bits
)
8466 if (target_bits
& 1)
8467 host_bits
|= float_flag_invalid
;
8468 if (target_bits
& 2)
8469 host_bits
|= float_flag_divbyzero
;
8470 if (target_bits
& 4)
8471 host_bits
|= float_flag_overflow
;
8472 if (target_bits
& 8)
8473 host_bits
|= float_flag_underflow
;
8474 if (target_bits
& 0x10)
8475 host_bits
|= float_flag_inexact
;
8476 if (target_bits
& 0x80)
8477 host_bits
|= float_flag_input_denormal
;
8481 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
8486 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
8487 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
8488 env
->vfp
.vec_len
= (val
>> 16) & 7;
8489 env
->vfp
.vec_stride
= (val
>> 20) & 3;
8492 if (changed
& (3 << 22)) {
8493 i
= (val
>> 22) & 3;
8495 case FPROUNDING_TIEEVEN
:
8496 i
= float_round_nearest_even
;
8498 case FPROUNDING_POSINF
:
8501 case FPROUNDING_NEGINF
:
8502 i
= float_round_down
;
8504 case FPROUNDING_ZERO
:
8505 i
= float_round_to_zero
;
8508 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
8510 if (changed
& (1 << 24)) {
8511 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8512 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8514 if (changed
& (1 << 25))
8515 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
8517 i
= vfp_exceptbits_to_host(val
);
8518 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
8519 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
8522 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
8524 HELPER(vfp_set_fpscr
)(env
, val
);
8527 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8529 #define VFP_BINOP(name) \
8530 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8532 float_status *fpst = fpstp; \
8533 return float32_ ## name(a, b, fpst); \
8535 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8537 float_status *fpst = fpstp; \
8538 return float64_ ## name(a, b, fpst); \
8550 float32
VFP_HELPER(neg
, s
)(float32 a
)
8552 return float32_chs(a
);
8555 float64
VFP_HELPER(neg
, d
)(float64 a
)
8557 return float64_chs(a
);
8560 float32
VFP_HELPER(abs
, s
)(float32 a
)
8562 return float32_abs(a
);
8565 float64
VFP_HELPER(abs
, d
)(float64 a
)
8567 return float64_abs(a
);
8570 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
8572 return float32_sqrt(a
, &env
->vfp
.fp_status
);
8575 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
8577 return float64_sqrt(a
, &env
->vfp
.fp_status
);
8580 /* XXX: check quiet/signaling case */
8581 #define DO_VFP_cmp(p, type) \
8582 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8585 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8586 case 0: flags = 0x6; break; \
8587 case -1: flags = 0x8; break; \
8588 case 1: flags = 0x2; break; \
8589 default: case 2: flags = 0x3; break; \
8591 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8592 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8594 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8597 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8598 case 0: flags = 0x6; break; \
8599 case -1: flags = 0x8; break; \
8600 case 1: flags = 0x2; break; \
8601 default: case 2: flags = 0x3; break; \
8603 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8604 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8606 DO_VFP_cmp(s
, float32
)
8607 DO_VFP_cmp(d
, float64
)
8610 /* Integer to float and float to integer conversions */
8612 #define CONV_ITOF(name, fsz, sign) \
8613 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8615 float_status *fpst = fpstp; \
8616 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8619 #define CONV_FTOI(name, fsz, sign, round) \
8620 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8622 float_status *fpst = fpstp; \
8623 if (float##fsz##_is_any_nan(x)) { \
8624 float_raise(float_flag_invalid, fpst); \
8627 return float##fsz##_to_##sign##int32##round(x, fpst); \
8630 #define FLOAT_CONVS(name, p, fsz, sign) \
8631 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8632 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8633 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8635 FLOAT_CONVS(si
, s
, 32, )
8636 FLOAT_CONVS(si
, d
, 64, )
8637 FLOAT_CONVS(ui
, s
, 32, u
)
8638 FLOAT_CONVS(ui
, d
, 64, u
)
8644 /* floating point conversion */
8645 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
8647 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
8648 /* ARM requires that S<->D conversion of any kind of NaN generates
8649 * a quiet NaN by forcing the most significant frac bit to 1.
8651 return float64_maybe_silence_nan(r
);
8654 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
8656 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
8657 /* ARM requires that S<->D conversion of any kind of NaN generates
8658 * a quiet NaN by forcing the most significant frac bit to 1.
8660 return float32_maybe_silence_nan(r
);
8663 /* VFP3 fixed point conversion. */
8664 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8665 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8668 float_status *fpst = fpstp; \
8670 tmp = itype##_to_##float##fsz(x, fpst); \
8671 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8674 /* Notice that we want only input-denormal exception flags from the
8675 * scalbn operation: the other possible flags (overflow+inexact if
8676 * we overflow to infinity, output-denormal) aren't correct for the
8677 * complete scale-and-convert operation.
8679 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8680 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8684 float_status *fpst = fpstp; \
8685 int old_exc_flags = get_float_exception_flags(fpst); \
8687 if (float##fsz##_is_any_nan(x)) { \
8688 float_raise(float_flag_invalid, fpst); \
8691 tmp = float##fsz##_scalbn(x, shift, fpst); \
8692 old_exc_flags |= get_float_exception_flags(fpst) \
8693 & float_flag_input_denormal; \
8694 set_float_exception_flags(old_exc_flags, fpst); \
8695 return float##fsz##_to_##itype##round(tmp, fpst); \
8698 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8699 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8700 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8701 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8703 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8704 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8705 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8707 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
8708 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
8709 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
8710 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
8711 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
8712 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
8713 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
8714 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
8715 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
8716 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
8717 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
8718 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
8720 #undef VFP_CONV_FIX_FLOAT
8721 #undef VFP_CONV_FLOAT_FIX_ROUND
8723 /* Set the current fp rounding mode and return the old one.
8724 * The argument is a softfloat float_round_ value.
8726 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8728 float_status
*fp_status
= &env
->vfp
.fp_status
;
8730 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8731 set_float_rounding_mode(rmode
, fp_status
);
8736 /* Set the current fp rounding mode in the standard fp status and return
8737 * the old one. This is for NEON instructions that need to change the
8738 * rounding mode but wish to use the standard FPSCR values for everything
8739 * else. Always set the rounding mode back to the correct value after
8741 * The argument is a softfloat float_round_ value.
8743 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8745 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
8747 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8748 set_float_rounding_mode(rmode
, fp_status
);
8753 /* Half precision conversions. */
8754 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
8756 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8757 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
8759 return float32_maybe_silence_nan(r
);
8764 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
8766 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8767 float16 r
= float32_to_float16(a
, ieee
, s
);
8769 r
= float16_maybe_silence_nan(r
);
8771 return float16_val(r
);
8774 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8776 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
8779 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8781 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
8784 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8786 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
8789 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8791 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
8794 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
8796 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8797 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
8799 return float64_maybe_silence_nan(r
);
8804 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
8806 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8807 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
8809 r
= float16_maybe_silence_nan(r
);
8811 return float16_val(r
);
8814 #define float32_two make_float32(0x40000000)
8815 #define float32_three make_float32(0x40400000)
8816 #define float32_one_point_five make_float32(0x3fc00000)
8818 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8820 float_status
*s
= &env
->vfp
.standard_fp_status
;
8821 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8822 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8823 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8824 float_raise(float_flag_input_denormal
, s
);
8828 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
8831 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8833 float_status
*s
= &env
->vfp
.standard_fp_status
;
8835 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8836 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8837 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8838 float_raise(float_flag_input_denormal
, s
);
8840 return float32_one_point_five
;
8842 product
= float32_mul(a
, b
, s
);
8843 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
8848 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8849 * int->float conversions at run-time. */
8850 #define float64_256 make_float64(0x4070000000000000LL)
8851 #define float64_512 make_float64(0x4080000000000000LL)
8852 #define float32_maxnorm make_float32(0x7f7fffff)
8853 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8855 /* Reciprocal functions
8857 * The algorithm that must be used to calculate the estimate
8858 * is specified by the ARM ARM, see FPRecipEstimate()
8861 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
8863 /* These calculations mustn't set any fp exception flags,
8864 * so we use a local copy of the fp_status.
8866 float_status dummy_status
= *real_fp_status
;
8867 float_status
*s
= &dummy_status
;
8868 /* q = (int)(a * 512.0) */
8869 float64 q
= float64_mul(float64_512
, a
, s
);
8870 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8872 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8873 q
= int64_to_float64(q_int
, s
);
8874 q
= float64_add(q
, float64_half
, s
);
8875 q
= float64_div(q
, float64_512
, s
);
8876 q
= float64_div(float64_one
, q
, s
);
8878 /* s = (int)(256.0 * r + 0.5) */
8879 q
= float64_mul(q
, float64_256
, s
);
8880 q
= float64_add(q
, float64_half
, s
);
8881 q_int
= float64_to_int64_round_to_zero(q
, s
);
8883 /* return (double)s / 256.0 */
8884 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8887 /* Common wrapper to call recip_estimate */
8888 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
8890 uint64_t val64
= float64_val(num
);
8891 uint64_t frac
= extract64(val64
, 0, 52);
8892 int64_t exp
= extract64(val64
, 52, 11);
8894 float64 scaled
, estimate
;
8896 /* Generate the scaled number for the estimate function */
8898 if (extract64(frac
, 51, 1) == 0) {
8900 frac
= extract64(frac
, 0, 50) << 2;
8902 frac
= extract64(frac
, 0, 51) << 1;
8906 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8907 scaled
= make_float64((0x3feULL
<< 52)
8908 | extract64(frac
, 44, 8) << 44);
8910 estimate
= recip_estimate(scaled
, fpst
);
8912 /* Build new result */
8913 val64
= float64_val(estimate
);
8914 sbit
= 0x8000000000000000ULL
& val64
;
8916 frac
= extract64(val64
, 0, 52);
8919 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
8920 } else if (exp
== -1) {
8921 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8925 return make_float64(sbit
| (exp
<< 52) | frac
);
8928 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8930 switch (fpst
->float_rounding_mode
) {
8931 case float_round_nearest_even
: /* Round to Nearest */
8933 case float_round_up
: /* Round to +Inf */
8935 case float_round_down
: /* Round to -Inf */
8937 case float_round_to_zero
: /* Round to Zero */
8941 g_assert_not_reached();
8944 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8946 float_status
*fpst
= fpstp
;
8947 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8948 uint32_t f32_val
= float32_val(f32
);
8949 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8950 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8951 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8957 if (float32_is_any_nan(f32
)) {
8959 if (float32_is_signaling_nan(f32
)) {
8960 float_raise(float_flag_invalid
, fpst
);
8961 nan
= float32_maybe_silence_nan(f32
);
8963 if (fpst
->default_nan_mode
) {
8964 nan
= float32_default_nan
;
8967 } else if (float32_is_infinity(f32
)) {
8968 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8969 } else if (float32_is_zero(f32
)) {
8970 float_raise(float_flag_divbyzero
, fpst
);
8971 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8972 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8973 /* Abs(value) < 2.0^-128 */
8974 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8975 if (round_to_inf(fpst
, f32_sbit
)) {
8976 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8978 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8980 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8981 float_raise(float_flag_underflow
, fpst
);
8982 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8986 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
8987 r64
= call_recip_estimate(f64
, 253, fpst
);
8988 r64_val
= float64_val(r64
);
8989 r64_exp
= extract64(r64_val
, 52, 11);
8990 r64_frac
= extract64(r64_val
, 0, 52);
8992 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8993 return make_float32(f32_sbit
|
8994 (r64_exp
& 0xff) << 23 |
8995 extract64(r64_frac
, 29, 24));
8998 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
9000 float_status
*fpst
= fpstp
;
9001 float64 f64
= float64_squash_input_denormal(input
, fpst
);
9002 uint64_t f64_val
= float64_val(f64
);
9003 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
9004 int64_t f64_exp
= extract64(f64_val
, 52, 11);
9010 /* Deal with any special cases */
9011 if (float64_is_any_nan(f64
)) {
9013 if (float64_is_signaling_nan(f64
)) {
9014 float_raise(float_flag_invalid
, fpst
);
9015 nan
= float64_maybe_silence_nan(f64
);
9017 if (fpst
->default_nan_mode
) {
9018 nan
= float64_default_nan
;
9021 } else if (float64_is_infinity(f64
)) {
9022 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9023 } else if (float64_is_zero(f64
)) {
9024 float_raise(float_flag_divbyzero
, fpst
);
9025 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9026 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
9027 /* Abs(value) < 2.0^-1024 */
9028 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
9029 if (round_to_inf(fpst
, f64_sbit
)) {
9030 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9032 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
9034 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
9035 float_raise(float_flag_underflow
, fpst
);
9036 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9039 r64
= call_recip_estimate(f64
, 2045, fpst
);
9040 r64_val
= float64_val(r64
);
9041 r64_exp
= extract64(r64_val
, 52, 11);
9042 r64_frac
= extract64(r64_val
, 0, 52);
9044 /* result = sign : result_exp<10:0> : fraction<51:0> */
9045 return make_float64(f64_sbit
|
9046 ((r64_exp
& 0x7ff) << 52) |
9050 /* The algorithm that must be used to calculate the estimate
9051 * is specified by the ARM ARM.
9053 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
9055 /* These calculations mustn't set any fp exception flags,
9056 * so we use a local copy of the fp_status.
9058 float_status dummy_status
= *real_fp_status
;
9059 float_status
*s
= &dummy_status
;
9063 if (float64_lt(a
, float64_half
, s
)) {
9064 /* range 0.25 <= a < 0.5 */
9066 /* a in units of 1/512 rounded down */
9067 /* q0 = (int)(a * 512.0); */
9068 q
= float64_mul(float64_512
, a
, s
);
9069 q_int
= float64_to_int64_round_to_zero(q
, s
);
9071 /* reciprocal root r */
9072 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9073 q
= int64_to_float64(q_int
, s
);
9074 q
= float64_add(q
, float64_half
, s
);
9075 q
= float64_div(q
, float64_512
, s
);
9076 q
= float64_sqrt(q
, s
);
9077 q
= float64_div(float64_one
, q
, s
);
9079 /* range 0.5 <= a < 1.0 */
9081 /* a in units of 1/256 rounded down */
9082 /* q1 = (int)(a * 256.0); */
9083 q
= float64_mul(float64_256
, a
, s
);
9084 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
9086 /* reciprocal root r */
9087 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9088 q
= int64_to_float64(q_int
, s
);
9089 q
= float64_add(q
, float64_half
, s
);
9090 q
= float64_div(q
, float64_256
, s
);
9091 q
= float64_sqrt(q
, s
);
9092 q
= float64_div(float64_one
, q
, s
);
9094 /* r in units of 1/256 rounded to nearest */
9095 /* s = (int)(256.0 * r + 0.5); */
9097 q
= float64_mul(q
, float64_256
,s
);
9098 q
= float64_add(q
, float64_half
, s
);
9099 q_int
= float64_to_int64_round_to_zero(q
, s
);
9101 /* return (double)s / 256.0;*/
9102 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
9105 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
9107 float_status
*s
= fpstp
;
9108 float32 f32
= float32_squash_input_denormal(input
, s
);
9109 uint32_t val
= float32_val(f32
);
9110 uint32_t f32_sbit
= 0x80000000 & val
;
9111 int32_t f32_exp
= extract32(val
, 23, 8);
9112 uint32_t f32_frac
= extract32(val
, 0, 23);
9118 if (float32_is_any_nan(f32
)) {
9120 if (float32_is_signaling_nan(f32
)) {
9121 float_raise(float_flag_invalid
, s
);
9122 nan
= float32_maybe_silence_nan(f32
);
9124 if (s
->default_nan_mode
) {
9125 nan
= float32_default_nan
;
9128 } else if (float32_is_zero(f32
)) {
9129 float_raise(float_flag_divbyzero
, s
);
9130 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9131 } else if (float32_is_neg(f32
)) {
9132 float_raise(float_flag_invalid
, s
);
9133 return float32_default_nan
;
9134 } else if (float32_is_infinity(f32
)) {
9135 return float32_zero
;
9138 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9139 * preserving the parity of the exponent. */
9141 f64_frac
= ((uint64_t) f32_frac
) << 29;
9143 while (extract64(f64_frac
, 51, 1) == 0) {
9144 f64_frac
= f64_frac
<< 1;
9145 f32_exp
= f32_exp
-1;
9147 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9150 if (extract64(f32_exp
, 0, 1) == 0) {
9151 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9155 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9160 result_exp
= (380 - f32_exp
) / 2;
9162 f64
= recip_sqrt_estimate(f64
, s
);
9164 val64
= float64_val(f64
);
9166 val
= ((result_exp
& 0xff) << 23)
9167 | ((val64
>> 29) & 0x7fffff);
9168 return make_float32(val
);
9171 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
9173 float_status
*s
= fpstp
;
9174 float64 f64
= float64_squash_input_denormal(input
, s
);
9175 uint64_t val
= float64_val(f64
);
9176 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
9177 int64_t f64_exp
= extract64(val
, 52, 11);
9178 uint64_t f64_frac
= extract64(val
, 0, 52);
9180 uint64_t result_frac
;
9182 if (float64_is_any_nan(f64
)) {
9184 if (float64_is_signaling_nan(f64
)) {
9185 float_raise(float_flag_invalid
, s
);
9186 nan
= float64_maybe_silence_nan(f64
);
9188 if (s
->default_nan_mode
) {
9189 nan
= float64_default_nan
;
9192 } else if (float64_is_zero(f64
)) {
9193 float_raise(float_flag_divbyzero
, s
);
9194 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9195 } else if (float64_is_neg(f64
)) {
9196 float_raise(float_flag_invalid
, s
);
9197 return float64_default_nan
;
9198 } else if (float64_is_infinity(f64
)) {
9199 return float64_zero
;
9202 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9203 * preserving the parity of the exponent. */
9206 while (extract64(f64_frac
, 51, 1) == 0) {
9207 f64_frac
= f64_frac
<< 1;
9208 f64_exp
= f64_exp
- 1;
9210 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9213 if (extract64(f64_exp
, 0, 1) == 0) {
9214 f64
= make_float64(f64_sbit
9218 f64
= make_float64(f64_sbit
9223 result_exp
= (3068 - f64_exp
) / 2;
9225 f64
= recip_sqrt_estimate(f64
, s
);
9227 result_frac
= extract64(float64_val(f64
), 0, 52);
9229 return make_float64(f64_sbit
|
9230 ((result_exp
& 0x7ff) << 52) |
9234 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
9236 float_status
*s
= fpstp
;
9239 if ((a
& 0x80000000) == 0) {
9243 f64
= make_float64((0x3feULL
<< 52)
9244 | ((int64_t)(a
& 0x7fffffff) << 21));
9246 f64
= recip_estimate(f64
, s
);
9248 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9251 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
9253 float_status
*fpst
= fpstp
;
9256 if ((a
& 0xc0000000) == 0) {
9260 if (a
& 0x80000000) {
9261 f64
= make_float64((0x3feULL
<< 52)
9262 | ((uint64_t)(a
& 0x7fffffff) << 21));
9263 } else { /* bits 31-30 == '01' */
9264 f64
= make_float64((0x3fdULL
<< 52)
9265 | ((uint64_t)(a
& 0x3fffffff) << 22));
9268 f64
= recip_sqrt_estimate(f64
, fpst
);
9270 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9273 /* VFPv4 fused multiply-accumulate */
9274 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
9276 float_status
*fpst
= fpstp
;
9277 return float32_muladd(a
, b
, c
, 0, fpst
);
9280 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
9282 float_status
*fpst
= fpstp
;
9283 return float64_muladd(a
, b
, c
, 0, fpst
);
9286 /* ARMv8 round to integral */
9287 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
9289 return float32_round_to_int(x
, fp_status
);
9292 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
9294 return float64_round_to_int(x
, fp_status
);
9297 float32
HELPER(rints
)(float32 x
, void *fp_status
)
9299 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9302 ret
= float32_round_to_int(x
, fp_status
);
9304 /* Suppress any inexact exceptions the conversion produced */
9305 if (!(old_flags
& float_flag_inexact
)) {
9306 new_flags
= get_float_exception_flags(fp_status
);
9307 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9313 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
9315 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9318 ret
= float64_round_to_int(x
, fp_status
);
9320 new_flags
= get_float_exception_flags(fp_status
);
9322 /* Suppress any inexact exceptions the conversion produced */
9323 if (!(old_flags
& float_flag_inexact
)) {
9324 new_flags
= get_float_exception_flags(fp_status
);
9325 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9331 /* Convert ARM rounding mode to softfloat */
9332 int arm_rmode_to_sf(int rmode
)
9335 case FPROUNDING_TIEAWAY
:
9336 rmode
= float_round_ties_away
;
9338 case FPROUNDING_ODD
:
9339 /* FIXME: add support for TIEAWAY and ODD */
9340 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
9342 case FPROUNDING_TIEEVEN
:
9344 rmode
= float_round_nearest_even
;
9346 case FPROUNDING_POSINF
:
9347 rmode
= float_round_up
;
9349 case FPROUNDING_NEGINF
:
9350 rmode
= float_round_down
;
9352 case FPROUNDING_ZERO
:
9353 rmode
= float_round_to_zero
;
9360 * The upper bytes of val (above the number specified by 'bytes') must have
9361 * been zeroed out by the caller.
9363 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9369 /* zlib crc32 converts the accumulator and output to one's complement. */
9370 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
9373 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9379 /* Linux crc32c converts the output to one's complement. */
9380 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;