tests/qtest/fuzz-sdcard-test: Add reproducer for OSS-Fuzz (Issue 29225)
[qemu/rayw.git] / accel / tcg / cputlb.c
blob2035b2ac0ac0b1ff606d21ee1dd43fb3cf73fe9c
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace/trace-root.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 # define DEBUG_TLB_LOG_GATE 1
52 # else
53 # define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
60 #define tlb_debug(fmt, ...) do { \
61 if (DEBUG_TLB_LOG_GATE) { \
62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63 ## __VA_ARGS__); \
64 } else if (DEBUG_TLB_GATE) { \
65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66 } \
67 } while (0)
69 #define assert_cpu_is_self(cpu) do { \
70 if (DEBUG_TLB_GATE) { \
71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
72 } \
73 } while (0)
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76 * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95 size_t max_entries)
97 desc->window_begin_ns = ns;
98 desc->window_max_entries = max_entries;
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
103 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
105 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
106 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
110 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
112 /* Discard jump cache entries for any tb which might potentially
113 overlap the flushed page. */
114 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
115 tb_jmp_cache_clear_page(cpu, addr);
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
123 * Called with tlb_lock_held.
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
139 * To achieve near-optimal performance for all kinds of workloads, we:
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
161 size_t old_size = tlb_n_entries(fast);
162 size_t rate;
163 size_t new_size = old_size;
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
171 rate = desc->window_max_entries * 100 / old_size;
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
189 if (expected_rate > 70) {
190 ceil *= 2;
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
195 if (new_size == old_size) {
196 if (window_expired) {
197 tlb_window_reset(desc, now, desc->n_used_entries);
199 return;
202 g_free(fast->table);
203 g_free(desc->iotlb);
205 tlb_window_reset(desc, now, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
218 while (fast->table == NULL || desc->iotlb == NULL) {
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
226 g_free(fast->table);
227 g_free(desc->iotlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244 int64_t now)
246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
249 tlb_mmu_resize_locked(desc, fast, now);
250 tlb_mmu_flush_locked(desc, fast);
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
262 tlb_mmu_flush_locked(desc, fast);
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
267 env_tlb(env)->d[mmu_idx].n_used_entries++;
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
272 env_tlb(env)->d[mmu_idx].n_used_entries--;
275 void tlb_init(CPUState *cpu)
277 CPUArchState *env = cpu->env_ptr;
278 int64_t now = get_clock_realtime();
279 int i;
281 qemu_spin_init(&env_tlb(env)->c.lock);
283 /* All tlbs are initialized flushed. */
284 env_tlb(env)->c.dirty = 0;
286 for (i = 0; i < NB_MMU_MODES; i++) {
287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
291 void tlb_destroy(CPUState *cpu)
293 CPUArchState *env = cpu->env_ptr;
294 int i;
296 qemu_spin_destroy(&env_tlb(env)->c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &env_tlb(env)->d[i];
299 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
301 g_free(fast->table);
302 g_free(desc->iotlb);
306 /* flush_all_helper: run fn across all cpus
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
316 CPUState *cpu;
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
327 CPUState *cpu;
328 size_t full = 0, part = 0, elide = 0;
330 CPU_FOREACH(cpu) {
331 CPUArchState *env = cpu->env_ptr;
333 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
337 *pfull = full;
338 *ppart = part;
339 *pelide = elide;
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
344 CPUArchState *env = cpu->env_ptr;
345 uint16_t asked = data.host_int;
346 uint16_t all_dirty, work, to_clean;
347 int64_t now = get_clock_realtime();
349 assert_cpu_is_self(cpu);
351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
353 qemu_spin_lock(&env_tlb(env)->c.lock);
355 all_dirty = env_tlb(env)->c.dirty;
356 to_clean = asked & all_dirty;
357 all_dirty &= ~to_clean;
358 env_tlb(env)->c.dirty = all_dirty;
360 for (work = to_clean; work != 0; work &= work - 1) {
361 int mmu_idx = ctz32(work);
362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
365 qemu_spin_unlock(&env_tlb(env)->c.lock);
367 cpu_tb_jmp_cache_clear(cpu);
369 if (to_clean == ALL_MMUIDX_BITS) {
370 qatomic_set(&env_tlb(env)->c.full_flush_count,
371 env_tlb(env)->c.full_flush_count + 1);
372 } else {
373 qatomic_set(&env_tlb(env)->c.part_flush_count,
374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375 if (to_clean != asked) {
376 qatomic_set(&env_tlb(env)->c.elide_flush_count,
377 env_tlb(env)->c.elide_flush_count +
378 ctpop16(asked & ~to_clean));
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
387 if (cpu->created && !qemu_cpu_is_self(cpu)) {
388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389 RUN_ON_CPU_HOST_INT(idxmap));
390 } else {
391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
395 void tlb_flush(CPUState *cpu)
397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
410 void tlb_flush_all_cpus(CPUState *src_cpu)
412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431 target_ulong page, target_ulong mask)
433 page &= mask;
434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
436 return (page == (tlb_entry->addr_read & mask) ||
437 page == (tlb_addr_write(tlb_entry) & mask) ||
438 page == (tlb_entry->addr_code & mask));
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
442 target_ulong page)
444 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
448 * tlb_entry_is_empty - return true if the entry is not in use
449 * @te: pointer to CPUTLBEntry
451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
453 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
456 /* Called with tlb_c.lock held */
457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
458 target_ulong page,
459 target_ulong mask)
461 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
462 memset(tlb_entry, -1, sizeof(*tlb_entry));
463 return true;
465 return false;
468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
469 target_ulong page)
471 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
474 /* Called with tlb_c.lock held */
475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
476 target_ulong page,
477 target_ulong mask)
479 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
480 int k;
482 assert_cpu_is_self(env_cpu(env));
483 for (k = 0; k < CPU_VTLB_SIZE; k++) {
484 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
485 tlb_n_used_entries_dec(env, mmu_idx);
490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
491 target_ulong page)
493 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
496 static void tlb_flush_page_locked(CPUArchState *env, int midx,
497 target_ulong page)
499 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
500 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
502 /* Check if we need to flush due to large pages. */
503 if ((page & lp_mask) == lp_addr) {
504 tlb_debug("forcing full flush midx %d ("
505 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
506 midx, lp_addr, lp_mask);
507 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
508 } else {
509 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
510 tlb_n_used_entries_dec(env, midx);
512 tlb_flush_vtlb_page_locked(env, midx, page);
517 * tlb_flush_page_by_mmuidx_async_0:
518 * @cpu: cpu on which to flush
519 * @addr: page of virtual address to flush
520 * @idxmap: set of mmu_idx to flush
522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
523 * at @addr from the tlbs indicated by @idxmap from @cpu.
525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
526 target_ulong addr,
527 uint16_t idxmap)
529 CPUArchState *env = cpu->env_ptr;
530 int mmu_idx;
532 assert_cpu_is_self(cpu);
534 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
536 qemu_spin_lock(&env_tlb(env)->c.lock);
537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
538 if ((idxmap >> mmu_idx) & 1) {
539 tlb_flush_page_locked(env, mmu_idx, addr);
542 qemu_spin_unlock(&env_tlb(env)->c.lock);
544 tb_flush_jmp_cache(cpu, addr);
548 * tlb_flush_page_by_mmuidx_async_1:
549 * @cpu: cpu on which to flush
550 * @data: encoded addr + idxmap
552 * Helper for tlb_flush_page_by_mmuidx and friends, called through
553 * async_run_on_cpu. The idxmap parameter is encoded in the page
554 * offset of the target_ptr field. This limits the set of mmu_idx
555 * that can be passed via this method.
557 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
558 run_on_cpu_data data)
560 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
561 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
562 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
564 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
567 typedef struct {
568 target_ulong addr;
569 uint16_t idxmap;
570 } TLBFlushPageByMMUIdxData;
573 * tlb_flush_page_by_mmuidx_async_2:
574 * @cpu: cpu on which to flush
575 * @data: allocated addr + idxmap
577 * Helper for tlb_flush_page_by_mmuidx and friends, called through
578 * async_run_on_cpu. The addr+idxmap parameters are stored in a
579 * TLBFlushPageByMMUIdxData structure that has been allocated
580 * specifically for this helper. Free the structure when done.
582 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
583 run_on_cpu_data data)
585 TLBFlushPageByMMUIdxData *d = data.host_ptr;
587 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
588 g_free(d);
591 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
593 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
595 /* This should already be page aligned */
596 addr &= TARGET_PAGE_MASK;
598 if (qemu_cpu_is_self(cpu)) {
599 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
600 } else if (idxmap < TARGET_PAGE_SIZE) {
602 * Most targets have only a few mmu_idx. In the case where
603 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
604 * allocating memory for this operation.
606 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
607 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
608 } else {
609 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
611 /* Otherwise allocate a structure, freed by the worker. */
612 d->addr = addr;
613 d->idxmap = idxmap;
614 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
615 RUN_ON_CPU_HOST_PTR(d));
619 void tlb_flush_page(CPUState *cpu, target_ulong addr)
621 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
625 uint16_t idxmap)
627 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
629 /* This should already be page aligned */
630 addr &= TARGET_PAGE_MASK;
633 * Allocate memory to hold addr+idxmap only when needed.
634 * See tlb_flush_page_by_mmuidx for details.
636 if (idxmap < TARGET_PAGE_SIZE) {
637 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639 } else {
640 CPUState *dst_cpu;
642 /* Allocate a separate data block for each destination cpu. */
643 CPU_FOREACH(dst_cpu) {
644 if (dst_cpu != src_cpu) {
645 TLBFlushPageByMMUIdxData *d
646 = g_new(TLBFlushPageByMMUIdxData, 1);
648 d->addr = addr;
649 d->idxmap = idxmap;
650 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
651 RUN_ON_CPU_HOST_PTR(d));
656 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
659 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
661 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
665 target_ulong addr,
666 uint16_t idxmap)
668 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
670 /* This should already be page aligned */
671 addr &= TARGET_PAGE_MASK;
674 * Allocate memory to hold addr+idxmap only when needed.
675 * See tlb_flush_page_by_mmuidx for details.
677 if (idxmap < TARGET_PAGE_SIZE) {
678 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
679 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
680 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682 } else {
683 CPUState *dst_cpu;
684 TLBFlushPageByMMUIdxData *d;
686 /* Allocate a separate data block for each destination cpu. */
687 CPU_FOREACH(dst_cpu) {
688 if (dst_cpu != src_cpu) {
689 d = g_new(TLBFlushPageByMMUIdxData, 1);
690 d->addr = addr;
691 d->idxmap = idxmap;
692 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
693 RUN_ON_CPU_HOST_PTR(d));
697 d = g_new(TLBFlushPageByMMUIdxData, 1);
698 d->addr = addr;
699 d->idxmap = idxmap;
700 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
701 RUN_ON_CPU_HOST_PTR(d));
705 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
707 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
710 static void tlb_flush_range_locked(CPUArchState *env, int midx,
711 target_ulong addr, target_ulong len,
712 unsigned bits)
714 CPUTLBDesc *d = &env_tlb(env)->d[midx];
715 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
716 target_ulong mask = MAKE_64BIT_MASK(0, bits);
719 * If @bits is smaller than the tlb size, there may be multiple entries
720 * within the TLB; otherwise all addresses that match under @mask hit
721 * the same TLB entry.
722 * TODO: Perhaps allow bits to be a few bits less than the size.
723 * For now, just flush the entire TLB.
725 * If @len is larger than the tlb size, then it will take longer to
726 * test all of the entries in the TLB than it will to flush it all.
728 if (mask < f->mask || len > f->mask) {
729 tlb_debug("forcing full flush midx %d ("
730 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
731 midx, addr, mask, len);
732 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
733 return;
737 * Check if we need to flush due to large pages.
738 * Because large_page_mask contains all 1's from the msb,
739 * we only need to test the end of the range.
741 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
742 tlb_debug("forcing full flush midx %d ("
743 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
744 midx, d->large_page_addr, d->large_page_mask);
745 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
746 return;
749 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
750 target_ulong page = addr + i;
751 CPUTLBEntry *entry = tlb_entry(env, midx, page);
753 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
754 tlb_n_used_entries_dec(env, midx);
756 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
760 typedef struct {
761 target_ulong addr;
762 target_ulong len;
763 uint16_t idxmap;
764 uint16_t bits;
765 } TLBFlushRangeData;
767 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
768 TLBFlushRangeData d)
770 CPUArchState *env = cpu->env_ptr;
771 int mmu_idx;
773 assert_cpu_is_self(cpu);
775 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
776 d.addr, d.bits, d.len, d.idxmap);
778 qemu_spin_lock(&env_tlb(env)->c.lock);
779 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
780 if ((d.idxmap >> mmu_idx) & 1) {
781 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
784 qemu_spin_unlock(&env_tlb(env)->c.lock);
787 * If the length is larger than the jump cache size, then it will take
788 * longer to clear each entry individually than it will to clear it all.
790 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
791 cpu_tb_jmp_cache_clear(cpu);
792 return;
795 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
796 tb_flush_jmp_cache(cpu, d.addr + i);
800 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
801 run_on_cpu_data data)
803 TLBFlushRangeData *d = data.host_ptr;
804 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
805 g_free(d);
808 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
809 target_ulong len, uint16_t idxmap,
810 unsigned bits)
812 TLBFlushRangeData d;
815 * If all bits are significant, and len is small,
816 * this devolves to tlb_flush_page.
818 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
819 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
820 return;
822 /* If no page bits are significant, this devolves to tlb_flush. */
823 if (bits < TARGET_PAGE_BITS) {
824 tlb_flush_by_mmuidx(cpu, idxmap);
825 return;
828 /* This should already be page aligned */
829 d.addr = addr & TARGET_PAGE_MASK;
830 d.len = len;
831 d.idxmap = idxmap;
832 d.bits = bits;
834 if (qemu_cpu_is_self(cpu)) {
835 tlb_flush_range_by_mmuidx_async_0(cpu, d);
836 } else {
837 /* Otherwise allocate a structure, freed by the worker. */
838 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
839 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
840 RUN_ON_CPU_HOST_PTR(p));
844 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
845 uint16_t idxmap, unsigned bits)
847 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
850 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
851 target_ulong addr, target_ulong len,
852 uint16_t idxmap, unsigned bits)
854 TLBFlushRangeData d;
855 CPUState *dst_cpu;
858 * If all bits are significant, and len is small,
859 * this devolves to tlb_flush_page.
861 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
862 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
863 return;
865 /* If no page bits are significant, this devolves to tlb_flush. */
866 if (bits < TARGET_PAGE_BITS) {
867 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
868 return;
871 /* This should already be page aligned */
872 d.addr = addr & TARGET_PAGE_MASK;
873 d.len = len;
874 d.idxmap = idxmap;
875 d.bits = bits;
877 /* Allocate a separate data block for each destination cpu. */
878 CPU_FOREACH(dst_cpu) {
879 if (dst_cpu != src_cpu) {
880 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
881 async_run_on_cpu(dst_cpu,
882 tlb_flush_range_by_mmuidx_async_1,
883 RUN_ON_CPU_HOST_PTR(p));
887 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
890 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
891 target_ulong addr,
892 uint16_t idxmap, unsigned bits)
894 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
895 idxmap, bits);
898 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
899 target_ulong addr,
900 target_ulong len,
901 uint16_t idxmap,
902 unsigned bits)
904 TLBFlushRangeData d, *p;
905 CPUState *dst_cpu;
908 * If all bits are significant, and len is small,
909 * this devolves to tlb_flush_page.
911 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
912 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
913 return;
915 /* If no page bits are significant, this devolves to tlb_flush. */
916 if (bits < TARGET_PAGE_BITS) {
917 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
918 return;
921 /* This should already be page aligned */
922 d.addr = addr & TARGET_PAGE_MASK;
923 d.len = len;
924 d.idxmap = idxmap;
925 d.bits = bits;
927 /* Allocate a separate data block for each destination cpu. */
928 CPU_FOREACH(dst_cpu) {
929 if (dst_cpu != src_cpu) {
930 p = g_memdup(&d, sizeof(d));
931 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
932 RUN_ON_CPU_HOST_PTR(p));
936 p = g_memdup(&d, sizeof(d));
937 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
938 RUN_ON_CPU_HOST_PTR(p));
941 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
942 target_ulong addr,
943 uint16_t idxmap,
944 unsigned bits)
946 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
947 idxmap, bits);
950 /* update the TLBs so that writes to code in the virtual page 'addr'
951 can be detected */
952 void tlb_protect_code(ram_addr_t ram_addr)
954 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
955 DIRTY_MEMORY_CODE);
958 /* update the TLB so that writes in physical page 'phys_addr' are no longer
959 tested for self modifying code */
960 void tlb_unprotect_code(ram_addr_t ram_addr)
962 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
967 * Dirty write flag handling
969 * When the TCG code writes to a location it looks up the address in
970 * the TLB and uses that data to compute the final address. If any of
971 * the lower bits of the address are set then the slow path is forced.
972 * There are a number of reasons to do this but for normal RAM the
973 * most usual is detecting writes to code regions which may invalidate
974 * generated code.
976 * Other vCPUs might be reading their TLBs during guest execution, so we update
977 * te->addr_write with qatomic_set. We don't need to worry about this for
978 * oversized guests as MTTCG is disabled for them.
980 * Called with tlb_c.lock held.
982 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
983 uintptr_t start, uintptr_t length)
985 uintptr_t addr = tlb_entry->addr_write;
987 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
988 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
989 addr &= TARGET_PAGE_MASK;
990 addr += tlb_entry->addend;
991 if ((addr - start) < length) {
992 #if TCG_OVERSIZED_GUEST
993 tlb_entry->addr_write |= TLB_NOTDIRTY;
994 #else
995 qatomic_set(&tlb_entry->addr_write,
996 tlb_entry->addr_write | TLB_NOTDIRTY);
997 #endif
1003 * Called with tlb_c.lock held.
1004 * Called only from the vCPU context, i.e. the TLB's owner thread.
1006 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1008 *d = *s;
1011 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1012 * the target vCPU).
1013 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1014 * thing actually updated is the target TLB entry ->addr_write flags.
1016 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1018 CPUArchState *env;
1020 int mmu_idx;
1022 env = cpu->env_ptr;
1023 qemu_spin_lock(&env_tlb(env)->c.lock);
1024 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1025 unsigned int i;
1026 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1028 for (i = 0; i < n; i++) {
1029 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1030 start1, length);
1033 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1034 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1035 start1, length);
1038 qemu_spin_unlock(&env_tlb(env)->c.lock);
1041 /* Called with tlb_c.lock held */
1042 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1043 target_ulong vaddr)
1045 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1046 tlb_entry->addr_write = vaddr;
1050 /* update the TLB corresponding to virtual page vaddr
1051 so that it is no longer dirty */
1052 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1054 CPUArchState *env = cpu->env_ptr;
1055 int mmu_idx;
1057 assert_cpu_is_self(cpu);
1059 vaddr &= TARGET_PAGE_MASK;
1060 qemu_spin_lock(&env_tlb(env)->c.lock);
1061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1062 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1065 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1066 int k;
1067 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1068 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1071 qemu_spin_unlock(&env_tlb(env)->c.lock);
1074 /* Our TLB does not support large pages, so remember the area covered by
1075 large pages and trigger a full TLB flush if these are invalidated. */
1076 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1077 target_ulong vaddr, target_ulong size)
1079 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1080 target_ulong lp_mask = ~(size - 1);
1082 if (lp_addr == (target_ulong)-1) {
1083 /* No previous large page. */
1084 lp_addr = vaddr;
1085 } else {
1086 /* Extend the existing region to include the new page.
1087 This is a compromise between unnecessary flushes and
1088 the cost of maintaining a full variable size TLB. */
1089 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1090 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1091 lp_mask <<= 1;
1094 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1095 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1098 /* Add a new TLB entry. At most one entry for a given virtual address
1099 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1100 * supplied size is only used by tlb_flush_page.
1102 * Called from TCG-generated code, which is under an RCU read-side
1103 * critical section.
1105 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1106 hwaddr paddr, MemTxAttrs attrs, int prot,
1107 int mmu_idx, target_ulong size)
1109 CPUArchState *env = cpu->env_ptr;
1110 CPUTLB *tlb = env_tlb(env);
1111 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1112 MemoryRegionSection *section;
1113 unsigned int index;
1114 target_ulong address;
1115 target_ulong write_address;
1116 uintptr_t addend;
1117 CPUTLBEntry *te, tn;
1118 hwaddr iotlb, xlat, sz, paddr_page;
1119 target_ulong vaddr_page;
1120 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1121 int wp_flags;
1122 bool is_ram, is_romd;
1124 assert_cpu_is_self(cpu);
1126 if (size <= TARGET_PAGE_SIZE) {
1127 sz = TARGET_PAGE_SIZE;
1128 } else {
1129 tlb_add_large_page(env, mmu_idx, vaddr, size);
1130 sz = size;
1132 vaddr_page = vaddr & TARGET_PAGE_MASK;
1133 paddr_page = paddr & TARGET_PAGE_MASK;
1135 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1136 &xlat, &sz, attrs, &prot);
1137 assert(sz >= TARGET_PAGE_SIZE);
1139 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1140 " prot=%x idx=%d\n",
1141 vaddr, paddr, prot, mmu_idx);
1143 address = vaddr_page;
1144 if (size < TARGET_PAGE_SIZE) {
1145 /* Repeat the MMU check and TLB fill on every access. */
1146 address |= TLB_INVALID_MASK;
1148 if (attrs.byte_swap) {
1149 address |= TLB_BSWAP;
1152 is_ram = memory_region_is_ram(section->mr);
1153 is_romd = memory_region_is_romd(section->mr);
1155 if (is_ram || is_romd) {
1156 /* RAM and ROMD both have associated host memory. */
1157 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1158 } else {
1159 /* I/O does not; force the host address to NULL. */
1160 addend = 0;
1163 write_address = address;
1164 if (is_ram) {
1165 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1167 * Computing is_clean is expensive; avoid all that unless
1168 * the page is actually writable.
1170 if (prot & PAGE_WRITE) {
1171 if (section->readonly) {
1172 write_address |= TLB_DISCARD_WRITE;
1173 } else if (cpu_physical_memory_is_clean(iotlb)) {
1174 write_address |= TLB_NOTDIRTY;
1177 } else {
1178 /* I/O or ROMD */
1179 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1181 * Writes to romd devices must go through MMIO to enable write.
1182 * Reads to romd devices go through the ram_ptr found above,
1183 * but of course reads to I/O must go through MMIO.
1185 write_address |= TLB_MMIO;
1186 if (!is_romd) {
1187 address = write_address;
1191 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1192 TARGET_PAGE_SIZE);
1194 index = tlb_index(env, mmu_idx, vaddr_page);
1195 te = tlb_entry(env, mmu_idx, vaddr_page);
1198 * Hold the TLB lock for the rest of the function. We could acquire/release
1199 * the lock several times in the function, but it is faster to amortize the
1200 * acquisition cost by acquiring it just once. Note that this leads to
1201 * a longer critical section, but this is not a concern since the TLB lock
1202 * is unlikely to be contended.
1204 qemu_spin_lock(&tlb->c.lock);
1206 /* Note that the tlb is no longer clean. */
1207 tlb->c.dirty |= 1 << mmu_idx;
1209 /* Make sure there's no cached translation for the new page. */
1210 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1213 * Only evict the old entry to the victim tlb if it's for a
1214 * different page; otherwise just overwrite the stale data.
1216 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1217 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1218 CPUTLBEntry *tv = &desc->vtable[vidx];
1220 /* Evict the old entry into the victim tlb. */
1221 copy_tlb_helper_locked(tv, te);
1222 desc->viotlb[vidx] = desc->iotlb[index];
1223 tlb_n_used_entries_dec(env, mmu_idx);
1226 /* refill the tlb */
1228 * At this point iotlb contains a physical section number in the lower
1229 * TARGET_PAGE_BITS, and either
1230 * + the ram_addr_t of the page base of the target RAM (RAM)
1231 * + the offset within section->mr of the page base (I/O, ROMD)
1232 * We subtract the vaddr_page (which is page aligned and thus won't
1233 * disturb the low bits) to give an offset which can be added to the
1234 * (non-page-aligned) vaddr of the eventual memory access to get
1235 * the MemoryRegion offset for the access. Note that the vaddr we
1236 * subtract here is that of the page base, and not the same as the
1237 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1239 desc->iotlb[index].addr = iotlb - vaddr_page;
1240 desc->iotlb[index].attrs = attrs;
1242 /* Now calculate the new entry */
1243 tn.addend = addend - vaddr_page;
1244 if (prot & PAGE_READ) {
1245 tn.addr_read = address;
1246 if (wp_flags & BP_MEM_READ) {
1247 tn.addr_read |= TLB_WATCHPOINT;
1249 } else {
1250 tn.addr_read = -1;
1253 if (prot & PAGE_EXEC) {
1254 tn.addr_code = address;
1255 } else {
1256 tn.addr_code = -1;
1259 tn.addr_write = -1;
1260 if (prot & PAGE_WRITE) {
1261 tn.addr_write = write_address;
1262 if (prot & PAGE_WRITE_INV) {
1263 tn.addr_write |= TLB_INVALID_MASK;
1265 if (wp_flags & BP_MEM_WRITE) {
1266 tn.addr_write |= TLB_WATCHPOINT;
1270 copy_tlb_helper_locked(te, &tn);
1271 tlb_n_used_entries_inc(env, mmu_idx);
1272 qemu_spin_unlock(&tlb->c.lock);
1275 /* Add a new TLB entry, but without specifying the memory
1276 * transaction attributes to be used.
1278 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1279 hwaddr paddr, int prot,
1280 int mmu_idx, target_ulong size)
1282 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1283 prot, mmu_idx, size);
1286 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1288 ram_addr_t ram_addr;
1290 ram_addr = qemu_ram_addr_from_host(ptr);
1291 if (ram_addr == RAM_ADDR_INVALID) {
1292 error_report("Bad ram pointer %p", ptr);
1293 abort();
1295 return ram_addr;
1299 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1300 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1301 * be discarded and looked up again (e.g. via tlb_entry()).
1303 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1304 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1306 CPUClass *cc = CPU_GET_CLASS(cpu);
1307 bool ok;
1310 * This is not a probe, so only valid return is success; failure
1311 * should result in exception + longjmp to the cpu loop.
1313 ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1314 access_type, mmu_idx, false, retaddr);
1315 assert(ok);
1318 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1319 MMUAccessType access_type,
1320 int mmu_idx, uintptr_t retaddr)
1322 CPUClass *cc = CPU_GET_CLASS(cpu);
1324 cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1327 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1328 vaddr addr, unsigned size,
1329 MMUAccessType access_type,
1330 int mmu_idx, MemTxAttrs attrs,
1331 MemTxResult response,
1332 uintptr_t retaddr)
1334 CPUClass *cc = CPU_GET_CLASS(cpu);
1336 if (!cpu->ignore_memory_transaction_failures &&
1337 cc->tcg_ops->do_transaction_failed) {
1338 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1339 access_type, mmu_idx, attrs,
1340 response, retaddr);
1344 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1345 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1346 MMUAccessType access_type, MemOp op)
1348 CPUState *cpu = env_cpu(env);
1349 hwaddr mr_offset;
1350 MemoryRegionSection *section;
1351 MemoryRegion *mr;
1352 uint64_t val;
1353 bool locked = false;
1354 MemTxResult r;
1356 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1357 mr = section->mr;
1358 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1359 cpu->mem_io_pc = retaddr;
1360 if (!cpu->can_do_io) {
1361 cpu_io_recompile(cpu, retaddr);
1364 if (!qemu_mutex_iothread_locked()) {
1365 qemu_mutex_lock_iothread();
1366 locked = true;
1368 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1369 if (r != MEMTX_OK) {
1370 hwaddr physaddr = mr_offset +
1371 section->offset_within_address_space -
1372 section->offset_within_region;
1374 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1375 mmu_idx, iotlbentry->attrs, r, retaddr);
1377 if (locked) {
1378 qemu_mutex_unlock_iothread();
1381 return val;
1385 * Save a potentially trashed IOTLB entry for later lookup by plugin.
1386 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1387 * because of the side effect of io_writex changing memory layout.
1389 static void save_iotlb_data(CPUState *cs, hwaddr addr,
1390 MemoryRegionSection *section, hwaddr mr_offset)
1392 #ifdef CONFIG_PLUGIN
1393 SavedIOTLB *saved = &cs->saved_iotlb;
1394 saved->addr = addr;
1395 saved->section = section;
1396 saved->mr_offset = mr_offset;
1397 #endif
1400 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1401 int mmu_idx, uint64_t val, target_ulong addr,
1402 uintptr_t retaddr, MemOp op)
1404 CPUState *cpu = env_cpu(env);
1405 hwaddr mr_offset;
1406 MemoryRegionSection *section;
1407 MemoryRegion *mr;
1408 bool locked = false;
1409 MemTxResult r;
1411 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1412 mr = section->mr;
1413 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1414 if (!cpu->can_do_io) {
1415 cpu_io_recompile(cpu, retaddr);
1417 cpu->mem_io_pc = retaddr;
1420 * The memory_region_dispatch may trigger a flush/resize
1421 * so for plugins we save the iotlb_data just in case.
1423 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1425 if (!qemu_mutex_iothread_locked()) {
1426 qemu_mutex_lock_iothread();
1427 locked = true;
1429 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1430 if (r != MEMTX_OK) {
1431 hwaddr physaddr = mr_offset +
1432 section->offset_within_address_space -
1433 section->offset_within_region;
1435 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1436 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1437 retaddr);
1439 if (locked) {
1440 qemu_mutex_unlock_iothread();
1444 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1446 #if TCG_OVERSIZED_GUEST
1447 return *(target_ulong *)((uintptr_t)entry + ofs);
1448 #else
1449 /* ofs might correspond to .addr_write, so use qatomic_read */
1450 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1451 #endif
1454 /* Return true if ADDR is present in the victim tlb, and has been copied
1455 back to the main tlb. */
1456 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1457 size_t elt_ofs, target_ulong page)
1459 size_t vidx;
1461 assert_cpu_is_self(env_cpu(env));
1462 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1463 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1464 target_ulong cmp;
1466 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1467 #if TCG_OVERSIZED_GUEST
1468 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1469 #else
1470 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1471 #endif
1473 if (cmp == page) {
1474 /* Found entry in victim tlb, swap tlb and iotlb. */
1475 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1477 qemu_spin_lock(&env_tlb(env)->c.lock);
1478 copy_tlb_helper_locked(&tmptlb, tlb);
1479 copy_tlb_helper_locked(tlb, vtlb);
1480 copy_tlb_helper_locked(vtlb, &tmptlb);
1481 qemu_spin_unlock(&env_tlb(env)->c.lock);
1483 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1484 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1485 tmpio = *io; *io = *vio; *vio = tmpio;
1486 return true;
1489 return false;
1492 /* Macro to call the above, with local variables from the use context. */
1493 #define VICTIM_TLB_HIT(TY, ADDR) \
1494 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1495 (ADDR) & TARGET_PAGE_MASK)
1498 * Return a ram_addr_t for the virtual address for execution.
1500 * Return -1 if we can't translate and execute from an entire page
1501 * of RAM. This will force us to execute by loading and translating
1502 * one insn at a time, without caching.
1504 * NOTE: This function will trigger an exception if the page is
1505 * not executable.
1507 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1508 void **hostp)
1510 uintptr_t mmu_idx = cpu_mmu_index(env, true);
1511 uintptr_t index = tlb_index(env, mmu_idx, addr);
1512 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1513 void *p;
1515 if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1516 if (!VICTIM_TLB_HIT(addr_code, addr)) {
1517 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1518 index = tlb_index(env, mmu_idx, addr);
1519 entry = tlb_entry(env, mmu_idx, addr);
1521 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1523 * The MMU protection covers a smaller range than a target
1524 * page, so we must redo the MMU check for every insn.
1526 return -1;
1529 assert(tlb_hit(entry->addr_code, addr));
1532 if (unlikely(entry->addr_code & TLB_MMIO)) {
1533 /* The region is not backed by RAM. */
1534 if (hostp) {
1535 *hostp = NULL;
1537 return -1;
1540 p = (void *)((uintptr_t)addr + entry->addend);
1541 if (hostp) {
1542 *hostp = p;
1544 return qemu_ram_addr_from_host_nofail(p);
1547 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1549 return get_page_addr_code_hostp(env, addr, NULL);
1552 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1553 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1555 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1557 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1559 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1560 struct page_collection *pages
1561 = page_collection_lock(ram_addr, ram_addr + size);
1562 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1563 page_collection_unlock(pages);
1567 * Set both VGA and migration bits for simplicity and to remove
1568 * the notdirty callback faster.
1570 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1572 /* We remove the notdirty callback only if the code has been flushed. */
1573 if (!cpu_physical_memory_is_clean(ram_addr)) {
1574 trace_memory_notdirty_set_dirty(mem_vaddr);
1575 tlb_set_dirty(cpu, mem_vaddr);
1579 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1580 int fault_size, MMUAccessType access_type,
1581 int mmu_idx, bool nonfault,
1582 void **phost, uintptr_t retaddr)
1584 uintptr_t index = tlb_index(env, mmu_idx, addr);
1585 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1586 target_ulong tlb_addr, page_addr;
1587 size_t elt_ofs;
1588 int flags;
1590 switch (access_type) {
1591 case MMU_DATA_LOAD:
1592 elt_ofs = offsetof(CPUTLBEntry, addr_read);
1593 break;
1594 case MMU_DATA_STORE:
1595 elt_ofs = offsetof(CPUTLBEntry, addr_write);
1596 break;
1597 case MMU_INST_FETCH:
1598 elt_ofs = offsetof(CPUTLBEntry, addr_code);
1599 break;
1600 default:
1601 g_assert_not_reached();
1603 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1605 page_addr = addr & TARGET_PAGE_MASK;
1606 if (!tlb_hit_page(tlb_addr, page_addr)) {
1607 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1608 CPUState *cs = env_cpu(env);
1609 CPUClass *cc = CPU_GET_CLASS(cs);
1611 if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1612 mmu_idx, nonfault, retaddr)) {
1613 /* Non-faulting page table read failed. */
1614 *phost = NULL;
1615 return TLB_INVALID_MASK;
1618 /* TLB resize via tlb_fill may have moved the entry. */
1619 entry = tlb_entry(env, mmu_idx, addr);
1621 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1623 flags = tlb_addr & TLB_FLAGS_MASK;
1625 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1626 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1627 *phost = NULL;
1628 return TLB_MMIO;
1631 /* Everything else is RAM. */
1632 *phost = (void *)((uintptr_t)addr + entry->addend);
1633 return flags;
1636 int probe_access_flags(CPUArchState *env, target_ulong addr,
1637 MMUAccessType access_type, int mmu_idx,
1638 bool nonfault, void **phost, uintptr_t retaddr)
1640 int flags;
1642 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1643 nonfault, phost, retaddr);
1645 /* Handle clean RAM pages. */
1646 if (unlikely(flags & TLB_NOTDIRTY)) {
1647 uintptr_t index = tlb_index(env, mmu_idx, addr);
1648 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1650 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1651 flags &= ~TLB_NOTDIRTY;
1654 return flags;
1657 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1658 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1660 void *host;
1661 int flags;
1663 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1665 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1666 false, &host, retaddr);
1668 /* Per the interface, size == 0 merely faults the access. */
1669 if (size == 0) {
1670 return NULL;
1673 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1674 uintptr_t index = tlb_index(env, mmu_idx, addr);
1675 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1677 /* Handle watchpoints. */
1678 if (flags & TLB_WATCHPOINT) {
1679 int wp_access = (access_type == MMU_DATA_STORE
1680 ? BP_MEM_WRITE : BP_MEM_READ);
1681 cpu_check_watchpoint(env_cpu(env), addr, size,
1682 iotlbentry->attrs, wp_access, retaddr);
1685 /* Handle clean RAM pages. */
1686 if (flags & TLB_NOTDIRTY) {
1687 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1691 return host;
1694 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1695 MMUAccessType access_type, int mmu_idx)
1697 void *host;
1698 int flags;
1700 flags = probe_access_internal(env, addr, 0, access_type,
1701 mmu_idx, true, &host, 0);
1703 /* No combination of flags are expected by the caller. */
1704 return flags ? NULL : host;
1707 #ifdef CONFIG_PLUGIN
1709 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1710 * This should be a hot path as we will have just looked this path up
1711 * in the softmmu lookup code (or helper). We don't handle re-fills or
1712 * checking the victim table. This is purely informational.
1714 * This almost never fails as the memory access being instrumented
1715 * should have just filled the TLB. The one corner case is io_writex
1716 * which can cause TLB flushes and potential resizing of the TLBs
1717 * losing the information we need. In those cases we need to recover
1718 * data from a copy of the iotlbentry. As long as this always occurs
1719 * from the same thread (which a mem callback will be) this is safe.
1722 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1723 bool is_store, struct qemu_plugin_hwaddr *data)
1725 CPUArchState *env = cpu->env_ptr;
1726 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1727 uintptr_t index = tlb_index(env, mmu_idx, addr);
1728 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1730 if (likely(tlb_hit(tlb_addr, addr))) {
1731 /* We must have an iotlb entry for MMIO */
1732 if (tlb_addr & TLB_MMIO) {
1733 CPUIOTLBEntry *iotlbentry;
1734 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1735 data->is_io = true;
1736 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1737 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1738 } else {
1739 data->is_io = false;
1740 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1742 return true;
1743 } else {
1744 SavedIOTLB *saved = &cpu->saved_iotlb;
1745 data->is_io = true;
1746 data->v.io.section = saved->section;
1747 data->v.io.offset = saved->mr_offset;
1748 return true;
1752 #endif
1755 * Probe for an atomic operation. Do not allow unaligned operations,
1756 * or io operations to proceed. Return the host address.
1758 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1760 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1761 MemOpIdx oi, int size, int prot,
1762 uintptr_t retaddr)
1764 size_t mmu_idx = get_mmuidx(oi);
1765 MemOp mop = get_memop(oi);
1766 int a_bits = get_alignment_bits(mop);
1767 uintptr_t index;
1768 CPUTLBEntry *tlbe;
1769 target_ulong tlb_addr;
1770 void *hostaddr;
1772 /* Adjust the given return address. */
1773 retaddr -= GETPC_ADJ;
1775 /* Enforce guest required alignment. */
1776 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1777 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1778 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1779 mmu_idx, retaddr);
1782 /* Enforce qemu required alignment. */
1783 if (unlikely(addr & (size - 1))) {
1784 /* We get here if guest alignment was not requested,
1785 or was not enforced by cpu_unaligned_access above.
1786 We might widen the access and emulate, but for now
1787 mark an exception and exit the cpu loop. */
1788 goto stop_the_world;
1791 index = tlb_index(env, mmu_idx, addr);
1792 tlbe = tlb_entry(env, mmu_idx, addr);
1794 /* Check TLB entry and enforce page permissions. */
1795 if (prot & PAGE_WRITE) {
1796 tlb_addr = tlb_addr_write(tlbe);
1797 if (!tlb_hit(tlb_addr, addr)) {
1798 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1799 tlb_fill(env_cpu(env), addr, size,
1800 MMU_DATA_STORE, mmu_idx, retaddr);
1801 index = tlb_index(env, mmu_idx, addr);
1802 tlbe = tlb_entry(env, mmu_idx, addr);
1804 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1807 /* Let the guest notice RMW on a write-only page. */
1808 if ((prot & PAGE_READ) &&
1809 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1810 tlb_fill(env_cpu(env), addr, size,
1811 MMU_DATA_LOAD, mmu_idx, retaddr);
1813 * Since we don't support reads and writes to different addresses,
1814 * and we do have the proper page loaded for write, this shouldn't
1815 * ever return. But just in case, handle via stop-the-world.
1817 goto stop_the_world;
1819 } else /* if (prot & PAGE_READ) */ {
1820 tlb_addr = tlbe->addr_read;
1821 if (!tlb_hit(tlb_addr, addr)) {
1822 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1823 tlb_fill(env_cpu(env), addr, size,
1824 MMU_DATA_LOAD, mmu_idx, retaddr);
1825 index = tlb_index(env, mmu_idx, addr);
1826 tlbe = tlb_entry(env, mmu_idx, addr);
1828 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1832 /* Notice an IO access or a needs-MMU-lookup access */
1833 if (unlikely(tlb_addr & TLB_MMIO)) {
1834 /* There's really nothing that can be done to
1835 support this apart from stop-the-world. */
1836 goto stop_the_world;
1839 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1841 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1842 notdirty_write(env_cpu(env), addr, size,
1843 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1846 return hostaddr;
1848 stop_the_world:
1849 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1853 * Verify that we have passed the correct MemOp to the correct function.
1855 * In the case of the helper_*_mmu functions, we will have done this by
1856 * using the MemOp to look up the helper during code generation.
1858 * In the case of the cpu_*_mmu functions, this is up to the caller.
1859 * We could present one function to target code, and dispatch based on
1860 * the MemOp, but so far we have worked hard to avoid an indirect function
1861 * call along the memory path.
1863 static void validate_memop(MemOpIdx oi, MemOp expected)
1865 #ifdef CONFIG_DEBUG_TCG
1866 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1867 assert(have == expected);
1868 #endif
1872 * Load Helpers
1874 * We support two different access types. SOFTMMU_CODE_ACCESS is
1875 * specifically for reading instructions from system memory. It is
1876 * called by the translation loop and in some helpers where the code
1877 * is disassembled. It shouldn't be called directly by guest code.
1880 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1881 MemOpIdx oi, uintptr_t retaddr);
1883 static inline uint64_t QEMU_ALWAYS_INLINE
1884 load_memop(const void *haddr, MemOp op)
1886 switch (op) {
1887 case MO_UB:
1888 return ldub_p(haddr);
1889 case MO_BEUW:
1890 return lduw_be_p(haddr);
1891 case MO_LEUW:
1892 return lduw_le_p(haddr);
1893 case MO_BEUL:
1894 return (uint32_t)ldl_be_p(haddr);
1895 case MO_LEUL:
1896 return (uint32_t)ldl_le_p(haddr);
1897 case MO_BEUQ:
1898 return ldq_be_p(haddr);
1899 case MO_LEUQ:
1900 return ldq_le_p(haddr);
1901 default:
1902 qemu_build_not_reached();
1906 static inline uint64_t QEMU_ALWAYS_INLINE
1907 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1908 uintptr_t retaddr, MemOp op, bool code_read,
1909 FullLoadHelper *full_load)
1911 uintptr_t mmu_idx = get_mmuidx(oi);
1912 uintptr_t index = tlb_index(env, mmu_idx, addr);
1913 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1914 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1915 const size_t tlb_off = code_read ?
1916 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1917 const MMUAccessType access_type =
1918 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1919 unsigned a_bits = get_alignment_bits(get_memop(oi));
1920 void *haddr;
1921 uint64_t res;
1922 size_t size = memop_size(op);
1924 /* Handle CPU specific unaligned behaviour */
1925 if (addr & ((1 << a_bits) - 1)) {
1926 cpu_unaligned_access(env_cpu(env), addr, access_type,
1927 mmu_idx, retaddr);
1930 /* If the TLB entry is for a different page, reload and try again. */
1931 if (!tlb_hit(tlb_addr, addr)) {
1932 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1933 addr & TARGET_PAGE_MASK)) {
1934 tlb_fill(env_cpu(env), addr, size,
1935 access_type, mmu_idx, retaddr);
1936 index = tlb_index(env, mmu_idx, addr);
1937 entry = tlb_entry(env, mmu_idx, addr);
1939 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1940 tlb_addr &= ~TLB_INVALID_MASK;
1943 /* Handle anything that isn't just a straight memory access. */
1944 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1945 CPUIOTLBEntry *iotlbentry;
1946 bool need_swap;
1948 /* For anything that is unaligned, recurse through full_load. */
1949 if ((addr & (size - 1)) != 0) {
1950 goto do_unaligned_access;
1953 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1955 /* Handle watchpoints. */
1956 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1957 /* On watchpoint hit, this will longjmp out. */
1958 cpu_check_watchpoint(env_cpu(env), addr, size,
1959 iotlbentry->attrs, BP_MEM_READ, retaddr);
1962 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1964 /* Handle I/O access. */
1965 if (likely(tlb_addr & TLB_MMIO)) {
1966 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1967 access_type, op ^ (need_swap * MO_BSWAP));
1970 haddr = (void *)((uintptr_t)addr + entry->addend);
1973 * Keep these two load_memop separate to ensure that the compiler
1974 * is able to fold the entire function to a single instruction.
1975 * There is a build-time assert inside to remind you of this. ;-)
1977 if (unlikely(need_swap)) {
1978 return load_memop(haddr, op ^ MO_BSWAP);
1980 return load_memop(haddr, op);
1983 /* Handle slow unaligned access (it spans two pages or IO). */
1984 if (size > 1
1985 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1986 >= TARGET_PAGE_SIZE)) {
1987 target_ulong addr1, addr2;
1988 uint64_t r1, r2;
1989 unsigned shift;
1990 do_unaligned_access:
1991 addr1 = addr & ~((target_ulong)size - 1);
1992 addr2 = addr1 + size;
1993 r1 = full_load(env, addr1, oi, retaddr);
1994 r2 = full_load(env, addr2, oi, retaddr);
1995 shift = (addr & (size - 1)) * 8;
1997 if (memop_big_endian(op)) {
1998 /* Big-endian combine. */
1999 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
2000 } else {
2001 /* Little-endian combine. */
2002 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
2004 return res & MAKE_64BIT_MASK(0, size * 8);
2007 haddr = (void *)((uintptr_t)addr + entry->addend);
2008 return load_memop(haddr, op);
2012 * For the benefit of TCG generated code, we want to avoid the
2013 * complication of ABI-specific return type promotion and always
2014 * return a value extended to the register size of the host. This is
2015 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2016 * data, and for that we always have uint64_t.
2018 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2021 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
2022 MemOpIdx oi, uintptr_t retaddr)
2024 validate_memop(oi, MO_UB);
2025 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2028 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2029 MemOpIdx oi, uintptr_t retaddr)
2031 return full_ldub_mmu(env, addr, oi, retaddr);
2034 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2035 MemOpIdx oi, uintptr_t retaddr)
2037 validate_memop(oi, MO_LEUW);
2038 return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2039 full_le_lduw_mmu);
2042 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2043 MemOpIdx oi, uintptr_t retaddr)
2045 return full_le_lduw_mmu(env, addr, oi, retaddr);
2048 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2049 MemOpIdx oi, uintptr_t retaddr)
2051 validate_memop(oi, MO_BEUW);
2052 return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2053 full_be_lduw_mmu);
2056 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2057 MemOpIdx oi, uintptr_t retaddr)
2059 return full_be_lduw_mmu(env, addr, oi, retaddr);
2062 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2063 MemOpIdx oi, uintptr_t retaddr)
2065 validate_memop(oi, MO_LEUL);
2066 return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2067 full_le_ldul_mmu);
2070 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2071 MemOpIdx oi, uintptr_t retaddr)
2073 return full_le_ldul_mmu(env, addr, oi, retaddr);
2076 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2077 MemOpIdx oi, uintptr_t retaddr)
2079 validate_memop(oi, MO_BEUL);
2080 return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2081 full_be_ldul_mmu);
2084 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2085 MemOpIdx oi, uintptr_t retaddr)
2087 return full_be_ldul_mmu(env, addr, oi, retaddr);
2090 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2091 MemOpIdx oi, uintptr_t retaddr)
2093 validate_memop(oi, MO_LEUQ);
2094 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
2095 helper_le_ldq_mmu);
2098 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2099 MemOpIdx oi, uintptr_t retaddr)
2101 validate_memop(oi, MO_BEUQ);
2102 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
2103 helper_be_ldq_mmu);
2107 * Provide signed versions of the load routines as well. We can of course
2108 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2112 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2113 MemOpIdx oi, uintptr_t retaddr)
2115 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2118 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2119 MemOpIdx oi, uintptr_t retaddr)
2121 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2124 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2125 MemOpIdx oi, uintptr_t retaddr)
2127 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2130 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2131 MemOpIdx oi, uintptr_t retaddr)
2133 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2136 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2137 MemOpIdx oi, uintptr_t retaddr)
2139 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2143 * Load helpers for cpu_ldst.h.
2146 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2147 MemOpIdx oi, uintptr_t retaddr,
2148 FullLoadHelper *full_load)
2150 uint64_t ret;
2152 ret = full_load(env, addr, oi, retaddr);
2153 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2154 return ret;
2157 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2159 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
2162 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2163 MemOpIdx oi, uintptr_t ra)
2165 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
2168 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2169 MemOpIdx oi, uintptr_t ra)
2171 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
2174 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2175 MemOpIdx oi, uintptr_t ra)
2177 return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu);
2180 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2181 MemOpIdx oi, uintptr_t ra)
2183 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
2186 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2187 MemOpIdx oi, uintptr_t ra)
2189 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
2192 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2193 MemOpIdx oi, uintptr_t ra)
2195 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
2199 * Store Helpers
2202 static inline void QEMU_ALWAYS_INLINE
2203 store_memop(void *haddr, uint64_t val, MemOp op)
2205 switch (op) {
2206 case MO_UB:
2207 stb_p(haddr, val);
2208 break;
2209 case MO_BEUW:
2210 stw_be_p(haddr, val);
2211 break;
2212 case MO_LEUW:
2213 stw_le_p(haddr, val);
2214 break;
2215 case MO_BEUL:
2216 stl_be_p(haddr, val);
2217 break;
2218 case MO_LEUL:
2219 stl_le_p(haddr, val);
2220 break;
2221 case MO_BEUQ:
2222 stq_be_p(haddr, val);
2223 break;
2224 case MO_LEUQ:
2225 stq_le_p(haddr, val);
2226 break;
2227 default:
2228 qemu_build_not_reached();
2232 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2233 MemOpIdx oi, uintptr_t retaddr);
2235 static void __attribute__((noinline))
2236 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2237 uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2238 bool big_endian)
2240 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2241 uintptr_t index, index2;
2242 CPUTLBEntry *entry, *entry2;
2243 target_ulong page2, tlb_addr, tlb_addr2;
2244 MemOpIdx oi;
2245 size_t size2;
2246 int i;
2249 * Ensure the second page is in the TLB. Note that the first page
2250 * is already guaranteed to be filled, and that the second page
2251 * cannot evict the first.
2253 page2 = (addr + size) & TARGET_PAGE_MASK;
2254 size2 = (addr + size) & ~TARGET_PAGE_MASK;
2255 index2 = tlb_index(env, mmu_idx, page2);
2256 entry2 = tlb_entry(env, mmu_idx, page2);
2258 tlb_addr2 = tlb_addr_write(entry2);
2259 if (!tlb_hit_page(tlb_addr2, page2)) {
2260 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2261 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2262 mmu_idx, retaddr);
2263 index2 = tlb_index(env, mmu_idx, page2);
2264 entry2 = tlb_entry(env, mmu_idx, page2);
2266 tlb_addr2 = tlb_addr_write(entry2);
2269 index = tlb_index(env, mmu_idx, addr);
2270 entry = tlb_entry(env, mmu_idx, addr);
2271 tlb_addr = tlb_addr_write(entry);
2274 * Handle watchpoints. Since this may trap, all checks
2275 * must happen before any store.
2277 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2278 cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2279 env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2280 BP_MEM_WRITE, retaddr);
2282 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2283 cpu_check_watchpoint(env_cpu(env), page2, size2,
2284 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2285 BP_MEM_WRITE, retaddr);
2289 * XXX: not efficient, but simple.
2290 * This loop must go in the forward direction to avoid issues
2291 * with self-modifying code in Windows 64-bit.
2293 oi = make_memop_idx(MO_UB, mmu_idx);
2294 if (big_endian) {
2295 for (i = 0; i < size; ++i) {
2296 /* Big-endian extract. */
2297 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2298 full_stb_mmu(env, addr + i, val8, oi, retaddr);
2300 } else {
2301 for (i = 0; i < size; ++i) {
2302 /* Little-endian extract. */
2303 uint8_t val8 = val >> (i * 8);
2304 full_stb_mmu(env, addr + i, val8, oi, retaddr);
2309 static inline void QEMU_ALWAYS_INLINE
2310 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2311 MemOpIdx oi, uintptr_t retaddr, MemOp op)
2313 uintptr_t mmu_idx = get_mmuidx(oi);
2314 uintptr_t index = tlb_index(env, mmu_idx, addr);
2315 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2316 target_ulong tlb_addr = tlb_addr_write(entry);
2317 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2318 unsigned a_bits = get_alignment_bits(get_memop(oi));
2319 void *haddr;
2320 size_t size = memop_size(op);
2322 /* Handle CPU specific unaligned behaviour */
2323 if (addr & ((1 << a_bits) - 1)) {
2324 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2325 mmu_idx, retaddr);
2328 /* If the TLB entry is for a different page, reload and try again. */
2329 if (!tlb_hit(tlb_addr, addr)) {
2330 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2331 addr & TARGET_PAGE_MASK)) {
2332 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2333 mmu_idx, retaddr);
2334 index = tlb_index(env, mmu_idx, addr);
2335 entry = tlb_entry(env, mmu_idx, addr);
2337 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2340 /* Handle anything that isn't just a straight memory access. */
2341 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2342 CPUIOTLBEntry *iotlbentry;
2343 bool need_swap;
2345 /* For anything that is unaligned, recurse through byte stores. */
2346 if ((addr & (size - 1)) != 0) {
2347 goto do_unaligned_access;
2350 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2352 /* Handle watchpoints. */
2353 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2354 /* On watchpoint hit, this will longjmp out. */
2355 cpu_check_watchpoint(env_cpu(env), addr, size,
2356 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2359 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2361 /* Handle I/O access. */
2362 if (tlb_addr & TLB_MMIO) {
2363 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2364 op ^ (need_swap * MO_BSWAP));
2365 return;
2368 /* Ignore writes to ROM. */
2369 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2370 return;
2373 /* Handle clean RAM pages. */
2374 if (tlb_addr & TLB_NOTDIRTY) {
2375 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2378 haddr = (void *)((uintptr_t)addr + entry->addend);
2381 * Keep these two store_memop separate to ensure that the compiler
2382 * is able to fold the entire function to a single instruction.
2383 * There is a build-time assert inside to remind you of this. ;-)
2385 if (unlikely(need_swap)) {
2386 store_memop(haddr, val, op ^ MO_BSWAP);
2387 } else {
2388 store_memop(haddr, val, op);
2390 return;
2393 /* Handle slow unaligned access (it spans two pages or IO). */
2394 if (size > 1
2395 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2396 >= TARGET_PAGE_SIZE)) {
2397 do_unaligned_access:
2398 store_helper_unaligned(env, addr, val, retaddr, size,
2399 mmu_idx, memop_big_endian(op));
2400 return;
2403 haddr = (void *)((uintptr_t)addr + entry->addend);
2404 store_memop(haddr, val, op);
2407 static void __attribute__((noinline))
2408 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2409 MemOpIdx oi, uintptr_t retaddr)
2411 validate_memop(oi, MO_UB);
2412 store_helper(env, addr, val, oi, retaddr, MO_UB);
2415 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2416 MemOpIdx oi, uintptr_t retaddr)
2418 full_stb_mmu(env, addr, val, oi, retaddr);
2421 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2422 MemOpIdx oi, uintptr_t retaddr)
2424 validate_memop(oi, MO_LEUW);
2425 store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2428 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2429 MemOpIdx oi, uintptr_t retaddr)
2431 full_le_stw_mmu(env, addr, val, oi, retaddr);
2434 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2435 MemOpIdx oi, uintptr_t retaddr)
2437 validate_memop(oi, MO_BEUW);
2438 store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2441 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2442 MemOpIdx oi, uintptr_t retaddr)
2444 full_be_stw_mmu(env, addr, val, oi, retaddr);
2447 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2448 MemOpIdx oi, uintptr_t retaddr)
2450 validate_memop(oi, MO_LEUL);
2451 store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2454 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2455 MemOpIdx oi, uintptr_t retaddr)
2457 full_le_stl_mmu(env, addr, val, oi, retaddr);
2460 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2461 MemOpIdx oi, uintptr_t retaddr)
2463 validate_memop(oi, MO_BEUL);
2464 store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2467 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2468 MemOpIdx oi, uintptr_t retaddr)
2470 full_be_stl_mmu(env, addr, val, oi, retaddr);
2473 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2474 MemOpIdx oi, uintptr_t retaddr)
2476 validate_memop(oi, MO_LEUQ);
2477 store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
2480 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2481 MemOpIdx oi, uintptr_t retaddr)
2483 validate_memop(oi, MO_BEUQ);
2484 store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
2488 * Store Helpers for cpu_ldst.h
2491 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2492 uint64_t val, MemOpIdx oi, uintptr_t retaddr);
2494 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2495 uint64_t val, MemOpIdx oi, uintptr_t ra,
2496 FullStoreHelper *full_store)
2498 full_store(env, addr, val, oi, ra);
2499 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2502 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2503 MemOpIdx oi, uintptr_t retaddr)
2505 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
2508 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2509 MemOpIdx oi, uintptr_t retaddr)
2511 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
2514 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2515 MemOpIdx oi, uintptr_t retaddr)
2517 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
2520 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2521 MemOpIdx oi, uintptr_t retaddr)
2523 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
2526 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2527 MemOpIdx oi, uintptr_t retaddr)
2529 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
2532 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2533 MemOpIdx oi, uintptr_t retaddr)
2535 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
2538 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2539 MemOpIdx oi, uintptr_t retaddr)
2541 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
2544 #include "ldst_common.c.inc"
2547 * First set of functions passes in OI and RETADDR.
2548 * This makes them callable from other helpers.
2551 #define ATOMIC_NAME(X) \
2552 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2554 #define ATOMIC_MMU_CLEANUP
2555 #define ATOMIC_MMU_IDX get_mmuidx(oi)
2557 #include "atomic_common.c.inc"
2559 #define DATA_SIZE 1
2560 #include "atomic_template.h"
2562 #define DATA_SIZE 2
2563 #include "atomic_template.h"
2565 #define DATA_SIZE 4
2566 #include "atomic_template.h"
2568 #ifdef CONFIG_ATOMIC64
2569 #define DATA_SIZE 8
2570 #include "atomic_template.h"
2571 #endif
2573 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2574 #define DATA_SIZE 16
2575 #include "atomic_template.h"
2576 #endif
2578 /* Code access functions. */
2580 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2581 MemOpIdx oi, uintptr_t retaddr)
2583 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2586 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2588 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2589 return full_ldub_code(env, addr, oi, 0);
2592 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2593 MemOpIdx oi, uintptr_t retaddr)
2595 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2598 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2600 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2601 return full_lduw_code(env, addr, oi, 0);
2604 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2605 MemOpIdx oi, uintptr_t retaddr)
2607 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2610 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2612 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2613 return full_ldl_code(env, addr, oi, 0);
2616 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2617 MemOpIdx oi, uintptr_t retaddr)
2619 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
2622 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2624 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
2625 return full_ldq_code(env, addr, oi, 0);