2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
26 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
31 //#define DEBUG_TLB_CHECK
36 static const CPUTLBEntry s_cputlb_empty_entry
= {
44 * If flush_global is true (the usual case), flush all tlb entries.
45 * If flush_global is false, flush (at least) all tlb entries not
48 * Since QEMU doesn't currently implement a global/not-global flag
49 * for tlb entries, at the moment tlb_flush() will also flush all
50 * tlb entries in the flush_global == false case. This is OK because
51 * CPU architectures generally permit an implementation to drop
52 * entries from the TLB at any time, so flushing more entries than
53 * required is only an efficiency issue, not a correctness issue.
55 void tlb_flush(CPUArchState
*env
, int flush_global
)
57 CPUState
*cpu
= ENV_GET_CPU(env
);
60 #if defined(DEBUG_TLB)
61 printf("tlb_flush:\n");
63 /* must reset current TB so that interrupts cannot modify the
64 links while we are modifying them */
65 cpu
->current_tb
= NULL
;
67 for (i
= 0; i
< CPU_TLB_SIZE
; i
++) {
70 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
71 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
75 memset(env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
77 env
->tlb_flush_addr
= -1;
78 env
->tlb_flush_mask
= 0;
82 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
84 if (addr
== (tlb_entry
->addr_read
&
85 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
86 addr
== (tlb_entry
->addr_write
&
87 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
88 addr
== (tlb_entry
->addr_code
&
89 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
90 *tlb_entry
= s_cputlb_empty_entry
;
94 void tlb_flush_page(CPUArchState
*env
, target_ulong addr
)
96 CPUState
*cpu
= ENV_GET_CPU(env
);
100 #if defined(DEBUG_TLB)
101 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
103 /* Check if we need to flush due to large pages. */
104 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
105 #if defined(DEBUG_TLB)
106 printf("tlb_flush_page: forced full flush ("
107 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
108 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
113 /* must reset current TB so that interrupts cannot modify the
114 links while we are modifying them */
115 cpu
->current_tb
= NULL
;
117 addr
&= TARGET_PAGE_MASK
;
118 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
119 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
120 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
123 tb_flush_jmp_cache(env
, addr
);
126 /* update the TLBs so that writes to code in the virtual page 'addr'
128 void tlb_protect_code(ram_addr_t ram_addr
)
130 cpu_physical_memory_reset_dirty(ram_addr
,
131 ram_addr
+ TARGET_PAGE_SIZE
,
135 /* update the TLB so that writes in physical page 'phys_addr' are no longer
136 tested for self modifying code */
137 void tlb_unprotect_code_phys(CPUArchState
*env
, ram_addr_t ram_addr
,
140 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
143 static bool tlb_is_dirty_ram(CPUTLBEntry
*tlbe
)
145 return (tlbe
->addr_write
& (TLB_INVALID_MASK
|TLB_MMIO
|TLB_NOTDIRTY
)) == 0;
148 void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
, uintptr_t start
,
153 if (tlb_is_dirty_ram(tlb_entry
)) {
154 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
155 if ((addr
- start
) < length
) {
156 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
161 static inline ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
165 if (qemu_ram_addr_from_host(ptr
, &ram_addr
) == NULL
) {
166 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
172 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
177 if (tlb_is_dirty_ram(tlb_entry
)) {
178 p
= (void *)(uintptr_t)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
179 + tlb_entry
->addend
);
180 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
181 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
182 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
187 void cpu_tlb_reset_dirty_all(ram_addr_t start1
, ram_addr_t length
)
192 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
196 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
199 for (i
= 0; i
< CPU_TLB_SIZE
; i
++) {
200 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
207 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
209 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
)) {
210 tlb_entry
->addr_write
= vaddr
;
214 /* update the TLB corresponding to virtual page vaddr
215 so that it is no longer dirty */
216 void tlb_set_dirty(CPUArchState
*env
, target_ulong vaddr
)
221 vaddr
&= TARGET_PAGE_MASK
;
222 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
223 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
224 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
228 /* Our TLB does not support large pages, so remember the area covered by
229 large pages and trigger a full TLB flush if these are invalidated. */
230 static void tlb_add_large_page(CPUArchState
*env
, target_ulong vaddr
,
233 target_ulong mask
= ~(size
- 1);
235 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
236 env
->tlb_flush_addr
= vaddr
& mask
;
237 env
->tlb_flush_mask
= mask
;
240 /* Extend the existing region to include the new page.
241 This is a compromise between unnecessary flushes and the cost
242 of maintaining a full variable size TLB. */
243 mask
&= env
->tlb_flush_mask
;
244 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
247 env
->tlb_flush_addr
&= mask
;
248 env
->tlb_flush_mask
= mask
;
251 /* Add a new TLB entry. At most one entry for a given virtual address
252 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
253 supplied size is only used by tlb_flush_page. */
254 void tlb_set_page(CPUArchState
*env
, target_ulong vaddr
,
255 hwaddr paddr
, int prot
,
256 int mmu_idx
, target_ulong size
)
258 MemoryRegionSection
*section
;
260 target_ulong address
;
261 target_ulong code_address
;
264 hwaddr iotlb
, xlat
, sz
;
266 assert(size
>= TARGET_PAGE_SIZE
);
267 if (size
!= TARGET_PAGE_SIZE
) {
268 tlb_add_large_page(env
, vaddr
, size
);
272 section
= address_space_translate_for_iotlb(&address_space_memory
, paddr
,
274 assert(sz
>= TARGET_PAGE_SIZE
);
276 #if defined(DEBUG_TLB)
277 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
279 vaddr
, paddr
, prot
, mmu_idx
);
283 if (!memory_region_is_ram(section
->mr
) && !memory_region_is_romd(section
->mr
)) {
288 /* TLB_MMIO for rom/romd handled below */
289 addend
= (uintptr_t)memory_region_get_ram_ptr(section
->mr
) + xlat
;
292 code_address
= address
;
293 iotlb
= memory_region_section_get_iotlb(env
, section
, vaddr
, paddr
, xlat
,
296 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
297 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
298 te
= &env
->tlb_table
[mmu_idx
][index
];
299 te
->addend
= addend
- vaddr
;
300 if (prot
& PAGE_READ
) {
301 te
->addr_read
= address
;
306 if (prot
& PAGE_EXEC
) {
307 te
->addr_code
= code_address
;
311 if (prot
& PAGE_WRITE
) {
312 if ((memory_region_is_ram(section
->mr
) && section
->readonly
)
313 || memory_region_is_romd(section
->mr
)) {
314 /* Write access calls the I/O callback. */
315 te
->addr_write
= address
| TLB_MMIO
;
316 } else if (memory_region_is_ram(section
->mr
)
317 && !cpu_physical_memory_is_dirty(section
->mr
->ram_addr
+ xlat
)) {
318 te
->addr_write
= address
| TLB_NOTDIRTY
;
320 te
->addr_write
= address
;
327 /* NOTE: this function can trigger an exception */
328 /* NOTE2: the returned address is not exactly the physical address: it
329 * is actually a ram_addr_t (in system mode; the user mode emulation
330 * version of this function returns a guest virtual address).
332 tb_page_addr_t
get_page_addr_code(CPUArchState
*env1
, target_ulong addr
)
334 int mmu_idx
, page_index
, pd
;
338 page_index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
339 mmu_idx
= cpu_mmu_index(env1
);
340 if (unlikely(env1
->tlb_table
[mmu_idx
][page_index
].addr_code
!=
341 (addr
& TARGET_PAGE_MASK
))) {
342 cpu_ldub_code(env1
, addr
);
344 pd
= env1
->iotlb
[mmu_idx
][page_index
] & ~TARGET_PAGE_MASK
;
345 mr
= iotlb_to_region(pd
);
346 if (memory_region_is_unassigned(mr
)) {
347 CPUState
*cpu
= ENV_GET_CPU(env1
);
348 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
350 if (cc
->do_unassigned_access
) {
351 cc
->do_unassigned_access(cpu
, addr
, false, true, 0, 4);
353 cpu_abort(env1
, "Trying to execute code outside RAM or ROM at 0x"
354 TARGET_FMT_lx
"\n", addr
);
357 p
= (void *)((uintptr_t)addr
+ env1
->tlb_table
[mmu_idx
][page_index
].addend
);
358 return qemu_ram_addr_from_host_nofail(p
);
361 #define MMUSUFFIX _cmmu
363 #define GETPC() ((uintptr_t)0)
364 #define SOFTMMU_CODE_ACCESS
367 #include "exec/softmmu_template.h"
370 #include "exec/softmmu_template.h"
373 #include "exec/softmmu_template.h"
376 #include "exec/softmmu_template.h"