hw/sh4: Coding style: Fix multi-line comments
[qemu/rayw.git] / target / hppa / cpu.h
blobd3cb7a279f2f90658fdcc20a8eb7768cd4bd95c8
1 /*
2 * PA-RISC emulation cpu definitions for qemu.
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef HPPA_CPU_H
21 #define HPPA_CPU_H
23 #include "cpu-qom.h"
24 #include "exec/cpu-defs.h"
26 /* PA-RISC 1.x processors have a strong memory model. */
27 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
28 a weak memory model, but with TLB bits that force ordering on a per-page
29 basis. It's probably easier to fall back to a strong memory model. */
30 #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
32 #define MMU_KERNEL_IDX 0
33 #define MMU_USER_IDX 3
34 #define MMU_PHYS_IDX 4
35 #define TARGET_INSN_START_EXTRA_WORDS 1
37 /* Hardware exceptions, interupts, faults, and traps. */
38 #define EXCP_HPMC 1 /* high priority machine check */
39 #define EXCP_POWER_FAIL 2
40 #define EXCP_RC 3 /* recovery counter */
41 #define EXCP_EXT_INTERRUPT 4 /* external interrupt */
42 #define EXCP_LPMC 5 /* low priority machine check */
43 #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
44 #define EXCP_IMP 7 /* instruction memory protection trap */
45 #define EXCP_ILL 8 /* illegal instruction trap */
46 #define EXCP_BREAK 9 /* break instruction */
47 #define EXCP_PRIV_OPR 10 /* privileged operation trap */
48 #define EXCP_PRIV_REG 11 /* privileged register trap */
49 #define EXCP_OVERFLOW 12 /* signed overflow trap */
50 #define EXCP_COND 13 /* trap-on-condition */
51 #define EXCP_ASSIST 14 /* assist exception trap */
52 #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
53 #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
54 #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
55 #define EXCP_DMP 18 /* data memory protection trap */
56 #define EXCP_DMB 19 /* data memory break trap */
57 #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
58 #define EXCP_PAGE_REF 21 /* page reference trap */
59 #define EXCP_ASSIST_EMU 22 /* assist emulation trap */
60 #define EXCP_HPT 23 /* high-privilege transfer trap */
61 #define EXCP_LPT 24 /* low-privilege transfer trap */
62 #define EXCP_TB 25 /* taken branch trap */
63 #define EXCP_DMAR 26 /* data memory access rights trap */
64 #define EXCP_DMPI 27 /* data memory protection id trap */
65 #define EXCP_UNALIGN 28 /* unaligned data reference trap */
66 #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
68 /* Exceptions for linux-user emulation. */
69 #define EXCP_SYSCALL 30
70 #define EXCP_SYSCALL_LWS 31
72 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
73 #define PSW_I 0x00000001
74 #define PSW_D 0x00000002
75 #define PSW_P 0x00000004
76 #define PSW_Q 0x00000008
77 #define PSW_R 0x00000010
78 #define PSW_F 0x00000020
79 #define PSW_G 0x00000040 /* PA1.x only */
80 #define PSW_O 0x00000080 /* PA2.0 only */
81 #define PSW_CB 0x0000ff00
82 #define PSW_M 0x00010000
83 #define PSW_V 0x00020000
84 #define PSW_C 0x00040000
85 #define PSW_B 0x00080000
86 #define PSW_X 0x00100000
87 #define PSW_N 0x00200000
88 #define PSW_L 0x00400000
89 #define PSW_H 0x00800000
90 #define PSW_T 0x01000000
91 #define PSW_S 0x02000000
92 #define PSW_E 0x04000000
93 #ifdef TARGET_HPPA64
94 #define PSW_W 0x08000000 /* PA2.0 only */
95 #else
96 #define PSW_W 0
97 #endif
98 #define PSW_Z 0x40000000 /* PA1.x only */
99 #define PSW_Y 0x80000000 /* PA1.x only */
101 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
102 | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
104 /* ssm/rsm instructions number PSW_W and PSW_E differently */
105 #define PSW_SM_I PSW_I /* Enable External Interrupts */
106 #define PSW_SM_D PSW_D
107 #define PSW_SM_P PSW_P
108 #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
109 #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
110 #ifdef TARGET_HPPA64
111 #define PSW_SM_E 0x100
112 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
113 #else
114 #define PSW_SM_E 0
115 #define PSW_SM_W 0
116 #endif
118 #define CR_RC 0
119 #define CR_PID1 8
120 #define CR_PID2 9
121 #define CR_PID3 12
122 #define CR_PID4 13
123 #define CR_SCRCCR 10
124 #define CR_SAR 11
125 #define CR_IVA 14
126 #define CR_EIEM 15
127 #define CR_IT 16
128 #define CR_IIASQ 17
129 #define CR_IIAOQ 18
130 #define CR_IIR 19
131 #define CR_ISR 20
132 #define CR_IOR 21
133 #define CR_IPSW 22
134 #define CR_EIRR 23
136 typedef struct CPUHPPAState CPUHPPAState;
138 #if TARGET_REGISTER_BITS == 32
139 typedef uint32_t target_ureg;
140 typedef int32_t target_sreg;
141 #define TREG_FMT_lx "%08"PRIx32
142 #define TREG_FMT_ld "%"PRId32
143 #else
144 typedef uint64_t target_ureg;
145 typedef int64_t target_sreg;
146 #define TREG_FMT_lx "%016"PRIx64
147 #define TREG_FMT_ld "%"PRId64
148 #endif
150 typedef struct {
151 uint64_t va_b;
152 uint64_t va_e;
153 target_ureg pa;
154 unsigned u : 1;
155 unsigned t : 1;
156 unsigned d : 1;
157 unsigned b : 1;
158 unsigned page_size : 4;
159 unsigned ar_type : 3;
160 unsigned ar_pl1 : 2;
161 unsigned ar_pl2 : 2;
162 unsigned entry_valid : 1;
163 unsigned access_id : 16;
164 } hppa_tlb_entry;
166 struct CPUHPPAState {
167 target_ureg gr[32];
168 uint64_t fr[32];
169 uint64_t sr[8]; /* stored shifted into place for gva */
171 target_ureg psw; /* All psw bits except the following: */
172 target_ureg psw_n; /* boolean */
173 target_sreg psw_v; /* in most significant bit */
175 /* Splitting the carry-borrow field into the MSB and "the rest", allows
176 * for "the rest" to be deleted when it is unused, but the MSB is in use.
177 * In addition, it's easier to compute carry-in for bit B+1 than it is to
178 * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
179 * host has the appropriate add-with-carry insn to compute the msb).
180 * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
182 target_ureg psw_cb; /* in least significant bit of next nibble */
183 target_ureg psw_cb_msb; /* boolean */
185 target_ureg iaoq_f; /* front */
186 target_ureg iaoq_b; /* back, aka next instruction */
187 uint64_t iasq_f;
188 uint64_t iasq_b;
190 uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */
191 float_status fp_status;
193 target_ureg cr[32]; /* control registers */
194 target_ureg cr_back[2]; /* back of cr17/cr18 */
195 target_ureg shadow[7]; /* shadow registers */
197 /* ??? The number of entries isn't specified by the architecture. */
198 #define HPPA_TLB_ENTRIES 256
199 #define HPPA_BTLB_ENTRIES 0
201 /* ??? Implement a unified itlb/dtlb for the moment. */
202 /* ??? We should use a more intelligent data structure. */
203 hppa_tlb_entry tlb[HPPA_TLB_ENTRIES];
204 uint32_t tlb_last;
208 * HPPACPU:
209 * @env: #CPUHPPAState
211 * An HPPA CPU.
213 struct HPPACPU {
214 /*< private >*/
215 CPUState parent_obj;
216 /*< public >*/
218 CPUNegativeOffsetState neg;
219 CPUHPPAState env;
220 QEMUTimer *alarm_timer;
224 typedef CPUHPPAState CPUArchState;
225 typedef HPPACPU ArchCPU;
227 #include "exec/cpu-all.h"
229 static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
231 #ifdef CONFIG_USER_ONLY
232 return MMU_USER_IDX;
233 #else
234 if (env->psw & (ifetch ? PSW_C : PSW_D)) {
235 return env->iaoq_f & 3;
237 return MMU_PHYS_IDX; /* mmu disabled */
238 #endif
241 void hppa_translate_init(void);
243 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
245 static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
246 target_ureg off)
248 #ifdef CONFIG_USER_ONLY
249 return off;
250 #else
251 off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
252 return spc | off;
253 #endif
256 static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
257 target_ureg off)
259 return hppa_form_gva_psw(env->psw, spc, off);
262 /* Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
263 * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
264 * same value.
266 #define TB_FLAG_SR_SAME PSW_I
267 #define TB_FLAG_PRIV_SHIFT 8
269 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, target_ulong *pc,
270 target_ulong *cs_base,
271 uint32_t *pflags)
273 uint32_t flags = env->psw_n * PSW_N;
275 /* TB lookup assumes that PC contains the complete virtual address.
276 If we leave space+offset separate, we'll get ITLB misses to an
277 incomplete virtual address. This also means that we must separate
278 out current cpu priviledge from the low bits of IAOQ_F. */
279 #ifdef CONFIG_USER_ONLY
280 *pc = env->iaoq_f & -4;
281 *cs_base = env->iaoq_b & -4;
282 #else
283 /* ??? E, T, H, L, B, P bits need to be here, when implemented. */
284 flags |= env->psw & (PSW_W | PSW_C | PSW_D);
285 flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
287 *pc = (env->psw & PSW_C
288 ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
289 : env->iaoq_f & -4);
290 *cs_base = env->iasq_f;
292 /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
293 low 32-bits of CS_BASE. This will succeed for all direct branches,
294 which is the primary case we care about -- using goto_tb within a page.
295 Failure is indicated by a zero difference. */
296 if (env->iasq_f == env->iasq_b) {
297 target_sreg diff = env->iaoq_b - env->iaoq_f;
298 if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
299 *cs_base |= (uint32_t)diff;
302 if ((env->sr[4] == env->sr[5])
303 & (env->sr[4] == env->sr[6])
304 & (env->sr[4] == env->sr[7])) {
305 flags |= TB_FLAG_SR_SAME;
307 #endif
309 *pflags = flags;
312 target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
313 void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
314 void cpu_hppa_loaded_fr0(CPUHPPAState *env);
316 #ifdef CONFIG_USER_ONLY
317 static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
318 #else
319 void cpu_hppa_change_prot_id(CPUHPPAState *env);
320 #endif
322 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
323 int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
324 int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
325 void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
326 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
327 MMUAccessType access_type, int mmu_idx,
328 bool probe, uintptr_t retaddr);
329 #ifndef CONFIG_USER_ONLY
330 void hppa_cpu_do_interrupt(CPUState *cpu);
331 bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
332 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
333 int type, hwaddr *pphys, int *pprot);
334 extern const MemoryRegionOps hppa_io_eir_ops;
335 extern const VMStateDescription vmstate_hppa_cpu;
336 void hppa_cpu_alarm_timer(void *);
337 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
338 #endif
339 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
341 #endif /* HPPA_CPU_H */