4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
39 #include "hw/boards.h"
41 /* This check must be after config-host.h is included */
43 #include <sys/eventfd.h>
46 #ifdef CONFIG_VALGRIND_H
47 #include <valgrind/memcheck.h>
50 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
51 #define PAGE_SIZE TARGET_PAGE_SIZE
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #define DPRINTF(fmt, ...) \
63 #define KVM_MSI_HASHTAB_SIZE 256
65 typedef struct KVMSlot
68 ram_addr_t memory_size
;
74 typedef struct kvm_dirty_log KVMDirtyLog
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
85 int broken_set_mem_region
;
88 int robust_singlestep
;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 #ifdef KVM_CAP_IRQ_ROUTING
102 struct kvm_irq_routing
*irq_routes
;
103 int nr_allocated_irq_routes
;
104 uint32_t *used_gsi_bitmap
;
105 unsigned int gsi_count
;
106 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
112 bool kvm_kernel_irqchip
;
113 bool kvm_async_interrupts_allowed
;
114 bool kvm_halt_in_kernel_allowed
;
115 bool kvm_irqfds_allowed
;
116 bool kvm_msi_via_irqfd_allowed
;
117 bool kvm_gsi_routing_allowed
;
118 bool kvm_gsi_direct_mapping
;
120 bool kvm_readonly_mem_allowed
;
122 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
123 KVM_CAP_INFO(USER_MEMORY
),
124 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
128 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
132 for (i
= 0; i
< s
->nr_slots
; i
++) {
133 if (s
->slots
[i
].memory_size
== 0) {
138 fprintf(stderr
, "%s: no free slot available\n", __func__
);
142 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
148 for (i
= 0; i
< s
->nr_slots
; i
++) {
149 KVMSlot
*mem
= &s
->slots
[i
];
151 if (start_addr
== mem
->start_addr
&&
152 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
161 * Find overlapping slot with lowest start address
163 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
167 KVMSlot
*found
= NULL
;
170 for (i
= 0; i
< s
->nr_slots
; i
++) {
171 KVMSlot
*mem
= &s
->slots
[i
];
173 if (mem
->memory_size
== 0 ||
174 (found
&& found
->start_addr
< mem
->start_addr
)) {
178 if (end_addr
> mem
->start_addr
&&
179 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
187 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
192 for (i
= 0; i
< s
->nr_slots
; i
++) {
193 KVMSlot
*mem
= &s
->slots
[i
];
195 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
196 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
204 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
206 struct kvm_userspace_memory_region mem
;
208 mem
.slot
= slot
->slot
;
209 mem
.guest_phys_addr
= slot
->start_addr
;
210 mem
.userspace_addr
= (unsigned long)slot
->ram
;
211 mem
.flags
= slot
->flags
;
212 if (s
->migration_log
) {
213 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
216 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
217 /* Set the slot size to 0 before setting the slot to the desired
218 * value. This is needed based on KVM commit 75d61fbc. */
220 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
222 mem
.memory_size
= slot
->memory_size
;
223 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
226 static void kvm_reset_vcpu(void *opaque
)
228 CPUState
*cpu
= opaque
;
230 kvm_arch_reset_vcpu(cpu
);
233 int kvm_init_vcpu(CPUState
*cpu
)
235 KVMState
*s
= kvm_state
;
239 DPRINTF("kvm_init_vcpu\n");
241 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
243 DPRINTF("kvm_create_vcpu failed\n");
249 cpu
->kvm_vcpu_dirty
= true;
251 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
254 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
258 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
260 if (cpu
->kvm_run
== MAP_FAILED
) {
262 DPRINTF("mmap'ing vcpu state failed\n");
266 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
267 s
->coalesced_mmio_ring
=
268 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
271 ret
= kvm_arch_init_vcpu(cpu
);
273 qemu_register_reset(kvm_reset_vcpu
, cpu
);
274 kvm_arch_reset_vcpu(cpu
);
281 * dirty pages logging control
284 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
287 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
288 if (readonly
&& kvm_readonly_mem_allowed
) {
289 flags
|= KVM_MEM_READONLY
;
294 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
296 KVMState
*s
= kvm_state
;
297 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
300 old_flags
= mem
->flags
;
302 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
305 /* If nothing changed effectively, no need to issue ioctl */
306 if (s
->migration_log
) {
307 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
310 if (flags
== old_flags
) {
314 return kvm_set_user_memory_region(s
, mem
);
317 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
318 ram_addr_t size
, bool log_dirty
)
320 KVMState
*s
= kvm_state
;
321 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
324 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
325 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
326 (hwaddr
)(phys_addr
+ size
- 1));
329 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
332 static void kvm_log_start(MemoryListener
*listener
,
333 MemoryRegionSection
*section
)
337 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
338 int128_get64(section
->size
), true);
344 static void kvm_log_stop(MemoryListener
*listener
,
345 MemoryRegionSection
*section
)
349 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
350 int128_get64(section
->size
), false);
356 static int kvm_set_migration_log(int enable
)
358 KVMState
*s
= kvm_state
;
362 s
->migration_log
= enable
;
364 for (i
= 0; i
< s
->nr_slots
; i
++) {
367 if (!mem
->memory_size
) {
370 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
373 err
= kvm_set_user_memory_region(s
, mem
);
381 /* get kvm's dirty pages bitmap and update qemu's */
382 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
383 unsigned long *bitmap
)
385 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
386 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
388 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
392 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
395 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
396 * This function updates qemu's dirty bitmap using
397 * memory_region_set_dirty(). This means all bits are set
400 * @start_add: start of logged region.
401 * @end_addr: end of logged region.
403 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
405 KVMState
*s
= kvm_state
;
406 unsigned long size
, allocated_size
= 0;
410 hwaddr start_addr
= section
->offset_within_address_space
;
411 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
413 d
.dirty_bitmap
= NULL
;
414 while (start_addr
< end_addr
) {
415 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
420 /* XXX bad kernel interface alert
421 * For dirty bitmap, kernel allocates array of size aligned to
422 * bits-per-long. But for case when the kernel is 64bits and
423 * the userspace is 32bits, userspace can't align to the same
424 * bits-per-long, since sizeof(long) is different between kernel
425 * and user space. This way, userspace will provide buffer which
426 * may be 4 bytes less than the kernel will use, resulting in
427 * userspace memory corruption (which is not detectable by valgrind
428 * too, in most cases).
429 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
430 * a hope that sizeof(long) wont become >8 any time soon.
432 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
433 /*HOST_LONG_BITS*/ 64) / 8;
434 if (!d
.dirty_bitmap
) {
435 d
.dirty_bitmap
= g_malloc(size
);
436 } else if (size
> allocated_size
) {
437 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
439 allocated_size
= size
;
440 memset(d
.dirty_bitmap
, 0, allocated_size
);
444 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
445 DPRINTF("ioctl failed %d\n", errno
);
450 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
451 start_addr
= mem
->start_addr
+ mem
->memory_size
;
453 g_free(d
.dirty_bitmap
);
458 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
459 MemoryRegionSection
*secion
,
460 hwaddr start
, hwaddr size
)
462 KVMState
*s
= kvm_state
;
464 if (s
->coalesced_mmio
) {
465 struct kvm_coalesced_mmio_zone zone
;
471 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
475 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
476 MemoryRegionSection
*secion
,
477 hwaddr start
, hwaddr size
)
479 KVMState
*s
= kvm_state
;
481 if (s
->coalesced_mmio
) {
482 struct kvm_coalesced_mmio_zone zone
;
488 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
492 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
496 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
504 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
505 bool assign
, uint32_t size
, bool datamatch
)
508 struct kvm_ioeventfd iofd
;
510 iofd
.datamatch
= datamatch
? val
: 0;
516 if (!kvm_enabled()) {
521 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
524 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
527 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
536 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
537 bool assign
, uint32_t size
, bool datamatch
)
539 struct kvm_ioeventfd kick
= {
540 .datamatch
= datamatch
? val
: 0,
542 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
547 if (!kvm_enabled()) {
551 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
554 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
556 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
564 static int kvm_check_many_ioeventfds(void)
566 /* Userspace can use ioeventfd for io notification. This requires a host
567 * that supports eventfd(2) and an I/O thread; since eventfd does not
568 * support SIGIO it cannot interrupt the vcpu.
570 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
571 * can avoid creating too many ioeventfds.
573 #if defined(CONFIG_EVENTFD)
576 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
577 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
578 if (ioeventfds
[i
] < 0) {
581 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
583 close(ioeventfds
[i
]);
588 /* Decide whether many devices are supported or not */
589 ret
= i
== ARRAY_SIZE(ioeventfds
);
592 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
593 close(ioeventfds
[i
]);
601 static const KVMCapabilityInfo
*
602 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
605 if (!kvm_check_extension(s
, list
->value
)) {
613 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
615 KVMState
*s
= kvm_state
;
618 MemoryRegion
*mr
= section
->mr
;
619 bool log_dirty
= memory_region_is_logging(mr
);
620 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
621 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
622 hwaddr start_addr
= section
->offset_within_address_space
;
623 ram_addr_t size
= int128_get64(section
->size
);
627 /* kvm works in page size chunks, but the function may be called
628 with sub-page size and unaligned start address. */
629 delta
= TARGET_PAGE_ALIGN(size
) - size
;
635 size
&= TARGET_PAGE_MASK
;
636 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
640 if (!memory_region_is_ram(mr
)) {
641 if (writeable
|| !kvm_readonly_mem_allowed
) {
643 } else if (!mr
->romd_mode
) {
644 /* If the memory device is not in romd_mode, then we actually want
645 * to remove the kvm memory slot so all accesses will trap. */
650 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
653 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
658 if (add
&& start_addr
>= mem
->start_addr
&&
659 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
660 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
661 /* The new slot fits into the existing one and comes with
662 * identical parameters - update flags and done. */
663 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
669 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
670 kvm_physical_sync_dirty_bitmap(section
);
673 /* unregister the overlapping slot */
674 mem
->memory_size
= 0;
675 err
= kvm_set_user_memory_region(s
, mem
);
677 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
678 __func__
, strerror(-err
));
682 /* Workaround for older KVM versions: we can't join slots, even not by
683 * unregistering the previous ones and then registering the larger
684 * slot. We have to maintain the existing fragmentation. Sigh.
686 * This workaround assumes that the new slot starts at the same
687 * address as the first existing one. If not or if some overlapping
688 * slot comes around later, we will fail (not seen in practice so far)
689 * - and actually require a recent KVM version. */
690 if (s
->broken_set_mem_region
&&
691 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
692 mem
= kvm_alloc_slot(s
);
693 mem
->memory_size
= old
.memory_size
;
694 mem
->start_addr
= old
.start_addr
;
696 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
698 err
= kvm_set_user_memory_region(s
, mem
);
700 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
705 start_addr
+= old
.memory_size
;
706 ram
+= old
.memory_size
;
707 size
-= old
.memory_size
;
711 /* register prefix slot */
712 if (old
.start_addr
< start_addr
) {
713 mem
= kvm_alloc_slot(s
);
714 mem
->memory_size
= start_addr
- old
.start_addr
;
715 mem
->start_addr
= old
.start_addr
;
717 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
719 err
= kvm_set_user_memory_region(s
, mem
);
721 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
722 __func__
, strerror(-err
));
724 fprintf(stderr
, "%s: This is probably because your kernel's " \
725 "PAGE_SIZE is too big. Please try to use 4k " \
726 "PAGE_SIZE!\n", __func__
);
732 /* register suffix slot */
733 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
734 ram_addr_t size_delta
;
736 mem
= kvm_alloc_slot(s
);
737 mem
->start_addr
= start_addr
+ size
;
738 size_delta
= mem
->start_addr
- old
.start_addr
;
739 mem
->memory_size
= old
.memory_size
- size_delta
;
740 mem
->ram
= old
.ram
+ size_delta
;
741 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
743 err
= kvm_set_user_memory_region(s
, mem
);
745 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
746 __func__
, strerror(-err
));
752 /* in case the KVM bug workaround already "consumed" the new slot */
759 mem
= kvm_alloc_slot(s
);
760 mem
->memory_size
= size
;
761 mem
->start_addr
= start_addr
;
763 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
765 err
= kvm_set_user_memory_region(s
, mem
);
767 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
773 static void kvm_region_add(MemoryListener
*listener
,
774 MemoryRegionSection
*section
)
776 memory_region_ref(section
->mr
);
777 kvm_set_phys_mem(section
, true);
780 static void kvm_region_del(MemoryListener
*listener
,
781 MemoryRegionSection
*section
)
783 kvm_set_phys_mem(section
, false);
784 memory_region_unref(section
->mr
);
787 static void kvm_log_sync(MemoryListener
*listener
,
788 MemoryRegionSection
*section
)
792 r
= kvm_physical_sync_dirty_bitmap(section
);
798 static void kvm_log_global_start(struct MemoryListener
*listener
)
802 r
= kvm_set_migration_log(1);
806 static void kvm_log_global_stop(struct MemoryListener
*listener
)
810 r
= kvm_set_migration_log(0);
814 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
815 MemoryRegionSection
*section
,
816 bool match_data
, uint64_t data
,
819 int fd
= event_notifier_get_fd(e
);
822 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
823 data
, true, int128_get64(section
->size
),
826 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
827 __func__
, strerror(-r
));
832 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
833 MemoryRegionSection
*section
,
834 bool match_data
, uint64_t data
,
837 int fd
= event_notifier_get_fd(e
);
840 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
841 data
, false, int128_get64(section
->size
),
848 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
849 MemoryRegionSection
*section
,
850 bool match_data
, uint64_t data
,
853 int fd
= event_notifier_get_fd(e
);
856 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
857 data
, true, int128_get64(section
->size
),
860 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
861 __func__
, strerror(-r
));
866 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
867 MemoryRegionSection
*section
,
868 bool match_data
, uint64_t data
,
872 int fd
= event_notifier_get_fd(e
);
875 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
876 data
, false, int128_get64(section
->size
),
883 static MemoryListener kvm_memory_listener
= {
884 .region_add
= kvm_region_add
,
885 .region_del
= kvm_region_del
,
886 .log_start
= kvm_log_start
,
887 .log_stop
= kvm_log_stop
,
888 .log_sync
= kvm_log_sync
,
889 .log_global_start
= kvm_log_global_start
,
890 .log_global_stop
= kvm_log_global_stop
,
891 .eventfd_add
= kvm_mem_ioeventfd_add
,
892 .eventfd_del
= kvm_mem_ioeventfd_del
,
893 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
894 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
898 static MemoryListener kvm_io_listener
= {
899 .eventfd_add
= kvm_io_ioeventfd_add
,
900 .eventfd_del
= kvm_io_ioeventfd_del
,
904 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
906 cpu
->interrupt_request
|= mask
;
908 if (!qemu_cpu_is_self(cpu
)) {
913 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
915 struct kvm_irq_level event
;
918 assert(kvm_async_interrupts_enabled());
922 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
924 perror("kvm_set_irq");
928 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
931 #ifdef KVM_CAP_IRQ_ROUTING
932 typedef struct KVMMSIRoute
{
933 struct kvm_irq_routing_entry kroute
;
934 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
937 static void set_gsi(KVMState
*s
, unsigned int gsi
)
939 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
942 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
944 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
947 void kvm_init_irq_routing(KVMState
*s
)
951 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
953 unsigned int gsi_bits
, i
;
955 /* Round up so we can search ints using ffs */
956 gsi_bits
= ALIGN(gsi_count
, 32);
957 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
958 s
->gsi_count
= gsi_count
;
960 /* Mark any over-allocated bits as already in use */
961 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
966 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
967 s
->nr_allocated_irq_routes
= 0;
969 if (!s
->direct_msi
) {
970 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
971 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
975 kvm_arch_init_irq_routing(s
);
978 void kvm_irqchip_commit_routes(KVMState
*s
)
982 s
->irq_routes
->flags
= 0;
983 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
987 static void kvm_add_routing_entry(KVMState
*s
,
988 struct kvm_irq_routing_entry
*entry
)
990 struct kvm_irq_routing_entry
*new;
993 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
994 n
= s
->nr_allocated_irq_routes
* 2;
998 size
= sizeof(struct kvm_irq_routing
);
999 size
+= n
* sizeof(*new);
1000 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1001 s
->nr_allocated_irq_routes
= n
;
1003 n
= s
->irq_routes
->nr
++;
1004 new = &s
->irq_routes
->entries
[n
];
1008 set_gsi(s
, entry
->gsi
);
1011 static int kvm_update_routing_entry(KVMState
*s
,
1012 struct kvm_irq_routing_entry
*new_entry
)
1014 struct kvm_irq_routing_entry
*entry
;
1017 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1018 entry
= &s
->irq_routes
->entries
[n
];
1019 if (entry
->gsi
!= new_entry
->gsi
) {
1023 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1027 *entry
= *new_entry
;
1029 kvm_irqchip_commit_routes(s
);
1037 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1039 struct kvm_irq_routing_entry e
= {};
1041 assert(pin
< s
->gsi_count
);
1044 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1046 e
.u
.irqchip
.irqchip
= irqchip
;
1047 e
.u
.irqchip
.pin
= pin
;
1048 kvm_add_routing_entry(s
, &e
);
1051 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1053 struct kvm_irq_routing_entry
*e
;
1056 if (kvm_gsi_direct_mapping()) {
1060 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1061 e
= &s
->irq_routes
->entries
[i
];
1062 if (e
->gsi
== virq
) {
1063 s
->irq_routes
->nr
--;
1064 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1070 static unsigned int kvm_hash_msi(uint32_t data
)
1072 /* This is optimized for IA32 MSI layout. However, no other arch shall
1073 * repeat the mistake of not providing a direct MSI injection API. */
1077 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1079 KVMMSIRoute
*route
, *next
;
1082 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1083 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1084 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1085 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1091 static int kvm_irqchip_get_virq(KVMState
*s
)
1093 uint32_t *word
= s
->used_gsi_bitmap
;
1094 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1099 /* Return the lowest unused GSI in the bitmap */
1100 for (i
= 0; i
< max_words
; i
++) {
1101 bit
= ffs(~word
[i
]);
1106 return bit
- 1 + i
* 32;
1108 if (!s
->direct_msi
&& retry
) {
1110 kvm_flush_dynamic_msi_routes(s
);
1117 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1119 unsigned int hash
= kvm_hash_msi(msg
.data
);
1122 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1123 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1124 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1125 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1132 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1137 if (s
->direct_msi
) {
1138 msi
.address_lo
= (uint32_t)msg
.address
;
1139 msi
.address_hi
= msg
.address
>> 32;
1140 msi
.data
= le32_to_cpu(msg
.data
);
1142 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1144 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1147 route
= kvm_lookup_msi_route(s
, msg
);
1151 virq
= kvm_irqchip_get_virq(s
);
1156 route
= g_malloc0(sizeof(KVMMSIRoute
));
1157 route
->kroute
.gsi
= virq
;
1158 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1159 route
->kroute
.flags
= 0;
1160 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1161 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1162 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1164 kvm_add_routing_entry(s
, &route
->kroute
);
1165 kvm_irqchip_commit_routes(s
);
1167 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1171 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1173 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1176 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1178 struct kvm_irq_routing_entry kroute
= {};
1181 if (kvm_gsi_direct_mapping()) {
1182 return msg
.data
& 0xffff;
1185 if (!kvm_gsi_routing_enabled()) {
1189 virq
= kvm_irqchip_get_virq(s
);
1195 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1197 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1198 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1199 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1201 kvm_add_routing_entry(s
, &kroute
);
1202 kvm_irqchip_commit_routes(s
);
1207 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1209 struct kvm_irq_routing_entry kroute
= {};
1211 if (kvm_gsi_direct_mapping()) {
1215 if (!kvm_irqchip_in_kernel()) {
1220 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1222 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1223 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1224 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1226 return kvm_update_routing_entry(s
, &kroute
);
1229 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1232 struct kvm_irqfd irqfd
= {
1235 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1239 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1240 irqfd
.resamplefd
= rfd
;
1243 if (!kvm_irqfds_enabled()) {
1247 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1250 #else /* !KVM_CAP_IRQ_ROUTING */
1252 void kvm_init_irq_routing(KVMState
*s
)
1256 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1260 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1265 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1270 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1275 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1279 #endif /* !KVM_CAP_IRQ_ROUTING */
1281 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1282 EventNotifier
*rn
, int virq
)
1284 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1285 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1288 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1290 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1294 static int kvm_irqchip_create(KVMState
*s
)
1298 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1299 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1303 /* First probe and see if there's a arch-specific hook to create the
1304 * in-kernel irqchip for us */
1305 ret
= kvm_arch_irqchip_create(s
);
1308 } else if (ret
== 0) {
1309 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1311 fprintf(stderr
, "Create kernel irqchip failed\n");
1316 kvm_kernel_irqchip
= true;
1317 /* If we have an in-kernel IRQ chip then we must have asynchronous
1318 * interrupt delivery (though the reverse is not necessarily true)
1320 kvm_async_interrupts_allowed
= true;
1321 kvm_halt_in_kernel_allowed
= true;
1323 kvm_init_irq_routing(s
);
1328 /* Find number of supported CPUs using the recommended
1329 * procedure from the kernel API documentation to cope with
1330 * older kernels that may be missing capabilities.
1332 static int kvm_recommended_vcpus(KVMState
*s
)
1334 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1335 return (ret
) ? ret
: 4;
1338 static int kvm_max_vcpus(KVMState
*s
)
1340 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1341 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1344 int kvm_init(QEMUMachine
*machine
)
1346 static const char upgrade_note
[] =
1347 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1348 "(see http://sourceforge.net/projects/kvm).\n";
1353 { "SMP", smp_cpus
},
1354 { "hotpluggable", max_cpus
},
1357 int soft_vcpus_limit
, hard_vcpus_limit
;
1359 const KVMCapabilityInfo
*missing_cap
;
1362 const char *kvm_type
;
1364 s
= g_malloc0(sizeof(KVMState
));
1367 * On systems where the kernel can support different base page
1368 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1369 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1370 * page size for the system though.
1372 assert(TARGET_PAGE_SIZE
<= getpagesize());
1375 #ifdef KVM_CAP_SET_GUEST_DEBUG
1376 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1379 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1381 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1386 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1387 if (ret
< KVM_API_VERSION
) {
1391 fprintf(stderr
, "kvm version too old\n");
1395 if (ret
> KVM_API_VERSION
) {
1397 fprintf(stderr
, "kvm version not supported\n");
1401 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1403 /* If unspecified, use the default value */
1408 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1410 for (i
= 0; i
< s
->nr_slots
; i
++) {
1411 s
->slots
[i
].slot
= i
;
1414 /* check the vcpu limits */
1415 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1416 hard_vcpus_limit
= kvm_max_vcpus(s
);
1419 if (nc
->num
> soft_vcpus_limit
) {
1421 "Warning: Number of %s cpus requested (%d) exceeds "
1422 "the recommended cpus supported by KVM (%d)\n",
1423 nc
->name
, nc
->num
, soft_vcpus_limit
);
1425 if (nc
->num
> hard_vcpus_limit
) {
1426 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1427 "the maximum cpus supported by KVM (%d)\n",
1428 nc
->name
, nc
->num
, hard_vcpus_limit
);
1435 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1436 if (machine
->kvm_type
) {
1437 type
= machine
->kvm_type(kvm_type
);
1438 } else if (kvm_type
) {
1439 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1444 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1445 } while (ret
== -EINTR
);
1448 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1452 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1453 "your host kernel command line\n");
1459 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1462 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1466 fprintf(stderr
, "kvm does not support %s\n%s",
1467 missing_cap
->name
, upgrade_note
);
1471 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1473 s
->broken_set_mem_region
= 1;
1474 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1476 s
->broken_set_mem_region
= 0;
1479 #ifdef KVM_CAP_VCPU_EVENTS
1480 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1483 s
->robust_singlestep
=
1484 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1486 #ifdef KVM_CAP_DEBUGREGS
1487 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1490 #ifdef KVM_CAP_XSAVE
1491 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1495 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1498 #ifdef KVM_CAP_PIT_STATE2
1499 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1502 #ifdef KVM_CAP_IRQ_ROUTING
1503 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1506 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1508 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1509 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1510 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1513 #ifdef KVM_CAP_READONLY_MEM
1514 kvm_readonly_mem_allowed
=
1515 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1518 ret
= kvm_arch_init(s
);
1523 ret
= kvm_irqchip_create(s
);
1529 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1530 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1532 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1534 cpu_interrupt_handler
= kvm_handle_interrupt
;
1551 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1555 uint8_t *ptr
= data
;
1557 for (i
= 0; i
< count
; i
++) {
1558 address_space_rw(&address_space_io
, port
, ptr
, size
,
1559 direction
== KVM_EXIT_IO_OUT
);
1564 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1566 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1567 run
->internal
.suberror
);
1569 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1572 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1573 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1574 i
, (uint64_t)run
->internal
.data
[i
]);
1577 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1578 fprintf(stderr
, "emulation failure\n");
1579 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1580 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1581 return EXCP_INTERRUPT
;
1584 /* FIXME: Should trigger a qmp message to let management know
1585 * something went wrong.
1590 void kvm_flush_coalesced_mmio_buffer(void)
1592 KVMState
*s
= kvm_state
;
1594 if (s
->coalesced_flush_in_progress
) {
1598 s
->coalesced_flush_in_progress
= true;
1600 if (s
->coalesced_mmio_ring
) {
1601 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1602 while (ring
->first
!= ring
->last
) {
1603 struct kvm_coalesced_mmio
*ent
;
1605 ent
= &ring
->coalesced_mmio
[ring
->first
];
1607 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1609 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1613 s
->coalesced_flush_in_progress
= false;
1616 static void do_kvm_cpu_synchronize_state(void *arg
)
1618 CPUState
*cpu
= arg
;
1620 if (!cpu
->kvm_vcpu_dirty
) {
1621 kvm_arch_get_registers(cpu
);
1622 cpu
->kvm_vcpu_dirty
= true;
1626 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1628 if (!cpu
->kvm_vcpu_dirty
) {
1629 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1633 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1635 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1636 cpu
->kvm_vcpu_dirty
= false;
1639 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1641 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1642 cpu
->kvm_vcpu_dirty
= false;
1645 int kvm_cpu_exec(CPUState
*cpu
)
1647 struct kvm_run
*run
= cpu
->kvm_run
;
1650 DPRINTF("kvm_cpu_exec()\n");
1652 if (kvm_arch_process_async_events(cpu
)) {
1653 cpu
->exit_request
= 0;
1658 if (cpu
->kvm_vcpu_dirty
) {
1659 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1660 cpu
->kvm_vcpu_dirty
= false;
1663 kvm_arch_pre_run(cpu
, run
);
1664 if (cpu
->exit_request
) {
1665 DPRINTF("interrupt exit requested\n");
1667 * KVM requires us to reenter the kernel after IO exits to complete
1668 * instruction emulation. This self-signal will ensure that we
1671 qemu_cpu_kick_self();
1673 qemu_mutex_unlock_iothread();
1675 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1677 qemu_mutex_lock_iothread();
1678 kvm_arch_post_run(cpu
, run
);
1681 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1682 DPRINTF("io window exit\n");
1683 ret
= EXCP_INTERRUPT
;
1686 fprintf(stderr
, "error: kvm run failed %s\n",
1687 strerror(-run_ret
));
1691 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1692 switch (run
->exit_reason
) {
1694 DPRINTF("handle_io\n");
1695 kvm_handle_io(run
->io
.port
,
1696 (uint8_t *)run
+ run
->io
.data_offset
,
1703 DPRINTF("handle_mmio\n");
1704 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1707 run
->mmio
.is_write
);
1710 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1711 DPRINTF("irq_window_open\n");
1712 ret
= EXCP_INTERRUPT
;
1714 case KVM_EXIT_SHUTDOWN
:
1715 DPRINTF("shutdown\n");
1716 qemu_system_reset_request();
1717 ret
= EXCP_INTERRUPT
;
1719 case KVM_EXIT_UNKNOWN
:
1720 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1721 (uint64_t)run
->hw
.hardware_exit_reason
);
1724 case KVM_EXIT_INTERNAL_ERROR
:
1725 ret
= kvm_handle_internal_error(cpu
, run
);
1728 DPRINTF("kvm_arch_handle_exit\n");
1729 ret
= kvm_arch_handle_exit(cpu
, run
);
1735 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1736 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1739 cpu
->exit_request
= 0;
1743 int kvm_ioctl(KVMState
*s
, int type
, ...)
1750 arg
= va_arg(ap
, void *);
1753 trace_kvm_ioctl(type
, arg
);
1754 ret
= ioctl(s
->fd
, type
, arg
);
1761 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1768 arg
= va_arg(ap
, void *);
1771 trace_kvm_vm_ioctl(type
, arg
);
1772 ret
= ioctl(s
->vmfd
, type
, arg
);
1779 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1786 arg
= va_arg(ap
, void *);
1789 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1790 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1797 int kvm_device_ioctl(int fd
, int type
, ...)
1804 arg
= va_arg(ap
, void *);
1807 trace_kvm_device_ioctl(fd
, type
, arg
);
1808 ret
= ioctl(fd
, type
, arg
);
1815 int kvm_has_sync_mmu(void)
1817 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1820 int kvm_has_vcpu_events(void)
1822 return kvm_state
->vcpu_events
;
1825 int kvm_has_robust_singlestep(void)
1827 return kvm_state
->robust_singlestep
;
1830 int kvm_has_debugregs(void)
1832 return kvm_state
->debugregs
;
1835 int kvm_has_xsave(void)
1837 return kvm_state
->xsave
;
1840 int kvm_has_xcrs(void)
1842 return kvm_state
->xcrs
;
1845 int kvm_has_pit_state2(void)
1847 return kvm_state
->pit_state2
;
1850 int kvm_has_many_ioeventfds(void)
1852 if (!kvm_enabled()) {
1855 return kvm_state
->many_ioeventfds
;
1858 int kvm_has_gsi_routing(void)
1860 #ifdef KVM_CAP_IRQ_ROUTING
1861 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1867 int kvm_has_intx_set_mask(void)
1869 return kvm_state
->intx_set_mask
;
1872 void kvm_setup_guest_memory(void *start
, size_t size
)
1874 #ifdef CONFIG_VALGRIND_H
1875 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1877 if (!kvm_has_sync_mmu()) {
1878 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1881 perror("qemu_madvise");
1883 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1889 #ifdef KVM_CAP_SET_GUEST_DEBUG
1890 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1893 struct kvm_sw_breakpoint
*bp
;
1895 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1903 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1905 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1908 struct kvm_set_guest_debug_data
{
1909 struct kvm_guest_debug dbg
;
1914 static void kvm_invoke_set_guest_debug(void *data
)
1916 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1918 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1922 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
1924 struct kvm_set_guest_debug_data data
;
1926 data
.dbg
.control
= reinject_trap
;
1928 if (cpu
->singlestep_enabled
) {
1929 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1931 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1934 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1938 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
1939 target_ulong len
, int type
)
1941 struct kvm_sw_breakpoint
*bp
;
1944 if (type
== GDB_BREAKPOINT_SW
) {
1945 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1951 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1958 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
1964 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1966 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1973 err
= kvm_update_guest_debug(cpu
, 0);
1981 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
1982 target_ulong len
, int type
)
1984 struct kvm_sw_breakpoint
*bp
;
1987 if (type
== GDB_BREAKPOINT_SW
) {
1988 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1993 if (bp
->use_count
> 1) {
1998 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2003 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2006 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2013 err
= kvm_update_guest_debug(cpu
, 0);
2021 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2023 struct kvm_sw_breakpoint
*bp
, *next
;
2024 KVMState
*s
= cpu
->kvm_state
;
2026 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2027 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2028 /* Try harder to find a CPU that currently sees the breakpoint. */
2030 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
2035 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2038 kvm_arch_remove_all_hw_breakpoints();
2041 kvm_update_guest_debug(cpu
, 0);
2045 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2047 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2052 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2053 target_ulong len
, int type
)
2058 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2059 target_ulong len
, int type
)
2064 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2067 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2069 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2071 struct kvm_signal_mask
*sigmask
;
2075 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2078 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2081 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2082 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2087 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2089 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2092 int kvm_on_sigbus(int code
, void *addr
)
2094 return kvm_arch_on_sigbus(code
, addr
);
2097 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2100 struct kvm_create_device create_dev
;
2102 create_dev
.type
= type
;
2104 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2106 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2110 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2115 return test
? 0 : create_dev
.fd
;