linux-user: Add LoongArch syscall support
[qemu/rayw.git] / hw / vfio / pci-quirks.c
blobf0147a050aaad4e4f2c276c72b19235eebe84ab8
1 /*
2 * device quirks for PCI devices
4 * Copyright Red Hat, Inc. 2012-2015
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include CONFIG_DEVICES
15 #include "exec/memop.h"
16 #include "qemu/units.h"
17 #include "qemu/log.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qemu/module.h"
21 #include "qemu/range.h"
22 #include "qapi/error.h"
23 #include "qapi/visitor.h"
24 #include <sys/ioctl.h>
25 #include "hw/nvram/fw_cfg.h"
26 #include "hw/qdev-properties.h"
27 #include "pci.h"
28 #include "trace.h"
31 * List of device ids/vendor ids for which to disable
32 * option rom loading. This avoids the guest hangs during rom
33 * execution as noticed with the BCM 57810 card for lack of a
34 * more better way to handle such issues.
35 * The user can still override by specifying a romfile or
36 * rombar=1.
37 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
38 * for an analysis of the 57810 card hang. When adding
39 * a new vendor id/device id combination below, please also add
40 * your card/environment details and information that could
41 * help in debugging to the bug tracking this issue
43 static const struct {
44 uint32_t vendor;
45 uint32_t device;
46 } rom_denylist[] = {
47 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
50 bool vfio_opt_rom_in_denylist(VFIOPCIDevice *vdev)
52 int i;
54 for (i = 0 ; i < ARRAY_SIZE(rom_denylist); i++) {
55 if (vfio_pci_is(vdev, rom_denylist[i].vendor, rom_denylist[i].device)) {
56 trace_vfio_quirk_rom_in_denylist(vdev->vbasedev.name,
57 rom_denylist[i].vendor,
58 rom_denylist[i].device);
59 return true;
62 return false;
66 * Device specific region quirks (mostly backdoors to PCI config space)
70 * The generic window quirks operate on an address and data register,
71 * vfio_generic_window_address_quirk handles the address register and
72 * vfio_generic_window_data_quirk handles the data register. These ops
73 * pass reads and writes through to hardware until a value matching the
74 * stored address match/mask is written. When this occurs, the data
75 * register access emulated PCI config space for the device rather than
76 * passing through accesses. This enables devices where PCI config space
77 * is accessible behind a window register to maintain the virtualization
78 * provided through vfio.
80 typedef struct VFIOConfigWindowMatch {
81 uint32_t match;
82 uint32_t mask;
83 } VFIOConfigWindowMatch;
85 typedef struct VFIOConfigWindowQuirk {
86 struct VFIOPCIDevice *vdev;
88 uint32_t address_val;
90 uint32_t address_offset;
91 uint32_t data_offset;
93 bool window_enabled;
94 uint8_t bar;
96 MemoryRegion *addr_mem;
97 MemoryRegion *data_mem;
99 uint32_t nr_matches;
100 VFIOConfigWindowMatch matches[];
101 } VFIOConfigWindowQuirk;
103 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
104 hwaddr addr,
105 unsigned size)
107 VFIOConfigWindowQuirk *window = opaque;
108 VFIOPCIDevice *vdev = window->vdev;
110 return vfio_region_read(&vdev->bars[window->bar].region,
111 addr + window->address_offset, size);
114 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
115 uint64_t data,
116 unsigned size)
118 VFIOConfigWindowQuirk *window = opaque;
119 VFIOPCIDevice *vdev = window->vdev;
120 int i;
122 window->window_enabled = false;
124 vfio_region_write(&vdev->bars[window->bar].region,
125 addr + window->address_offset, data, size);
127 for (i = 0; i < window->nr_matches; i++) {
128 if ((data & ~window->matches[i].mask) == window->matches[i].match) {
129 window->window_enabled = true;
130 window->address_val = data & window->matches[i].mask;
131 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
132 memory_region_name(window->addr_mem), data);
133 break;
138 static const MemoryRegionOps vfio_generic_window_address_quirk = {
139 .read = vfio_generic_window_quirk_address_read,
140 .write = vfio_generic_window_quirk_address_write,
141 .endianness = DEVICE_LITTLE_ENDIAN,
144 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
145 hwaddr addr, unsigned size)
147 VFIOConfigWindowQuirk *window = opaque;
148 VFIOPCIDevice *vdev = window->vdev;
149 uint64_t data;
151 /* Always read data reg, discard if window enabled */
152 data = vfio_region_read(&vdev->bars[window->bar].region,
153 addr + window->data_offset, size);
155 if (window->window_enabled) {
156 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
157 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
158 memory_region_name(window->data_mem), data);
161 return data;
164 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
165 uint64_t data, unsigned size)
167 VFIOConfigWindowQuirk *window = opaque;
168 VFIOPCIDevice *vdev = window->vdev;
170 if (window->window_enabled) {
171 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
172 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
173 memory_region_name(window->data_mem), data);
174 return;
177 vfio_region_write(&vdev->bars[window->bar].region,
178 addr + window->data_offset, data, size);
181 static const MemoryRegionOps vfio_generic_window_data_quirk = {
182 .read = vfio_generic_window_quirk_data_read,
183 .write = vfio_generic_window_quirk_data_write,
184 .endianness = DEVICE_LITTLE_ENDIAN,
188 * The generic mirror quirk handles devices which expose PCI config space
189 * through a region within a BAR. When enabled, reads and writes are
190 * redirected through to emulated PCI config space. XXX if PCI config space
191 * used memory regions, this could just be an alias.
193 typedef struct VFIOConfigMirrorQuirk {
194 struct VFIOPCIDevice *vdev;
195 uint32_t offset;
196 uint8_t bar;
197 MemoryRegion *mem;
198 uint8_t data[];
199 } VFIOConfigMirrorQuirk;
201 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
202 hwaddr addr, unsigned size)
204 VFIOConfigMirrorQuirk *mirror = opaque;
205 VFIOPCIDevice *vdev = mirror->vdev;
206 uint64_t data;
208 /* Read and discard in case the hardware cares */
209 (void)vfio_region_read(&vdev->bars[mirror->bar].region,
210 addr + mirror->offset, size);
212 data = vfio_pci_read_config(&vdev->pdev, addr, size);
213 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
214 memory_region_name(mirror->mem),
215 addr, data);
216 return data;
219 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
220 uint64_t data, unsigned size)
222 VFIOConfigMirrorQuirk *mirror = opaque;
223 VFIOPCIDevice *vdev = mirror->vdev;
225 vfio_pci_write_config(&vdev->pdev, addr, data, size);
226 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
227 memory_region_name(mirror->mem),
228 addr, data);
231 static const MemoryRegionOps vfio_generic_mirror_quirk = {
232 .read = vfio_generic_quirk_mirror_read,
233 .write = vfio_generic_quirk_mirror_write,
234 .endianness = DEVICE_LITTLE_ENDIAN,
237 /* Is range1 fully contained within range2? */
238 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
239 uint64_t first2, uint64_t len2) {
240 return (first1 >= first2 && first1 + len1 <= first2 + len2);
243 #define PCI_VENDOR_ID_ATI 0x1002
246 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
247 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
248 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
249 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
250 * I/O port BAR address. Originally this was coded to return the virtual BAR
251 * address only if the physical register read returns the actual BAR address,
252 * but users have reported greater success if we return the virtual address
253 * unconditionally.
255 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
256 hwaddr addr, unsigned size)
258 VFIOPCIDevice *vdev = opaque;
259 uint64_t data = vfio_pci_read_config(&vdev->pdev,
260 PCI_BASE_ADDRESS_4 + 1, size);
262 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
264 return data;
267 static void vfio_ati_3c3_quirk_write(void *opaque, hwaddr addr,
268 uint64_t data, unsigned size)
270 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__);
273 static const MemoryRegionOps vfio_ati_3c3_quirk = {
274 .read = vfio_ati_3c3_quirk_read,
275 .write = vfio_ati_3c3_quirk_write,
276 .endianness = DEVICE_LITTLE_ENDIAN,
279 VFIOQuirk *vfio_quirk_alloc(int nr_mem)
281 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
282 QLIST_INIT(&quirk->ioeventfds);
283 quirk->mem = g_new0(MemoryRegion, nr_mem);
284 quirk->nr_mem = nr_mem;
286 return quirk;
289 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
291 QLIST_REMOVE(ioeventfd, next);
292 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
293 true, ioeventfd->data, &ioeventfd->e);
295 if (ioeventfd->vfio) {
296 struct vfio_device_ioeventfd vfio_ioeventfd;
298 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
299 vfio_ioeventfd.flags = ioeventfd->size;
300 vfio_ioeventfd.data = ioeventfd->data;
301 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
302 ioeventfd->region_addr;
303 vfio_ioeventfd.fd = -1;
305 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
306 error_report("Failed to remove vfio ioeventfd for %s+0x%"
307 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
308 memory_region_name(ioeventfd->mr), ioeventfd->addr,
309 ioeventfd->size, ioeventfd->data);
311 } else {
312 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
313 NULL, NULL, NULL);
316 event_notifier_cleanup(&ioeventfd->e);
317 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
318 (uint64_t)ioeventfd->addr, ioeventfd->size,
319 ioeventfd->data);
320 g_free(ioeventfd);
323 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
325 VFIOIOEventFD *ioeventfd, *tmp;
327 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
328 if (ioeventfd->dynamic) {
329 vfio_ioeventfd_exit(vdev, ioeventfd);
334 static void vfio_ioeventfd_handler(void *opaque)
336 VFIOIOEventFD *ioeventfd = opaque;
338 if (event_notifier_test_and_clear(&ioeventfd->e)) {
339 vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
340 ioeventfd->data, ioeventfd->size);
341 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
342 (uint64_t)ioeventfd->addr, ioeventfd->size,
343 ioeventfd->data);
347 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
348 MemoryRegion *mr, hwaddr addr,
349 unsigned size, uint64_t data,
350 VFIORegion *region,
351 hwaddr region_addr, bool dynamic)
353 VFIOIOEventFD *ioeventfd;
355 if (vdev->no_kvm_ioeventfd) {
356 return NULL;
359 ioeventfd = g_malloc0(sizeof(*ioeventfd));
361 if (event_notifier_init(&ioeventfd->e, 0)) {
362 g_free(ioeventfd);
363 return NULL;
367 * MemoryRegion and relative offset, plus additional ioeventfd setup
368 * parameters for configuring and later tearing down KVM ioeventfd.
370 ioeventfd->mr = mr;
371 ioeventfd->addr = addr;
372 ioeventfd->size = size;
373 ioeventfd->data = data;
374 ioeventfd->dynamic = dynamic;
376 * VFIORegion and relative offset for implementing the userspace
377 * handler. data & size fields shared for both uses.
379 ioeventfd->region = region;
380 ioeventfd->region_addr = region_addr;
382 if (!vdev->no_vfio_ioeventfd) {
383 struct vfio_device_ioeventfd vfio_ioeventfd;
385 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
386 vfio_ioeventfd.flags = ioeventfd->size;
387 vfio_ioeventfd.data = ioeventfd->data;
388 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
389 ioeventfd->region_addr;
390 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
392 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
393 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
396 if (!ioeventfd->vfio) {
397 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
398 vfio_ioeventfd_handler, NULL, ioeventfd);
401 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
402 true, ioeventfd->data, &ioeventfd->e);
403 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
404 size, data, ioeventfd->vfio);
406 return ioeventfd;
409 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
411 VFIOQuirk *quirk;
414 * As long as the BAR is >= 256 bytes it will be aligned such that the
415 * lower byte is always zero. Filter out anything else, if it exists.
417 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
418 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
419 return;
422 quirk = vfio_quirk_alloc(1);
424 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
425 "vfio-ati-3c3-quirk", 1);
426 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
427 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
429 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
430 quirk, next);
432 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
436 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
437 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
438 * the MMIO space directly, but a window to this space is provided through
439 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
440 * data register. When the address is programmed to a range of 0x4000-0x4fff
441 * PCI configuration space is available. Experimentation seems to indicate
442 * that read-only may be provided by hardware.
444 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
446 VFIOQuirk *quirk;
447 VFIOConfigWindowQuirk *window;
449 /* This windows doesn't seem to be used except by legacy VGA code */
450 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
451 !vdev->vga || nr != 4) {
452 return;
455 quirk = vfio_quirk_alloc(2);
456 window = quirk->data = g_malloc0(sizeof(*window) +
457 sizeof(VFIOConfigWindowMatch));
458 window->vdev = vdev;
459 window->address_offset = 0;
460 window->data_offset = 4;
461 window->nr_matches = 1;
462 window->matches[0].match = 0x4000;
463 window->matches[0].mask = vdev->config_size - 1;
464 window->bar = nr;
465 window->addr_mem = &quirk->mem[0];
466 window->data_mem = &quirk->mem[1];
468 memory_region_init_io(window->addr_mem, OBJECT(vdev),
469 &vfio_generic_window_address_quirk, window,
470 "vfio-ati-bar4-window-address-quirk", 4);
471 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
472 window->address_offset,
473 window->addr_mem, 1);
475 memory_region_init_io(window->data_mem, OBJECT(vdev),
476 &vfio_generic_window_data_quirk, window,
477 "vfio-ati-bar4-window-data-quirk", 4);
478 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
479 window->data_offset,
480 window->data_mem, 1);
482 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
484 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
488 * Trap the BAR2 MMIO mirror to config space as well.
490 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
492 VFIOQuirk *quirk;
493 VFIOConfigMirrorQuirk *mirror;
495 /* Only enable on newer devices where BAR2 is 64bit */
496 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
497 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
498 return;
501 quirk = vfio_quirk_alloc(1);
502 mirror = quirk->data = g_malloc0(sizeof(*mirror));
503 mirror->mem = quirk->mem;
504 mirror->vdev = vdev;
505 mirror->offset = 0x4000;
506 mirror->bar = nr;
508 memory_region_init_io(mirror->mem, OBJECT(vdev),
509 &vfio_generic_mirror_quirk, mirror,
510 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
511 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
512 mirror->offset, mirror->mem, 1);
514 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
516 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
520 * Older ATI/AMD cards like the X550 have a similar window to that above.
521 * I/O port BAR1 provides a window to a mirror of PCI config space located
522 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
523 * note it for future reference.
527 * Nvidia has several different methods to get to config space, the
528 * nouveu project has several of these documented here:
529 * https://github.com/pathscale/envytools/tree/master/hwdocs
531 * The first quirk is actually not documented in envytools and is found
532 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
533 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
534 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
535 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
536 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
537 * is written for a write to 0x3d4. The BAR0 offset is then accessible
538 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
539 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
541 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
542 static const char *nv3d0_states[] = { "NONE", "SELECT",
543 "WINDOW", "READ", "WRITE" };
545 typedef struct VFIONvidia3d0Quirk {
546 VFIOPCIDevice *vdev;
547 VFIONvidia3d0State state;
548 uint32_t offset;
549 } VFIONvidia3d0Quirk;
551 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
552 hwaddr addr, unsigned size)
554 VFIONvidia3d0Quirk *quirk = opaque;
555 VFIOPCIDevice *vdev = quirk->vdev;
557 quirk->state = NONE;
559 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
560 addr + 0x14, size);
563 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
564 uint64_t data, unsigned size)
566 VFIONvidia3d0Quirk *quirk = opaque;
567 VFIOPCIDevice *vdev = quirk->vdev;
568 VFIONvidia3d0State old_state = quirk->state;
570 quirk->state = NONE;
572 switch (data) {
573 case 0x338:
574 if (old_state == NONE) {
575 quirk->state = SELECT;
576 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
577 nv3d0_states[quirk->state]);
579 break;
580 case 0x538:
581 if (old_state == WINDOW) {
582 quirk->state = READ;
583 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
584 nv3d0_states[quirk->state]);
586 break;
587 case 0x738:
588 if (old_state == WINDOW) {
589 quirk->state = WRITE;
590 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
591 nv3d0_states[quirk->state]);
593 break;
596 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
597 addr + 0x14, data, size);
600 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
601 .read = vfio_nvidia_3d4_quirk_read,
602 .write = vfio_nvidia_3d4_quirk_write,
603 .endianness = DEVICE_LITTLE_ENDIAN,
606 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
607 hwaddr addr, unsigned size)
609 VFIONvidia3d0Quirk *quirk = opaque;
610 VFIOPCIDevice *vdev = quirk->vdev;
611 VFIONvidia3d0State old_state = quirk->state;
612 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
613 addr + 0x10, size);
615 quirk->state = NONE;
617 if (old_state == READ &&
618 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
619 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
621 data = vfio_pci_read_config(&vdev->pdev, offset, size);
622 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
623 offset, size, data);
626 return data;
629 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
630 uint64_t data, unsigned size)
632 VFIONvidia3d0Quirk *quirk = opaque;
633 VFIOPCIDevice *vdev = quirk->vdev;
634 VFIONvidia3d0State old_state = quirk->state;
636 quirk->state = NONE;
638 if (old_state == SELECT) {
639 quirk->offset = (uint32_t)data;
640 quirk->state = WINDOW;
641 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
642 nv3d0_states[quirk->state]);
643 } else if (old_state == WRITE) {
644 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
645 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
647 vfio_pci_write_config(&vdev->pdev, offset, data, size);
648 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
649 offset, data, size);
650 return;
654 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
655 addr + 0x10, data, size);
658 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
659 .read = vfio_nvidia_3d0_quirk_read,
660 .write = vfio_nvidia_3d0_quirk_write,
661 .endianness = DEVICE_LITTLE_ENDIAN,
664 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
666 VFIOQuirk *quirk;
667 VFIONvidia3d0Quirk *data;
669 if (vdev->no_geforce_quirks ||
670 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
671 !vdev->bars[1].region.size) {
672 return;
675 quirk = vfio_quirk_alloc(2);
676 quirk->data = data = g_malloc0(sizeof(*data));
677 data->vdev = vdev;
679 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
680 data, "vfio-nvidia-3d4-quirk", 2);
681 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
682 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
684 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
685 data, "vfio-nvidia-3d0-quirk", 2);
686 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
687 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
689 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
690 quirk, next);
692 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
696 * The second quirk is documented in envytools. The I/O port BAR5 is just
697 * a set of address/data ports to the MMIO BARs. The BAR we care about is
698 * again BAR0. This backdoor is apparently a bit newer than the one above
699 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
700 * space, including extended space is available at the 4k @0x88000.
702 typedef struct VFIONvidiaBAR5Quirk {
703 uint32_t master;
704 uint32_t enable;
705 MemoryRegion *addr_mem;
706 MemoryRegion *data_mem;
707 bool enabled;
708 VFIOConfigWindowQuirk window; /* last for match data */
709 } VFIONvidiaBAR5Quirk;
711 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
713 VFIOPCIDevice *vdev = bar5->window.vdev;
715 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
716 return;
719 bar5->enabled = !bar5->enabled;
720 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
721 bar5->enabled ? "Enable" : "Disable");
722 memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
723 memory_region_set_enabled(bar5->data_mem, bar5->enabled);
726 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
727 hwaddr addr, unsigned size)
729 VFIONvidiaBAR5Quirk *bar5 = opaque;
730 VFIOPCIDevice *vdev = bar5->window.vdev;
732 return vfio_region_read(&vdev->bars[5].region, addr, size);
735 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
736 uint64_t data, unsigned size)
738 VFIONvidiaBAR5Quirk *bar5 = opaque;
739 VFIOPCIDevice *vdev = bar5->window.vdev;
741 vfio_region_write(&vdev->bars[5].region, addr, data, size);
743 bar5->master = data;
744 vfio_nvidia_bar5_enable(bar5);
747 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
748 .read = vfio_nvidia_bar5_quirk_master_read,
749 .write = vfio_nvidia_bar5_quirk_master_write,
750 .endianness = DEVICE_LITTLE_ENDIAN,
753 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
754 hwaddr addr, unsigned size)
756 VFIONvidiaBAR5Quirk *bar5 = opaque;
757 VFIOPCIDevice *vdev = bar5->window.vdev;
759 return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
762 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
763 uint64_t data, unsigned size)
765 VFIONvidiaBAR5Quirk *bar5 = opaque;
766 VFIOPCIDevice *vdev = bar5->window.vdev;
768 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
770 bar5->enable = data;
771 vfio_nvidia_bar5_enable(bar5);
774 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
775 .read = vfio_nvidia_bar5_quirk_enable_read,
776 .write = vfio_nvidia_bar5_quirk_enable_write,
777 .endianness = DEVICE_LITTLE_ENDIAN,
780 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
782 VFIOQuirk *quirk;
783 VFIONvidiaBAR5Quirk *bar5;
784 VFIOConfigWindowQuirk *window;
786 if (vdev->no_geforce_quirks ||
787 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
788 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
789 return;
792 quirk = vfio_quirk_alloc(4);
793 bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
794 (sizeof(VFIOConfigWindowMatch) * 2));
795 window = &bar5->window;
797 window->vdev = vdev;
798 window->address_offset = 0x8;
799 window->data_offset = 0xc;
800 window->nr_matches = 2;
801 window->matches[0].match = 0x1800;
802 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
803 window->matches[1].match = 0x88000;
804 window->matches[1].mask = vdev->config_size - 1;
805 window->bar = nr;
806 window->addr_mem = bar5->addr_mem = &quirk->mem[0];
807 window->data_mem = bar5->data_mem = &quirk->mem[1];
809 memory_region_init_io(window->addr_mem, OBJECT(vdev),
810 &vfio_generic_window_address_quirk, window,
811 "vfio-nvidia-bar5-window-address-quirk", 4);
812 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
813 window->address_offset,
814 window->addr_mem, 1);
815 memory_region_set_enabled(window->addr_mem, false);
817 memory_region_init_io(window->data_mem, OBJECT(vdev),
818 &vfio_generic_window_data_quirk, window,
819 "vfio-nvidia-bar5-window-data-quirk", 4);
820 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
821 window->data_offset,
822 window->data_mem, 1);
823 memory_region_set_enabled(window->data_mem, false);
825 memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
826 &vfio_nvidia_bar5_quirk_master, bar5,
827 "vfio-nvidia-bar5-master-quirk", 4);
828 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
829 0, &quirk->mem[2], 1);
831 memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
832 &vfio_nvidia_bar5_quirk_enable, bar5,
833 "vfio-nvidia-bar5-enable-quirk", 4);
834 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
835 4, &quirk->mem[3], 1);
837 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
839 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
842 typedef struct LastDataSet {
843 VFIOQuirk *quirk;
844 hwaddr addr;
845 uint64_t data;
846 unsigned size;
847 int hits;
848 int added;
849 } LastDataSet;
851 #define MAX_DYN_IOEVENTFD 10
852 #define HITS_FOR_IOEVENTFD 10
855 * Finally, BAR0 itself. We want to redirect any accesses to either
856 * 0x1800 or 0x88000 through the PCI config space access functions.
858 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
859 uint64_t data, unsigned size)
861 VFIOConfigMirrorQuirk *mirror = opaque;
862 VFIOPCIDevice *vdev = mirror->vdev;
863 PCIDevice *pdev = &vdev->pdev;
864 LastDataSet *last = (LastDataSet *)&mirror->data;
866 vfio_generic_quirk_mirror_write(opaque, addr, data, size);
869 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
870 * MSI capability ID register. Both the ID and next register are
871 * read-only, so we allow writes covering either of those to real hw.
873 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
874 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
875 vfio_region_write(&vdev->bars[mirror->bar].region,
876 addr + mirror->offset, data, size);
877 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
881 * Automatically add an ioeventfd to handle any repeated write with the
882 * same data and size above the standard PCI config space header. This is
883 * primarily expected to accelerate the MSI-ACK behavior, such as noted
884 * above. Current hardware/drivers should trigger an ioeventfd at config
885 * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
887 * The criteria of 10 successive hits is arbitrary but reliably adds the
888 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd,
889 * the remaining ones have a greater chance of being seen successively.
890 * To avoid the pathological case of burning up all of QEMU's open file
891 * handles, arbitrarily limit this algorithm from adding no more than 10
892 * ioeventfds, print an error if we would have added an 11th, and then
893 * stop counting.
895 if (!vdev->no_kvm_ioeventfd &&
896 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
897 if (addr != last->addr || data != last->data || size != last->size) {
898 last->addr = addr;
899 last->data = data;
900 last->size = size;
901 last->hits = 1;
902 } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
903 if (last->added < MAX_DYN_IOEVENTFD) {
904 VFIOIOEventFD *ioeventfd;
905 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
906 data, &vdev->bars[mirror->bar].region,
907 mirror->offset + addr, true);
908 if (ioeventfd) {
909 VFIOQuirk *quirk = last->quirk;
911 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
912 last->added++;
914 } else {
915 last->added++;
916 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
917 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
918 "size %u", vdev->vbasedev.name, addr, data, size);
924 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
925 .read = vfio_generic_quirk_mirror_read,
926 .write = vfio_nvidia_quirk_mirror_write,
927 .endianness = DEVICE_LITTLE_ENDIAN,
930 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
932 VFIOConfigMirrorQuirk *mirror = quirk->data;
933 LastDataSet *last = (LastDataSet *)&mirror->data;
935 last->addr = last->data = last->size = last->hits = last->added = 0;
937 vfio_drop_dynamic_eventfds(vdev, quirk);
940 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
942 VFIOQuirk *quirk;
943 VFIOConfigMirrorQuirk *mirror;
944 LastDataSet *last;
946 if (vdev->no_geforce_quirks ||
947 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
948 !vfio_is_vga(vdev) || nr != 0) {
949 return;
952 quirk = vfio_quirk_alloc(1);
953 quirk->reset = vfio_nvidia_bar0_quirk_reset;
954 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
955 mirror->mem = quirk->mem;
956 mirror->vdev = vdev;
957 mirror->offset = 0x88000;
958 mirror->bar = nr;
959 last = (LastDataSet *)&mirror->data;
960 last->quirk = quirk;
962 memory_region_init_io(mirror->mem, OBJECT(vdev),
963 &vfio_nvidia_mirror_quirk, mirror,
964 "vfio-nvidia-bar0-88000-mirror-quirk",
965 vdev->config_size);
966 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
967 mirror->offset, mirror->mem, 1);
969 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
971 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
972 if (vdev->vga) {
973 quirk = vfio_quirk_alloc(1);
974 quirk->reset = vfio_nvidia_bar0_quirk_reset;
975 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
976 mirror->mem = quirk->mem;
977 mirror->vdev = vdev;
978 mirror->offset = 0x1800;
979 mirror->bar = nr;
980 last = (LastDataSet *)&mirror->data;
981 last->quirk = quirk;
983 memory_region_init_io(mirror->mem, OBJECT(vdev),
984 &vfio_nvidia_mirror_quirk, mirror,
985 "vfio-nvidia-bar0-1800-mirror-quirk",
986 PCI_CONFIG_SPACE_SIZE);
987 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
988 mirror->offset, mirror->mem, 1);
990 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
993 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
997 * TODO - Some Nvidia devices provide config access to their companion HDA
998 * device and even to their parent bridge via these config space mirrors.
999 * Add quirks for those regions.
1002 #define PCI_VENDOR_ID_REALTEK 0x10ec
1005 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1006 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1007 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1008 * when the "type" portion of the address register is set to 0x1. This appears
1009 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1010 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1011 * ignore because the MSI-X table should always be accessed as a dword (full
1012 * mask). Bits 0:11 is offset within the type.
1014 * Example trace:
1016 * Read from MSI-X table offset 0
1017 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1018 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1019 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1021 * Write 0xfee00000 to MSI-X table offset 0
1022 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1023 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1024 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1026 typedef struct VFIOrtl8168Quirk {
1027 VFIOPCIDevice *vdev;
1028 uint32_t addr;
1029 uint32_t data;
1030 bool enabled;
1031 } VFIOrtl8168Quirk;
1033 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1034 hwaddr addr, unsigned size)
1036 VFIOrtl8168Quirk *rtl = opaque;
1037 VFIOPCIDevice *vdev = rtl->vdev;
1038 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1040 if (rtl->enabled) {
1041 data = rtl->addr ^ 0x80000000U; /* latch/complete */
1042 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1045 return data;
1048 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1049 uint64_t data, unsigned size)
1051 VFIOrtl8168Quirk *rtl = opaque;
1052 VFIOPCIDevice *vdev = rtl->vdev;
1054 rtl->enabled = false;
1056 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1057 rtl->enabled = true;
1058 rtl->addr = (uint32_t)data;
1060 if (data & 0x80000000U) { /* Do write */
1061 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1062 hwaddr offset = data & 0xfff;
1063 uint64_t val = rtl->data;
1065 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1066 (uint16_t)offset, val);
1068 /* Write to the proper guest MSI-X table instead */
1069 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1070 offset, val,
1071 size_memop(size) | MO_LE,
1072 MEMTXATTRS_UNSPECIFIED);
1074 return; /* Do not write guest MSI-X data to hardware */
1078 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1081 static const MemoryRegionOps vfio_rtl_address_quirk = {
1082 .read = vfio_rtl8168_quirk_address_read,
1083 .write = vfio_rtl8168_quirk_address_write,
1084 .valid = {
1085 .min_access_size = 4,
1086 .max_access_size = 4,
1087 .unaligned = false,
1089 .endianness = DEVICE_LITTLE_ENDIAN,
1092 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1093 hwaddr addr, unsigned size)
1095 VFIOrtl8168Quirk *rtl = opaque;
1096 VFIOPCIDevice *vdev = rtl->vdev;
1097 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1099 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1100 hwaddr offset = rtl->addr & 0xfff;
1101 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1102 &data, size_memop(size) | MO_LE,
1103 MEMTXATTRS_UNSPECIFIED);
1104 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1107 return data;
1110 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1111 uint64_t data, unsigned size)
1113 VFIOrtl8168Quirk *rtl = opaque;
1114 VFIOPCIDevice *vdev = rtl->vdev;
1116 rtl->data = (uint32_t)data;
1118 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1121 static const MemoryRegionOps vfio_rtl_data_quirk = {
1122 .read = vfio_rtl8168_quirk_data_read,
1123 .write = vfio_rtl8168_quirk_data_write,
1124 .valid = {
1125 .min_access_size = 4,
1126 .max_access_size = 4,
1127 .unaligned = false,
1129 .endianness = DEVICE_LITTLE_ENDIAN,
1132 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1134 VFIOQuirk *quirk;
1135 VFIOrtl8168Quirk *rtl;
1137 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1138 return;
1141 quirk = vfio_quirk_alloc(2);
1142 quirk->data = rtl = g_malloc0(sizeof(*rtl));
1143 rtl->vdev = vdev;
1145 memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1146 &vfio_rtl_address_quirk, rtl,
1147 "vfio-rtl8168-window-address-quirk", 4);
1148 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1149 0x74, &quirk->mem[0], 1);
1151 memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1152 &vfio_rtl_data_quirk, rtl,
1153 "vfio-rtl8168-window-data-quirk", 4);
1154 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1155 0x70, &quirk->mem[1], 1);
1157 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1159 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1162 #define IGD_ASLS 0xfc /* ASL Storage Register */
1165 * The OpRegion includes the Video BIOS Table, which seems important for
1166 * telling the driver what sort of outputs it has. Without this, the device
1167 * may work in the guest, but we may not get output. This also requires BIOS
1168 * support to reserve and populate a section of guest memory sufficient for
1169 * the table and to write the base address of that memory to the ASLS register
1170 * of the IGD device.
1172 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1173 struct vfio_region_info *info, Error **errp)
1175 int ret;
1177 vdev->igd_opregion = g_malloc0(info->size);
1178 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1179 info->size, info->offset);
1180 if (ret != info->size) {
1181 error_setg(errp, "failed to read IGD OpRegion");
1182 g_free(vdev->igd_opregion);
1183 vdev->igd_opregion = NULL;
1184 return -EINVAL;
1188 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1189 * allocate 32bit reserved memory for, copy these contents into, and write
1190 * the reserved memory base address to the device ASLS register at 0xFC.
1191 * Alignment of this reserved region seems flexible, but using a 4k page
1192 * alignment seems to work well. This interface assumes a single IGD
1193 * device, which may be at VM address 00:02.0 in legacy mode or another
1194 * address in UPT mode.
1196 * NB, there may be future use cases discovered where the VM should have
1197 * direct interaction with the host OpRegion, in which case the write to
1198 * the ASLS register would trigger MemoryRegion setup to enable that.
1200 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1201 vdev->igd_opregion, info->size);
1203 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1205 pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1206 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1207 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1209 return 0;
1213 * Common quirk probe entry points.
1215 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1217 vfio_vga_probe_ati_3c3_quirk(vdev);
1218 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1221 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1223 VFIOQuirk *quirk;
1224 int i, j;
1226 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1227 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1228 for (j = 0; j < quirk->nr_mem; j++) {
1229 memory_region_del_subregion(&vdev->vga->region[i].mem,
1230 &quirk->mem[j]);
1236 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1238 int i, j;
1240 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1241 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1242 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1243 QLIST_REMOVE(quirk, next);
1244 for (j = 0; j < quirk->nr_mem; j++) {
1245 object_unparent(OBJECT(&quirk->mem[j]));
1247 g_free(quirk->mem);
1248 g_free(quirk->data);
1249 g_free(quirk);
1254 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1256 vfio_probe_ati_bar4_quirk(vdev, nr);
1257 vfio_probe_ati_bar2_quirk(vdev, nr);
1258 vfio_probe_nvidia_bar5_quirk(vdev, nr);
1259 vfio_probe_nvidia_bar0_quirk(vdev, nr);
1260 vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1261 #ifdef CONFIG_VFIO_IGD
1262 vfio_probe_igd_bar4_quirk(vdev, nr);
1263 #endif
1266 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1268 VFIOBAR *bar = &vdev->bars[nr];
1269 VFIOQuirk *quirk;
1270 int i;
1272 QLIST_FOREACH(quirk, &bar->quirks, next) {
1273 while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1274 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1277 for (i = 0; i < quirk->nr_mem; i++) {
1278 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1283 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1285 VFIOBAR *bar = &vdev->bars[nr];
1286 int i;
1288 while (!QLIST_EMPTY(&bar->quirks)) {
1289 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1290 QLIST_REMOVE(quirk, next);
1291 for (i = 0; i < quirk->nr_mem; i++) {
1292 object_unparent(OBJECT(&quirk->mem[i]));
1294 g_free(quirk->mem);
1295 g_free(quirk->data);
1296 g_free(quirk);
1301 * Reset quirks
1303 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1305 int i;
1307 for (i = 0; i < PCI_ROM_SLOT; i++) {
1308 VFIOQuirk *quirk;
1309 VFIOBAR *bar = &vdev->bars[i];
1311 QLIST_FOREACH(quirk, &bar->quirks, next) {
1312 if (quirk->reset) {
1313 quirk->reset(vdev, quirk);
1320 * AMD Radeon PCI config reset, based on Linux:
1321 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1322 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1323 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1324 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1325 * IDs: include/drm/drm_pciids.h
1326 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1328 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1329 * hardware that should be fixed on future ASICs. The symptom of this is that
1330 * once the accerlated driver loads, Windows guests will bsod on subsequent
1331 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1332 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1333 * reset. The PCI config reset only works if SMC firmware is running, so we
1334 * have a dependency on the state of the device as to whether this reset will
1335 * be effective. There are still cases where we won't be able to kick the
1336 * device into working, but this greatly improves the usability overall. The
1337 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1338 * poking is largely ASIC specific.
1340 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1342 uint32_t clk, pc_c;
1345 * Registers 200h and 204h are index and data registers for accessing
1346 * indirect configuration registers within the device.
1348 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1349 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1350 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1351 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1353 return (!(clk & 1) && (0x20100 <= pc_c));
1357 * The scope of a config reset is controlled by a mode bit in the misc register
1358 * and a fuse, exposed as a bit in another register. The fuse is the default
1359 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the formula
1360 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1361 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1362 * to flip the value of the bit in the misc register.
1364 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1366 uint32_t misc, fuse;
1367 bool a, b;
1369 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1370 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1371 b = fuse & 64;
1373 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1374 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1375 a = misc & 2;
1377 if (a == b) {
1378 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1379 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1383 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1385 PCIDevice *pdev = &vdev->pdev;
1386 int i, ret = 0;
1387 uint32_t data;
1389 /* Defer to a kernel implemented reset */
1390 if (vdev->vbasedev.reset_works) {
1391 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1392 return -ENODEV;
1395 /* Enable only memory BAR access */
1396 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1398 /* Reset only works if SMC firmware is loaded and running */
1399 if (!vfio_radeon_smc_is_running(vdev)) {
1400 ret = -EINVAL;
1401 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1402 goto out;
1405 /* Make sure only the GFX function is reset */
1406 vfio_radeon_set_gfx_only_reset(vdev);
1408 /* AMD PCI config reset */
1409 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
1410 usleep(100);
1412 /* Read back the memory size to make sure we're out of reset */
1413 for (i = 0; i < 100000; i++) {
1414 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
1415 goto reset_smc;
1417 usleep(1);
1420 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
1422 reset_smc:
1423 /* Reset SMC */
1424 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
1425 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1426 data |= 1;
1427 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1429 /* Disable SMC clock */
1430 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1431 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1432 data |= 1;
1433 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1435 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
1437 out:
1438 /* Restore PCI command register */
1439 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
1441 return ret;
1444 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
1446 switch (vdev->vendor_id) {
1447 case 0x1002:
1448 switch (vdev->device_id) {
1449 /* Bonaire */
1450 case 0x6649: /* Bonaire [FirePro W5100] */
1451 case 0x6650:
1452 case 0x6651:
1453 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
1454 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
1455 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
1456 /* Hawaii */
1457 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
1458 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
1459 case 0x67A2:
1460 case 0x67A8:
1461 case 0x67A9:
1462 case 0x67AA:
1463 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
1464 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
1465 case 0x67B8:
1466 case 0x67B9:
1467 case 0x67BA:
1468 case 0x67BE:
1469 vdev->resetfn = vfio_radeon_reset;
1470 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
1471 break;
1473 break;
1478 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
1479 * devices as a member of a clique. Devices within the same clique ID
1480 * are capable of direct P2P. It's the user's responsibility that this
1481 * is correct. The spec says that this may reside at any unused config
1482 * offset, but reserves and recommends hypervisors place this at C8h.
1483 * The spec also states that the hypervisor should place this capability
1484 * at the end of the capability list, thus next is defined as 0h.
1486 * +----------------+----------------+----------------+----------------+
1487 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
1488 * +----------------+----------------+----------------+----------------+
1489 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
1490 * +---------------------------------+---------------------------------+
1492 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
1494 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1495 const char *name, void *opaque,
1496 Error **errp)
1498 Property *prop = opaque;
1499 uint8_t *ptr = object_field_prop_ptr(obj, prop);
1501 visit_type_uint8(v, name, ptr, errp);
1504 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1505 const char *name, void *opaque,
1506 Error **errp)
1508 Property *prop = opaque;
1509 uint8_t value, *ptr = object_field_prop_ptr(obj, prop);
1511 if (!visit_type_uint8(v, name, &value, errp)) {
1512 return;
1515 if (value & ~0xF) {
1516 error_setg(errp, "Property %s: valid range 0-15", name);
1517 return;
1520 *ptr = value;
1523 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
1524 .name = "uint4",
1525 .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
1526 .get = get_nv_gpudirect_clique_id,
1527 .set = set_nv_gpudirect_clique_id,
1530 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
1532 PCIDevice *pdev = &vdev->pdev;
1533 int ret, pos = 0xC8;
1535 if (vdev->nv_gpudirect_clique == 0xFF) {
1536 return 0;
1539 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
1540 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
1541 return -EINVAL;
1544 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
1545 PCI_BASE_CLASS_DISPLAY) {
1546 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
1547 return -EINVAL;
1550 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
1551 if (ret < 0) {
1552 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
1553 return ret;
1556 memset(vdev->emulated_config_bits + pos, 0xFF, 8);
1557 pos += PCI_CAP_FLAGS;
1558 pci_set_byte(pdev->config + pos++, 8);
1559 pci_set_byte(pdev->config + pos++, 'P');
1560 pci_set_byte(pdev->config + pos++, '2');
1561 pci_set_byte(pdev->config + pos++, 'P');
1562 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
1563 pci_set_byte(pdev->config + pos, 0);
1565 return 0;
1568 int vfio_pci_nvidia_v100_ram_init(VFIOPCIDevice *vdev, Error **errp)
1570 int ret;
1571 void *p;
1572 struct vfio_region_info *nv2reg = NULL;
1573 struct vfio_info_cap_header *hdr;
1574 struct vfio_region_info_cap_nvlink2_ssatgt *cap;
1575 VFIOQuirk *quirk;
1577 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1578 VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
1579 PCI_VENDOR_ID_NVIDIA,
1580 VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM,
1581 &nv2reg);
1582 if (ret) {
1583 return ret;
1586 hdr = vfio_get_region_info_cap(nv2reg, VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
1587 if (!hdr) {
1588 ret = -ENODEV;
1589 goto free_exit;
1591 cap = (void *) hdr;
1593 p = mmap(NULL, nv2reg->size, PROT_READ | PROT_WRITE,
1594 MAP_SHARED, vdev->vbasedev.fd, nv2reg->offset);
1595 if (p == MAP_FAILED) {
1596 ret = -errno;
1597 goto free_exit;
1600 quirk = vfio_quirk_alloc(1);
1601 memory_region_init_ram_ptr(&quirk->mem[0], OBJECT(vdev), "nvlink2-mr",
1602 nv2reg->size, p);
1603 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
1605 object_property_add_uint64_ptr(OBJECT(vdev), "nvlink2-tgt",
1606 (uint64_t *) &cap->tgt,
1607 OBJ_PROP_FLAG_READ);
1608 trace_vfio_pci_nvidia_gpu_setup_quirk(vdev->vbasedev.name, cap->tgt,
1609 nv2reg->size);
1610 free_exit:
1611 g_free(nv2reg);
1613 return ret;
1616 int vfio_pci_nvlink2_init(VFIOPCIDevice *vdev, Error **errp)
1618 int ret;
1619 void *p;
1620 struct vfio_region_info *atsdreg = NULL;
1621 struct vfio_info_cap_header *hdr;
1622 struct vfio_region_info_cap_nvlink2_ssatgt *captgt;
1623 struct vfio_region_info_cap_nvlink2_lnkspd *capspeed;
1624 VFIOQuirk *quirk;
1626 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1627 VFIO_REGION_TYPE_PCI_VENDOR_TYPE |
1628 PCI_VENDOR_ID_IBM,
1629 VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD,
1630 &atsdreg);
1631 if (ret) {
1632 return ret;
1635 hdr = vfio_get_region_info_cap(atsdreg,
1636 VFIO_REGION_INFO_CAP_NVLINK2_SSATGT);
1637 if (!hdr) {
1638 ret = -ENODEV;
1639 goto free_exit;
1641 captgt = (void *) hdr;
1643 hdr = vfio_get_region_info_cap(atsdreg,
1644 VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD);
1645 if (!hdr) {
1646 ret = -ENODEV;
1647 goto free_exit;
1649 capspeed = (void *) hdr;
1651 /* Some NVLink bridges may not have assigned ATSD */
1652 if (atsdreg->size) {
1653 p = mmap(NULL, atsdreg->size, PROT_READ | PROT_WRITE,
1654 MAP_SHARED, vdev->vbasedev.fd, atsdreg->offset);
1655 if (p == MAP_FAILED) {
1656 ret = -errno;
1657 goto free_exit;
1660 quirk = vfio_quirk_alloc(1);
1661 memory_region_init_ram_device_ptr(&quirk->mem[0], OBJECT(vdev),
1662 "nvlink2-atsd-mr", atsdreg->size, p);
1663 QLIST_INSERT_HEAD(&vdev->bars[0].quirks, quirk, next);
1666 object_property_add_uint64_ptr(OBJECT(vdev), "nvlink2-tgt",
1667 (uint64_t *) &captgt->tgt,
1668 OBJ_PROP_FLAG_READ);
1669 trace_vfio_pci_nvlink2_setup_quirk_ssatgt(vdev->vbasedev.name, captgt->tgt,
1670 atsdreg->size);
1672 object_property_add_uint32_ptr(OBJECT(vdev), "nvlink2-link-speed",
1673 &capspeed->link_speed,
1674 OBJ_PROP_FLAG_READ);
1675 trace_vfio_pci_nvlink2_setup_quirk_lnkspd(vdev->vbasedev.name,
1676 capspeed->link_speed);
1677 free_exit:
1678 g_free(atsdreg);
1680 return ret;
1684 * The VMD endpoint provides a real PCIe domain to the guest and the guest
1685 * kernel performs enumeration of the VMD sub-device domain. Guest transactions
1686 * to VMD sub-devices go through MMU translation from guest addresses to
1687 * physical addresses. When MMIO goes to an endpoint after being translated to
1688 * physical addresses, the bridge rejects the transaction because the window
1689 * has been programmed with guest addresses.
1691 * VMD can use the Host Physical Address in order to correctly program the
1692 * bridge windows in its PCIe domain. VMD device 28C0 has HPA shadow registers
1693 * located at offset 0x2000 in MEMBAR2 (BAR 4). This quirk provides the HPA
1694 * shadow registers in a vendor-specific capability register for devices
1695 * without native support. The position of 0xE8-0xFF is in the reserved range
1696 * of the VMD device capability space following the Power Management
1697 * Capability.
1699 #define VMD_SHADOW_CAP_VER 1
1700 #define VMD_SHADOW_CAP_LEN 24
1701 static int vfio_add_vmd_shadow_cap(VFIOPCIDevice *vdev, Error **errp)
1703 uint8_t membar_phys[16];
1704 int ret, pos = 0xE8;
1706 if (!(vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x201D) ||
1707 vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x467F) ||
1708 vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x4C3D) ||
1709 vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x9A0B))) {
1710 return 0;
1713 ret = pread(vdev->vbasedev.fd, membar_phys, 16,
1714 vdev->config_offset + PCI_BASE_ADDRESS_2);
1715 if (ret != 16) {
1716 error_report("VMD %s cannot read MEMBARs (%d)",
1717 vdev->vbasedev.name, ret);
1718 return -EFAULT;
1721 ret = pci_add_capability(&vdev->pdev, PCI_CAP_ID_VNDR, pos,
1722 VMD_SHADOW_CAP_LEN, errp);
1723 if (ret < 0) {
1724 error_prepend(errp, "Failed to add VMD MEMBAR Shadow cap: ");
1725 return ret;
1728 memset(vdev->emulated_config_bits + pos, 0xFF, VMD_SHADOW_CAP_LEN);
1729 pos += PCI_CAP_FLAGS;
1730 pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_LEN);
1731 pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_VER);
1732 pci_set_long(vdev->pdev.config + pos, 0x53484457); /* SHDW */
1733 memcpy(vdev->pdev.config + pos + 4, membar_phys, 16);
1735 return 0;
1738 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
1740 int ret;
1742 ret = vfio_add_nv_gpudirect_cap(vdev, errp);
1743 if (ret) {
1744 return ret;
1747 ret = vfio_add_vmd_shadow_cap(vdev, errp);
1748 if (ret) {
1749 return ret;
1752 return 0;