linux-user: Add LoongArch syscall support
[qemu/rayw.git] / hw / vfio / common.c
blobace9562a9ba1fd208a8b6c3aac66717e7b0f7f81
1 /*
2 * generic functions used by VFIO devices
4 * Copyright Red Hat, Inc. 2012
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/vfio.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "trace.h"
41 #include "qapi/error.h"
42 #include "migration/migration.h"
43 #include "sysemu/tpm.h"
45 VFIOGroupList vfio_group_list =
46 QLIST_HEAD_INITIALIZER(vfio_group_list);
47 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
48 QLIST_HEAD_INITIALIZER(vfio_address_spaces);
50 #ifdef CONFIG_KVM
52 * We have a single VFIO pseudo device per KVM VM. Once created it lives
53 * for the life of the VM. Closing the file descriptor only drops our
54 * reference to it and the device's reference to kvm. Therefore once
55 * initialized, this file descriptor is only released on QEMU exit and
56 * we'll re-use it should another vfio device be attached before then.
58 static int vfio_kvm_device_fd = -1;
59 #endif
62 * Common VFIO interrupt disable
64 void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
66 struct vfio_irq_set irq_set = {
67 .argsz = sizeof(irq_set),
68 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
69 .index = index,
70 .start = 0,
71 .count = 0,
74 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
77 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
79 struct vfio_irq_set irq_set = {
80 .argsz = sizeof(irq_set),
81 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
82 .index = index,
83 .start = 0,
84 .count = 1,
87 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
90 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
92 struct vfio_irq_set irq_set = {
93 .argsz = sizeof(irq_set),
94 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
95 .index = index,
96 .start = 0,
97 .count = 1,
100 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
103 static inline const char *action_to_str(int action)
105 switch (action) {
106 case VFIO_IRQ_SET_ACTION_MASK:
107 return "MASK";
108 case VFIO_IRQ_SET_ACTION_UNMASK:
109 return "UNMASK";
110 case VFIO_IRQ_SET_ACTION_TRIGGER:
111 return "TRIGGER";
112 default:
113 return "UNKNOWN ACTION";
117 static const char *index_to_str(VFIODevice *vbasedev, int index)
119 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
120 return NULL;
123 switch (index) {
124 case VFIO_PCI_INTX_IRQ_INDEX:
125 return "INTX";
126 case VFIO_PCI_MSI_IRQ_INDEX:
127 return "MSI";
128 case VFIO_PCI_MSIX_IRQ_INDEX:
129 return "MSIX";
130 case VFIO_PCI_ERR_IRQ_INDEX:
131 return "ERR";
132 case VFIO_PCI_REQ_IRQ_INDEX:
133 return "REQ";
134 default:
135 return NULL;
139 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state)
141 switch (container->iommu_type) {
142 case VFIO_TYPE1v2_IOMMU:
143 case VFIO_TYPE1_IOMMU:
145 * We support coordinated discarding of RAM via the RamDiscardManager.
147 return ram_block_uncoordinated_discard_disable(state);
148 default:
150 * VFIO_SPAPR_TCE_IOMMU most probably works just fine with
151 * RamDiscardManager, however, it is completely untested.
153 * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does
154 * completely the opposite of managing mapping/pinning dynamically as
155 * required by RamDiscardManager. We would have to special-case sections
156 * with a RamDiscardManager.
158 return ram_block_discard_disable(state);
162 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
163 int action, int fd, Error **errp)
165 struct vfio_irq_set *irq_set;
166 int argsz, ret = 0;
167 const char *name;
168 int32_t *pfd;
170 argsz = sizeof(*irq_set) + sizeof(*pfd);
172 irq_set = g_malloc0(argsz);
173 irq_set->argsz = argsz;
174 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
175 irq_set->index = index;
176 irq_set->start = subindex;
177 irq_set->count = 1;
178 pfd = (int32_t *)&irq_set->data;
179 *pfd = fd;
181 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
182 ret = -errno;
184 g_free(irq_set);
186 if (!ret) {
187 return 0;
190 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure");
192 name = index_to_str(vbasedev, index);
193 if (name) {
194 error_prepend(errp, "%s-%d: ", name, subindex);
195 } else {
196 error_prepend(errp, "index %d-%d: ", index, subindex);
198 error_prepend(errp,
199 "Failed to %s %s eventfd signaling for interrupt ",
200 fd < 0 ? "tear down" : "set up", action_to_str(action));
201 return ret;
205 * IO Port/MMIO - Beware of the endians, VFIO is always little endian
207 void vfio_region_write(void *opaque, hwaddr addr,
208 uint64_t data, unsigned size)
210 VFIORegion *region = opaque;
211 VFIODevice *vbasedev = region->vbasedev;
212 union {
213 uint8_t byte;
214 uint16_t word;
215 uint32_t dword;
216 uint64_t qword;
217 } buf;
219 switch (size) {
220 case 1:
221 buf.byte = data;
222 break;
223 case 2:
224 buf.word = cpu_to_le16(data);
225 break;
226 case 4:
227 buf.dword = cpu_to_le32(data);
228 break;
229 case 8:
230 buf.qword = cpu_to_le64(data);
231 break;
232 default:
233 hw_error("vfio: unsupported write size, %u bytes", size);
234 break;
237 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
238 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
239 ",%d) failed: %m",
240 __func__, vbasedev->name, region->nr,
241 addr, data, size);
244 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
247 * A read or write to a BAR always signals an INTx EOI. This will
248 * do nothing if not pending (including not in INTx mode). We assume
249 * that a BAR access is in response to an interrupt and that BAR
250 * accesses will service the interrupt. Unfortunately, we don't know
251 * which access will service the interrupt, so we're potentially
252 * getting quite a few host interrupts per guest interrupt.
254 vbasedev->ops->vfio_eoi(vbasedev);
257 uint64_t vfio_region_read(void *opaque,
258 hwaddr addr, unsigned size)
260 VFIORegion *region = opaque;
261 VFIODevice *vbasedev = region->vbasedev;
262 union {
263 uint8_t byte;
264 uint16_t word;
265 uint32_t dword;
266 uint64_t qword;
267 } buf;
268 uint64_t data = 0;
270 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
271 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
272 __func__, vbasedev->name, region->nr,
273 addr, size);
274 return (uint64_t)-1;
276 switch (size) {
277 case 1:
278 data = buf.byte;
279 break;
280 case 2:
281 data = le16_to_cpu(buf.word);
282 break;
283 case 4:
284 data = le32_to_cpu(buf.dword);
285 break;
286 case 8:
287 data = le64_to_cpu(buf.qword);
288 break;
289 default:
290 hw_error("vfio: unsupported read size, %u bytes", size);
291 break;
294 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
296 /* Same as write above */
297 vbasedev->ops->vfio_eoi(vbasedev);
299 return data;
302 const MemoryRegionOps vfio_region_ops = {
303 .read = vfio_region_read,
304 .write = vfio_region_write,
305 .endianness = DEVICE_LITTLE_ENDIAN,
306 .valid = {
307 .min_access_size = 1,
308 .max_access_size = 8,
310 .impl = {
311 .min_access_size = 1,
312 .max_access_size = 8,
317 * Device state interfaces
320 bool vfio_mig_active(void)
322 VFIOGroup *group;
323 VFIODevice *vbasedev;
325 if (QLIST_EMPTY(&vfio_group_list)) {
326 return false;
329 QLIST_FOREACH(group, &vfio_group_list, next) {
330 QLIST_FOREACH(vbasedev, &group->device_list, next) {
331 if (vbasedev->migration_blocker) {
332 return false;
336 return true;
339 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container)
341 VFIOGroup *group;
342 VFIODevice *vbasedev;
343 MigrationState *ms = migrate_get_current();
345 if (!migration_is_setup_or_active(ms->state)) {
346 return false;
349 QLIST_FOREACH(group, &container->group_list, container_next) {
350 QLIST_FOREACH(vbasedev, &group->device_list, next) {
351 VFIOMigration *migration = vbasedev->migration;
353 if (!migration) {
354 return false;
357 if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF)
358 && (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) {
359 return false;
363 return true;
366 static bool vfio_devices_all_running_and_saving(VFIOContainer *container)
368 VFIOGroup *group;
369 VFIODevice *vbasedev;
370 MigrationState *ms = migrate_get_current();
372 if (!migration_is_setup_or_active(ms->state)) {
373 return false;
376 QLIST_FOREACH(group, &container->group_list, container_next) {
377 QLIST_FOREACH(vbasedev, &group->device_list, next) {
378 VFIOMigration *migration = vbasedev->migration;
380 if (!migration) {
381 return false;
384 if ((migration->device_state & VFIO_DEVICE_STATE_V1_SAVING) &&
385 (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) {
386 continue;
387 } else {
388 return false;
392 return true;
395 static int vfio_dma_unmap_bitmap(VFIOContainer *container,
396 hwaddr iova, ram_addr_t size,
397 IOMMUTLBEntry *iotlb)
399 struct vfio_iommu_type1_dma_unmap *unmap;
400 struct vfio_bitmap *bitmap;
401 uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size();
402 int ret;
404 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap));
406 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap);
407 unmap->iova = iova;
408 unmap->size = size;
409 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP;
410 bitmap = (struct vfio_bitmap *)&unmap->data;
413 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
414 * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize
415 * to qemu_real_host_page_size.
418 bitmap->pgsize = qemu_real_host_page_size();
419 bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
420 BITS_PER_BYTE;
422 if (bitmap->size > container->max_dirty_bitmap_size) {
423 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64,
424 (uint64_t)bitmap->size);
425 ret = -E2BIG;
426 goto unmap_exit;
429 bitmap->data = g_try_malloc0(bitmap->size);
430 if (!bitmap->data) {
431 ret = -ENOMEM;
432 goto unmap_exit;
435 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap);
436 if (!ret) {
437 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data,
438 iotlb->translated_addr, pages);
439 } else {
440 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m");
443 g_free(bitmap->data);
444 unmap_exit:
445 g_free(unmap);
446 return ret;
450 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
452 static int vfio_dma_unmap(VFIOContainer *container,
453 hwaddr iova, ram_addr_t size,
454 IOMMUTLBEntry *iotlb)
456 struct vfio_iommu_type1_dma_unmap unmap = {
457 .argsz = sizeof(unmap),
458 .flags = 0,
459 .iova = iova,
460 .size = size,
463 if (iotlb && container->dirty_pages_supported &&
464 vfio_devices_all_running_and_saving(container)) {
465 return vfio_dma_unmap_bitmap(container, iova, size, iotlb);
468 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
470 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c
471 * v4.15) where an overflow in its wrap-around check prevents us from
472 * unmapping the last page of the address space. Test for the error
473 * condition and re-try the unmap excluding the last page. The
474 * expectation is that we've never mapped the last page anyway and this
475 * unmap request comes via vIOMMU support which also makes it unlikely
476 * that this page is used. This bug was introduced well after type1 v2
477 * support was introduced, so we shouldn't need to test for v1. A fix
478 * is queued for kernel v5.0 so this workaround can be removed once
479 * affected kernels are sufficiently deprecated.
481 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) &&
482 container->iommu_type == VFIO_TYPE1v2_IOMMU) {
483 trace_vfio_dma_unmap_overflow_workaround();
484 unmap.size -= 1ULL << ctz64(container->pgsizes);
485 continue;
487 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno));
488 return -errno;
491 return 0;
494 static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
495 ram_addr_t size, void *vaddr, bool readonly)
497 struct vfio_iommu_type1_dma_map map = {
498 .argsz = sizeof(map),
499 .flags = VFIO_DMA_MAP_FLAG_READ,
500 .vaddr = (__u64)(uintptr_t)vaddr,
501 .iova = iova,
502 .size = size,
505 if (!readonly) {
506 map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
510 * Try the mapping, if it fails with EBUSY, unmap the region and try
511 * again. This shouldn't be necessary, but we sometimes see it in
512 * the VGA ROM space.
514 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
515 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 &&
516 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
517 return 0;
520 error_report("VFIO_MAP_DMA failed: %s", strerror(errno));
521 return -errno;
524 static void vfio_host_win_add(VFIOContainer *container,
525 hwaddr min_iova, hwaddr max_iova,
526 uint64_t iova_pgsizes)
528 VFIOHostDMAWindow *hostwin;
530 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
531 if (ranges_overlap(hostwin->min_iova,
532 hostwin->max_iova - hostwin->min_iova + 1,
533 min_iova,
534 max_iova - min_iova + 1)) {
535 hw_error("%s: Overlapped IOMMU are not enabled", __func__);
539 hostwin = g_malloc0(sizeof(*hostwin));
541 hostwin->min_iova = min_iova;
542 hostwin->max_iova = max_iova;
543 hostwin->iova_pgsizes = iova_pgsizes;
544 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next);
547 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova,
548 hwaddr max_iova)
550 VFIOHostDMAWindow *hostwin;
552 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
553 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) {
554 QLIST_REMOVE(hostwin, hostwin_next);
555 g_free(hostwin);
556 return 0;
560 return -1;
563 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
565 return (!memory_region_is_ram(section->mr) &&
566 !memory_region_is_iommu(section->mr)) ||
567 memory_region_is_protected(section->mr) ||
569 * Sizing an enabled 64-bit BAR can cause spurious mappings to
570 * addresses in the upper part of the 64-bit address space. These
571 * are never accessed by the CPU and beyond the address width of
572 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width.
574 section->offset_within_address_space & (1ULL << 63);
577 /* Called with rcu_read_lock held. */
578 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
579 ram_addr_t *ram_addr, bool *read_only)
581 MemoryRegion *mr;
582 hwaddr xlat;
583 hwaddr len = iotlb->addr_mask + 1;
584 bool writable = iotlb->perm & IOMMU_WO;
587 * The IOMMU TLB entry we have just covers translation through
588 * this IOMMU to its immediate target. We need to translate
589 * it the rest of the way through to memory.
591 mr = address_space_translate(&address_space_memory,
592 iotlb->translated_addr,
593 &xlat, &len, writable,
594 MEMTXATTRS_UNSPECIFIED);
595 if (!memory_region_is_ram(mr)) {
596 error_report("iommu map to non memory area %"HWADDR_PRIx"",
597 xlat);
598 return false;
599 } else if (memory_region_has_ram_discard_manager(mr)) {
600 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
601 MemoryRegionSection tmp = {
602 .mr = mr,
603 .offset_within_region = xlat,
604 .size = int128_make64(len),
608 * Malicious VMs can map memory into the IOMMU, which is expected
609 * to remain discarded. vfio will pin all pages, populating memory.
610 * Disallow that. vmstate priorities make sure any RamDiscardManager
611 * were already restored before IOMMUs are restored.
613 if (!ram_discard_manager_is_populated(rdm, &tmp)) {
614 error_report("iommu map to discarded memory (e.g., unplugged via"
615 " virtio-mem): %"HWADDR_PRIx"",
616 iotlb->translated_addr);
617 return false;
621 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The
622 * pages will remain pinned inside vfio until unmapped, resulting in a
623 * higher memory consumption than expected. If memory would get
624 * populated again later, there would be an inconsistency between pages
625 * pinned by vfio and pages seen by QEMU. This is the case until
626 * unmapped from the IOMMU (e.g., during device reset).
628 * With malicious guests, we really only care about pinning more memory
629 * than expected. RLIMIT_MEMLOCK set for the user/process can never be
630 * exceeded and can be used to mitigate this problem.
632 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
633 " RAM (e.g., virtio-mem) works, however, malicious"
634 " guests can trigger pinning of more memory than"
635 " intended via an IOMMU. It's possible to mitigate "
636 " by setting/adjusting RLIMIT_MEMLOCK.");
640 * Translation truncates length to the IOMMU page size,
641 * check that it did not truncate too much.
643 if (len & iotlb->addr_mask) {
644 error_report("iommu has granularity incompatible with target AS");
645 return false;
648 if (vaddr) {
649 *vaddr = memory_region_get_ram_ptr(mr) + xlat;
652 if (ram_addr) {
653 *ram_addr = memory_region_get_ram_addr(mr) + xlat;
656 if (read_only) {
657 *read_only = !writable || mr->readonly;
660 return true;
663 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
665 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
666 VFIOContainer *container = giommu->container;
667 hwaddr iova = iotlb->iova + giommu->iommu_offset;
668 void *vaddr;
669 int ret;
671 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
672 iova, iova + iotlb->addr_mask);
674 if (iotlb->target_as != &address_space_memory) {
675 error_report("Wrong target AS \"%s\", only system memory is allowed",
676 iotlb->target_as->name ? iotlb->target_as->name : "none");
677 return;
680 rcu_read_lock();
682 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
683 bool read_only;
685 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
686 goto out;
689 * vaddr is only valid until rcu_read_unlock(). But after
690 * vfio_dma_map has set up the mapping the pages will be
691 * pinned by the kernel. This makes sure that the RAM backend
692 * of vaddr will always be there, even if the memory object is
693 * destroyed and its backing memory munmap-ed.
695 ret = vfio_dma_map(container, iova,
696 iotlb->addr_mask + 1, vaddr,
697 read_only);
698 if (ret) {
699 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
700 "0x%"HWADDR_PRIx", %p) = %d (%m)",
701 container, iova,
702 iotlb->addr_mask + 1, vaddr, ret);
704 } else {
705 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb);
706 if (ret) {
707 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
708 "0x%"HWADDR_PRIx") = %d (%m)",
709 container, iova,
710 iotlb->addr_mask + 1, ret);
713 out:
714 rcu_read_unlock();
717 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
718 MemoryRegionSection *section)
720 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
721 listener);
722 const hwaddr size = int128_get64(section->size);
723 const hwaddr iova = section->offset_within_address_space;
724 int ret;
726 /* Unmap with a single call. */
727 ret = vfio_dma_unmap(vrdl->container, iova, size , NULL);
728 if (ret) {
729 error_report("%s: vfio_dma_unmap() failed: %s", __func__,
730 strerror(-ret));
734 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
735 MemoryRegionSection *section)
737 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
738 listener);
739 const hwaddr end = section->offset_within_region +
740 int128_get64(section->size);
741 hwaddr start, next, iova;
742 void *vaddr;
743 int ret;
746 * Map in (aligned within memory region) minimum granularity, so we can
747 * unmap in minimum granularity later.
749 for (start = section->offset_within_region; start < end; start = next) {
750 next = ROUND_UP(start + 1, vrdl->granularity);
751 next = MIN(next, end);
753 iova = start - section->offset_within_region +
754 section->offset_within_address_space;
755 vaddr = memory_region_get_ram_ptr(section->mr) + start;
757 ret = vfio_dma_map(vrdl->container, iova, next - start,
758 vaddr, section->readonly);
759 if (ret) {
760 /* Rollback */
761 vfio_ram_discard_notify_discard(rdl, section);
762 return ret;
765 return 0;
768 static void vfio_register_ram_discard_listener(VFIOContainer *container,
769 MemoryRegionSection *section)
771 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
772 VFIORamDiscardListener *vrdl;
774 /* Ignore some corner cases not relevant in practice. */
775 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
776 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
777 TARGET_PAGE_SIZE));
778 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
780 vrdl = g_new0(VFIORamDiscardListener, 1);
781 vrdl->container = container;
782 vrdl->mr = section->mr;
783 vrdl->offset_within_address_space = section->offset_within_address_space;
784 vrdl->size = int128_get64(section->size);
785 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
786 section->mr);
788 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
789 g_assert(container->pgsizes &&
790 vrdl->granularity >= 1ULL << ctz64(container->pgsizes));
792 ram_discard_listener_init(&vrdl->listener,
793 vfio_ram_discard_notify_populate,
794 vfio_ram_discard_notify_discard, true);
795 ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
796 QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next);
799 * Sanity-check if we have a theoretically problematic setup where we could
800 * exceed the maximum number of possible DMA mappings over time. We assume
801 * that each mapped section in the same address space as a RamDiscardManager
802 * section consumes exactly one DMA mapping, with the exception of
803 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
804 * in the same address space as RamDiscardManager sections.
806 * We assume that each section in the address space consumes one memslot.
807 * We take the number of KVM memory slots as a best guess for the maximum
808 * number of sections in the address space we could have over time,
809 * also consuming DMA mappings.
811 if (container->dma_max_mappings) {
812 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
814 #ifdef CONFIG_KVM
815 if (kvm_enabled()) {
816 max_memslots = kvm_get_max_memslots();
818 #endif
820 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
821 hwaddr start, end;
823 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
824 vrdl->granularity);
825 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
826 vrdl->granularity);
827 vrdl_mappings += (end - start) / vrdl->granularity;
828 vrdl_count++;
831 if (vrdl_mappings + max_memslots - vrdl_count >
832 container->dma_max_mappings) {
833 warn_report("%s: possibly running out of DMA mappings. E.g., try"
834 " increasing the 'block-size' of virtio-mem devies."
835 " Maximum possible DMA mappings: %d, Maximum possible"
836 " memslots: %d", __func__, container->dma_max_mappings,
837 max_memslots);
842 static void vfio_unregister_ram_discard_listener(VFIOContainer *container,
843 MemoryRegionSection *section)
845 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
846 VFIORamDiscardListener *vrdl = NULL;
848 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
849 if (vrdl->mr == section->mr &&
850 vrdl->offset_within_address_space ==
851 section->offset_within_address_space) {
852 break;
856 if (!vrdl) {
857 hw_error("vfio: Trying to unregister missing RAM discard listener");
860 ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
861 QLIST_REMOVE(vrdl, next);
862 g_free(vrdl);
865 static bool vfio_known_safe_misalignment(MemoryRegionSection *section)
867 MemoryRegion *mr = section->mr;
869 if (!TPM_IS_CRB(mr->owner)) {
870 return false;
873 /* this is a known safe misaligned region, just trace for debug purpose */
874 trace_vfio_known_safe_misalignment(memory_region_name(mr),
875 section->offset_within_address_space,
876 section->offset_within_region,
877 qemu_real_host_page_size());
878 return true;
881 static void vfio_listener_region_add(MemoryListener *listener,
882 MemoryRegionSection *section)
884 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
885 hwaddr iova, end;
886 Int128 llend, llsize;
887 void *vaddr;
888 int ret;
889 VFIOHostDMAWindow *hostwin;
890 bool hostwin_found;
891 Error *err = NULL;
893 if (vfio_listener_skipped_section(section)) {
894 trace_vfio_listener_region_add_skip(
895 section->offset_within_address_space,
896 section->offset_within_address_space +
897 int128_get64(int128_sub(section->size, int128_one())));
898 return;
901 if (unlikely((section->offset_within_address_space &
902 ~qemu_real_host_page_mask()) !=
903 (section->offset_within_region & ~qemu_real_host_page_mask()))) {
904 if (!vfio_known_safe_misalignment(section)) {
905 error_report("%s received unaligned region %s iova=0x%"PRIx64
906 " offset_within_region=0x%"PRIx64
907 " qemu_real_host_page_size=0x%"PRIxPTR,
908 __func__, memory_region_name(section->mr),
909 section->offset_within_address_space,
910 section->offset_within_region,
911 qemu_real_host_page_size());
913 return;
916 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
917 llend = int128_make64(section->offset_within_address_space);
918 llend = int128_add(llend, section->size);
919 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask()));
921 if (int128_ge(int128_make64(iova), llend)) {
922 if (memory_region_is_ram_device(section->mr)) {
923 trace_vfio_listener_region_add_no_dma_map(
924 memory_region_name(section->mr),
925 section->offset_within_address_space,
926 int128_getlo(section->size),
927 qemu_real_host_page_size());
929 return;
931 end = int128_get64(int128_sub(llend, int128_one()));
933 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
934 hwaddr pgsize = 0;
936 /* For now intersections are not allowed, we may relax this later */
937 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
938 if (ranges_overlap(hostwin->min_iova,
939 hostwin->max_iova - hostwin->min_iova + 1,
940 section->offset_within_address_space,
941 int128_get64(section->size))) {
942 error_setg(&err,
943 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing"
944 "host DMA window [0x%"PRIx64",0x%"PRIx64"]",
945 section->offset_within_address_space,
946 section->offset_within_address_space +
947 int128_get64(section->size) - 1,
948 hostwin->min_iova, hostwin->max_iova);
949 goto fail;
953 ret = vfio_spapr_create_window(container, section, &pgsize);
954 if (ret) {
955 error_setg_errno(&err, -ret, "Failed to create SPAPR window");
956 goto fail;
959 vfio_host_win_add(container, section->offset_within_address_space,
960 section->offset_within_address_space +
961 int128_get64(section->size) - 1, pgsize);
962 #ifdef CONFIG_KVM
963 if (kvm_enabled()) {
964 VFIOGroup *group;
965 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
966 struct kvm_vfio_spapr_tce param;
967 struct kvm_device_attr attr = {
968 .group = KVM_DEV_VFIO_GROUP,
969 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE,
970 .addr = (uint64_t)(unsigned long)&param,
973 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD,
974 &param.tablefd)) {
975 QLIST_FOREACH(group, &container->group_list, container_next) {
976 param.groupfd = group->fd;
977 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
978 error_report("vfio: failed to setup fd %d "
979 "for a group with fd %d: %s",
980 param.tablefd, param.groupfd,
981 strerror(errno));
982 return;
984 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd);
988 #endif
991 hostwin_found = false;
992 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
993 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
994 hostwin_found = true;
995 break;
999 if (!hostwin_found) {
1000 error_setg(&err, "Container %p can't map guest IOVA region"
1001 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end);
1002 goto fail;
1005 memory_region_ref(section->mr);
1007 if (memory_region_is_iommu(section->mr)) {
1008 VFIOGuestIOMMU *giommu;
1009 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
1010 int iommu_idx;
1012 trace_vfio_listener_region_add_iommu(iova, end);
1014 * FIXME: For VFIO iommu types which have KVM acceleration to
1015 * avoid bouncing all map/unmaps through qemu this way, this
1016 * would be the right place to wire that up (tell the KVM
1017 * device emulation the VFIO iommu handles to use).
1019 giommu = g_malloc0(sizeof(*giommu));
1020 giommu->iommu_mr = iommu_mr;
1021 giommu->iommu_offset = section->offset_within_address_space -
1022 section->offset_within_region;
1023 giommu->container = container;
1024 llend = int128_add(int128_make64(section->offset_within_region),
1025 section->size);
1026 llend = int128_sub(llend, int128_one());
1027 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
1028 MEMTXATTRS_UNSPECIFIED);
1029 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
1030 IOMMU_NOTIFIER_IOTLB_EVENTS,
1031 section->offset_within_region,
1032 int128_get64(llend),
1033 iommu_idx);
1035 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr,
1036 container->pgsizes,
1037 &err);
1038 if (ret) {
1039 g_free(giommu);
1040 goto fail;
1043 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
1044 &err);
1045 if (ret) {
1046 g_free(giommu);
1047 goto fail;
1049 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
1050 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n);
1052 return;
1055 /* Here we assume that memory_region_is_ram(section->mr)==true */
1058 * For RAM memory regions with a RamDiscardManager, we only want to map the
1059 * actually populated parts - and update the mapping whenever we're notified
1060 * about changes.
1062 if (memory_region_has_ram_discard_manager(section->mr)) {
1063 vfio_register_ram_discard_listener(container, section);
1064 return;
1067 vaddr = memory_region_get_ram_ptr(section->mr) +
1068 section->offset_within_region +
1069 (iova - section->offset_within_address_space);
1071 trace_vfio_listener_region_add_ram(iova, end, vaddr);
1073 llsize = int128_sub(llend, int128_make64(iova));
1075 if (memory_region_is_ram_device(section->mr)) {
1076 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1078 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
1079 trace_vfio_listener_region_add_no_dma_map(
1080 memory_region_name(section->mr),
1081 section->offset_within_address_space,
1082 int128_getlo(section->size),
1083 pgmask + 1);
1084 return;
1088 ret = vfio_dma_map(container, iova, int128_get64(llsize),
1089 vaddr, section->readonly);
1090 if (ret) {
1091 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
1092 "0x%"HWADDR_PRIx", %p) = %d (%m)",
1093 container, iova, int128_get64(llsize), vaddr, ret);
1094 if (memory_region_is_ram_device(section->mr)) {
1095 /* Allow unexpected mappings not to be fatal for RAM devices */
1096 error_report_err(err);
1097 return;
1099 goto fail;
1102 return;
1104 fail:
1105 if (memory_region_is_ram_device(section->mr)) {
1106 error_report("failed to vfio_dma_map. pci p2p may not work");
1107 return;
1110 * On the initfn path, store the first error in the container so we
1111 * can gracefully fail. Runtime, there's not much we can do other
1112 * than throw a hardware error.
1114 if (!container->initialized) {
1115 if (!container->error) {
1116 error_propagate_prepend(&container->error, err,
1117 "Region %s: ",
1118 memory_region_name(section->mr));
1119 } else {
1120 error_free(err);
1122 } else {
1123 error_report_err(err);
1124 hw_error("vfio: DMA mapping failed, unable to continue");
1128 static void vfio_listener_region_del(MemoryListener *listener,
1129 MemoryRegionSection *section)
1131 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1132 hwaddr iova, end;
1133 Int128 llend, llsize;
1134 int ret;
1135 bool try_unmap = true;
1137 if (vfio_listener_skipped_section(section)) {
1138 trace_vfio_listener_region_del_skip(
1139 section->offset_within_address_space,
1140 section->offset_within_address_space +
1141 int128_get64(int128_sub(section->size, int128_one())));
1142 return;
1145 if (unlikely((section->offset_within_address_space &
1146 ~qemu_real_host_page_mask()) !=
1147 (section->offset_within_region & ~qemu_real_host_page_mask()))) {
1148 if (!vfio_known_safe_misalignment(section)) {
1149 error_report("%s received unaligned region %s iova=0x%"PRIx64
1150 " offset_within_region=0x%"PRIx64
1151 " qemu_real_host_page_size=0x%"PRIxPTR,
1152 __func__, memory_region_name(section->mr),
1153 section->offset_within_address_space,
1154 section->offset_within_region,
1155 qemu_real_host_page_size());
1157 return;
1160 if (memory_region_is_iommu(section->mr)) {
1161 VFIOGuestIOMMU *giommu;
1163 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1164 if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1165 giommu->n.start == section->offset_within_region) {
1166 memory_region_unregister_iommu_notifier(section->mr,
1167 &giommu->n);
1168 QLIST_REMOVE(giommu, giommu_next);
1169 g_free(giommu);
1170 break;
1175 * FIXME: We assume the one big unmap below is adequate to
1176 * remove any individual page mappings in the IOMMU which
1177 * might have been copied into VFIO. This works for a page table
1178 * based IOMMU where a big unmap flattens a large range of IO-PTEs.
1179 * That may not be true for all IOMMU types.
1183 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
1184 llend = int128_make64(section->offset_within_address_space);
1185 llend = int128_add(llend, section->size);
1186 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask()));
1188 if (int128_ge(int128_make64(iova), llend)) {
1189 return;
1191 end = int128_get64(int128_sub(llend, int128_one()));
1193 llsize = int128_sub(llend, int128_make64(iova));
1195 trace_vfio_listener_region_del(iova, end);
1197 if (memory_region_is_ram_device(section->mr)) {
1198 hwaddr pgmask;
1199 VFIOHostDMAWindow *hostwin;
1200 bool hostwin_found = false;
1202 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
1203 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
1204 hostwin_found = true;
1205 break;
1208 assert(hostwin_found); /* or region_add() would have failed */
1210 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1211 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
1212 } else if (memory_region_has_ram_discard_manager(section->mr)) {
1213 vfio_unregister_ram_discard_listener(container, section);
1214 /* Unregistering will trigger an unmap. */
1215 try_unmap = false;
1218 if (try_unmap) {
1219 if (int128_eq(llsize, int128_2_64())) {
1220 /* The unmap ioctl doesn't accept a full 64-bit span. */
1221 llsize = int128_rshift(llsize, 1);
1222 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1223 if (ret) {
1224 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1225 "0x%"HWADDR_PRIx") = %d (%m)",
1226 container, iova, int128_get64(llsize), ret);
1228 iova += int128_get64(llsize);
1230 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1231 if (ret) {
1232 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1233 "0x%"HWADDR_PRIx") = %d (%m)",
1234 container, iova, int128_get64(llsize), ret);
1238 memory_region_unref(section->mr);
1240 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1241 vfio_spapr_remove_window(container,
1242 section->offset_within_address_space);
1243 if (vfio_host_win_del(container,
1244 section->offset_within_address_space,
1245 section->offset_within_address_space +
1246 int128_get64(section->size) - 1) < 0) {
1247 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx,
1248 __func__, section->offset_within_address_space);
1253 static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start)
1255 int ret;
1256 struct vfio_iommu_type1_dirty_bitmap dirty = {
1257 .argsz = sizeof(dirty),
1260 if (start) {
1261 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START;
1262 } else {
1263 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP;
1266 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty);
1267 if (ret) {
1268 error_report("Failed to set dirty tracking flag 0x%x errno: %d",
1269 dirty.flags, errno);
1273 static void vfio_listener_log_global_start(MemoryListener *listener)
1275 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1277 vfio_set_dirty_page_tracking(container, true);
1280 static void vfio_listener_log_global_stop(MemoryListener *listener)
1282 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1284 vfio_set_dirty_page_tracking(container, false);
1287 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
1288 uint64_t size, ram_addr_t ram_addr)
1290 struct vfio_iommu_type1_dirty_bitmap *dbitmap;
1291 struct vfio_iommu_type1_dirty_bitmap_get *range;
1292 uint64_t pages;
1293 int ret;
1295 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range));
1297 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range);
1298 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
1299 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data;
1300 range->iova = iova;
1301 range->size = size;
1304 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
1305 * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize
1306 * to qemu_real_host_page_size.
1308 range->bitmap.pgsize = qemu_real_host_page_size();
1310 pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size();
1311 range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) /
1312 BITS_PER_BYTE;
1313 range->bitmap.data = g_try_malloc0(range->bitmap.size);
1314 if (!range->bitmap.data) {
1315 ret = -ENOMEM;
1316 goto err_out;
1319 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap);
1320 if (ret) {
1321 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64
1322 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova,
1323 (uint64_t)range->size, errno);
1324 goto err_out;
1327 cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data,
1328 ram_addr, pages);
1330 trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size,
1331 range->bitmap.size, ram_addr);
1332 err_out:
1333 g_free(range->bitmap.data);
1334 g_free(dbitmap);
1336 return ret;
1339 typedef struct {
1340 IOMMUNotifier n;
1341 VFIOGuestIOMMU *giommu;
1342 } vfio_giommu_dirty_notifier;
1344 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1346 vfio_giommu_dirty_notifier *gdn = container_of(n,
1347 vfio_giommu_dirty_notifier, n);
1348 VFIOGuestIOMMU *giommu = gdn->giommu;
1349 VFIOContainer *container = giommu->container;
1350 hwaddr iova = iotlb->iova + giommu->iommu_offset;
1351 ram_addr_t translated_addr;
1353 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1355 if (iotlb->target_as != &address_space_memory) {
1356 error_report("Wrong target AS \"%s\", only system memory is allowed",
1357 iotlb->target_as->name ? iotlb->target_as->name : "none");
1358 return;
1361 rcu_read_lock();
1362 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
1363 int ret;
1365 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1,
1366 translated_addr);
1367 if (ret) {
1368 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1369 "0x%"HWADDR_PRIx") = %d (%m)",
1370 container, iova,
1371 iotlb->addr_mask + 1, ret);
1374 rcu_read_unlock();
1377 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
1378 void *opaque)
1380 const hwaddr size = int128_get64(section->size);
1381 const hwaddr iova = section->offset_within_address_space;
1382 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
1383 section->offset_within_region;
1384 VFIORamDiscardListener *vrdl = opaque;
1387 * Sync the whole mapped region (spanning multiple individual mappings)
1388 * in one go.
1390 return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr);
1393 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container,
1394 MemoryRegionSection *section)
1396 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
1397 VFIORamDiscardListener *vrdl = NULL;
1399 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
1400 if (vrdl->mr == section->mr &&
1401 vrdl->offset_within_address_space ==
1402 section->offset_within_address_space) {
1403 break;
1407 if (!vrdl) {
1408 hw_error("vfio: Trying to sync missing RAM discard listener");
1412 * We only want/can synchronize the bitmap for actually mapped parts -
1413 * which correspond to populated parts. Replay all populated parts.
1415 return ram_discard_manager_replay_populated(rdm, section,
1416 vfio_ram_discard_get_dirty_bitmap,
1417 &vrdl);
1420 static int vfio_sync_dirty_bitmap(VFIOContainer *container,
1421 MemoryRegionSection *section)
1423 ram_addr_t ram_addr;
1425 if (memory_region_is_iommu(section->mr)) {
1426 VFIOGuestIOMMU *giommu;
1428 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1429 if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1430 giommu->n.start == section->offset_within_region) {
1431 Int128 llend;
1432 vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
1433 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr,
1434 MEMTXATTRS_UNSPECIFIED);
1436 llend = int128_add(int128_make64(section->offset_within_region),
1437 section->size);
1438 llend = int128_sub(llend, int128_one());
1440 iommu_notifier_init(&gdn.n,
1441 vfio_iommu_map_dirty_notify,
1442 IOMMU_NOTIFIER_MAP,
1443 section->offset_within_region,
1444 int128_get64(llend),
1445 idx);
1446 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n);
1447 break;
1450 return 0;
1451 } else if (memory_region_has_ram_discard_manager(section->mr)) {
1452 return vfio_sync_ram_discard_listener_dirty_bitmap(container, section);
1455 ram_addr = memory_region_get_ram_addr(section->mr) +
1456 section->offset_within_region;
1458 return vfio_get_dirty_bitmap(container,
1459 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
1460 int128_get64(section->size), ram_addr);
1463 static void vfio_listener_log_sync(MemoryListener *listener,
1464 MemoryRegionSection *section)
1466 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1468 if (vfio_listener_skipped_section(section) ||
1469 !container->dirty_pages_supported) {
1470 return;
1473 if (vfio_devices_all_dirty_tracking(container)) {
1474 vfio_sync_dirty_bitmap(container, section);
1478 static const MemoryListener vfio_memory_listener = {
1479 .name = "vfio",
1480 .region_add = vfio_listener_region_add,
1481 .region_del = vfio_listener_region_del,
1482 .log_global_start = vfio_listener_log_global_start,
1483 .log_global_stop = vfio_listener_log_global_stop,
1484 .log_sync = vfio_listener_log_sync,
1487 static void vfio_listener_release(VFIOContainer *container)
1489 memory_listener_unregister(&container->listener);
1490 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1491 memory_listener_unregister(&container->prereg_listener);
1495 static struct vfio_info_cap_header *
1496 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
1498 struct vfio_info_cap_header *hdr;
1500 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1501 if (hdr->id == id) {
1502 return hdr;
1506 return NULL;
1509 struct vfio_info_cap_header *
1510 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
1512 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
1513 return NULL;
1516 return vfio_get_cap((void *)info, info->cap_offset, id);
1519 static struct vfio_info_cap_header *
1520 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1522 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1523 return NULL;
1526 return vfio_get_cap((void *)info, info->cap_offset, id);
1529 struct vfio_info_cap_header *
1530 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
1532 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
1533 return NULL;
1536 return vfio_get_cap((void *)info, info->cap_offset, id);
1539 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info,
1540 unsigned int *avail)
1542 struct vfio_info_cap_header *hdr;
1543 struct vfio_iommu_type1_info_dma_avail *cap;
1545 /* If the capability cannot be found, assume no DMA limiting */
1546 hdr = vfio_get_iommu_type1_info_cap(info,
1547 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL);
1548 if (hdr == NULL) {
1549 return false;
1552 if (avail != NULL) {
1553 cap = (void *) hdr;
1554 *avail = cap->avail;
1557 return true;
1560 static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
1561 struct vfio_region_info *info)
1563 struct vfio_info_cap_header *hdr;
1564 struct vfio_region_info_cap_sparse_mmap *sparse;
1565 int i, j;
1567 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
1568 if (!hdr) {
1569 return -ENODEV;
1572 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
1574 trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
1575 region->nr, sparse->nr_areas);
1577 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
1579 for (i = 0, j = 0; i < sparse->nr_areas; i++) {
1580 if (sparse->areas[i].size) {
1581 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
1582 sparse->areas[i].offset +
1583 sparse->areas[i].size - 1);
1584 region->mmaps[j].offset = sparse->areas[i].offset;
1585 region->mmaps[j].size = sparse->areas[i].size;
1586 j++;
1590 region->nr_mmaps = j;
1591 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
1593 return 0;
1596 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
1597 int index, const char *name)
1599 struct vfio_region_info *info;
1600 int ret;
1602 ret = vfio_get_region_info(vbasedev, index, &info);
1603 if (ret) {
1604 return ret;
1607 region->vbasedev = vbasedev;
1608 region->flags = info->flags;
1609 region->size = info->size;
1610 region->fd_offset = info->offset;
1611 region->nr = index;
1613 if (region->size) {
1614 region->mem = g_new0(MemoryRegion, 1);
1615 memory_region_init_io(region->mem, obj, &vfio_region_ops,
1616 region, name, region->size);
1618 if (!vbasedev->no_mmap &&
1619 region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
1621 ret = vfio_setup_region_sparse_mmaps(region, info);
1623 if (ret) {
1624 region->nr_mmaps = 1;
1625 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
1626 region->mmaps[0].offset = 0;
1627 region->mmaps[0].size = region->size;
1632 g_free(info);
1634 trace_vfio_region_setup(vbasedev->name, index, name,
1635 region->flags, region->fd_offset, region->size);
1636 return 0;
1639 static void vfio_subregion_unmap(VFIORegion *region, int index)
1641 trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
1642 region->mmaps[index].offset,
1643 region->mmaps[index].offset +
1644 region->mmaps[index].size - 1);
1645 memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
1646 munmap(region->mmaps[index].mmap, region->mmaps[index].size);
1647 object_unparent(OBJECT(&region->mmaps[index].mem));
1648 region->mmaps[index].mmap = NULL;
1651 int vfio_region_mmap(VFIORegion *region)
1653 int i, prot = 0;
1654 char *name;
1656 if (!region->mem) {
1657 return 0;
1660 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
1661 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
1663 for (i = 0; i < region->nr_mmaps; i++) {
1664 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot,
1665 MAP_SHARED, region->vbasedev->fd,
1666 region->fd_offset +
1667 region->mmaps[i].offset);
1668 if (region->mmaps[i].mmap == MAP_FAILED) {
1669 int ret = -errno;
1671 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
1672 region->fd_offset +
1673 region->mmaps[i].offset,
1674 region->fd_offset +
1675 region->mmaps[i].offset +
1676 region->mmaps[i].size - 1, ret);
1678 region->mmaps[i].mmap = NULL;
1680 for (i--; i >= 0; i--) {
1681 vfio_subregion_unmap(region, i);
1684 return ret;
1687 name = g_strdup_printf("%s mmaps[%d]",
1688 memory_region_name(region->mem), i);
1689 memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
1690 memory_region_owner(region->mem),
1691 name, region->mmaps[i].size,
1692 region->mmaps[i].mmap);
1693 g_free(name);
1694 memory_region_add_subregion(region->mem, region->mmaps[i].offset,
1695 &region->mmaps[i].mem);
1697 trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
1698 region->mmaps[i].offset,
1699 region->mmaps[i].offset +
1700 region->mmaps[i].size - 1);
1703 return 0;
1706 void vfio_region_unmap(VFIORegion *region)
1708 int i;
1710 if (!region->mem) {
1711 return;
1714 for (i = 0; i < region->nr_mmaps; i++) {
1715 if (region->mmaps[i].mmap) {
1716 vfio_subregion_unmap(region, i);
1721 void vfio_region_exit(VFIORegion *region)
1723 int i;
1725 if (!region->mem) {
1726 return;
1729 for (i = 0; i < region->nr_mmaps; i++) {
1730 if (region->mmaps[i].mmap) {
1731 memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
1735 trace_vfio_region_exit(region->vbasedev->name, region->nr);
1738 void vfio_region_finalize(VFIORegion *region)
1740 int i;
1742 if (!region->mem) {
1743 return;
1746 for (i = 0; i < region->nr_mmaps; i++) {
1747 if (region->mmaps[i].mmap) {
1748 munmap(region->mmaps[i].mmap, region->mmaps[i].size);
1749 object_unparent(OBJECT(&region->mmaps[i].mem));
1753 object_unparent(OBJECT(region->mem));
1755 g_free(region->mem);
1756 g_free(region->mmaps);
1758 trace_vfio_region_finalize(region->vbasedev->name, region->nr);
1760 region->mem = NULL;
1761 region->mmaps = NULL;
1762 region->nr_mmaps = 0;
1763 region->size = 0;
1764 region->flags = 0;
1765 region->nr = 0;
1768 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
1770 int i;
1772 if (!region->mem) {
1773 return;
1776 for (i = 0; i < region->nr_mmaps; i++) {
1777 if (region->mmaps[i].mmap) {
1778 memory_region_set_enabled(&region->mmaps[i].mem, enabled);
1782 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
1783 enabled);
1786 void vfio_reset_handler(void *opaque)
1788 VFIOGroup *group;
1789 VFIODevice *vbasedev;
1791 QLIST_FOREACH(group, &vfio_group_list, next) {
1792 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1793 if (vbasedev->dev->realized) {
1794 vbasedev->ops->vfio_compute_needs_reset(vbasedev);
1799 QLIST_FOREACH(group, &vfio_group_list, next) {
1800 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1801 if (vbasedev->dev->realized && vbasedev->needs_reset) {
1802 vbasedev->ops->vfio_hot_reset_multi(vbasedev);
1808 static void vfio_kvm_device_add_group(VFIOGroup *group)
1810 #ifdef CONFIG_KVM
1811 struct kvm_device_attr attr = {
1812 .group = KVM_DEV_VFIO_GROUP,
1813 .attr = KVM_DEV_VFIO_GROUP_ADD,
1814 .addr = (uint64_t)(unsigned long)&group->fd,
1817 if (!kvm_enabled()) {
1818 return;
1821 if (vfio_kvm_device_fd < 0) {
1822 struct kvm_create_device cd = {
1823 .type = KVM_DEV_TYPE_VFIO,
1826 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
1827 error_report("Failed to create KVM VFIO device: %m");
1828 return;
1831 vfio_kvm_device_fd = cd.fd;
1834 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1835 error_report("Failed to add group %d to KVM VFIO device: %m",
1836 group->groupid);
1838 #endif
1841 static void vfio_kvm_device_del_group(VFIOGroup *group)
1843 #ifdef CONFIG_KVM
1844 struct kvm_device_attr attr = {
1845 .group = KVM_DEV_VFIO_GROUP,
1846 .attr = KVM_DEV_VFIO_GROUP_DEL,
1847 .addr = (uint64_t)(unsigned long)&group->fd,
1850 if (vfio_kvm_device_fd < 0) {
1851 return;
1854 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1855 error_report("Failed to remove group %d from KVM VFIO device: %m",
1856 group->groupid);
1858 #endif
1861 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
1863 VFIOAddressSpace *space;
1865 QLIST_FOREACH(space, &vfio_address_spaces, list) {
1866 if (space->as == as) {
1867 return space;
1871 /* No suitable VFIOAddressSpace, create a new one */
1872 space = g_malloc0(sizeof(*space));
1873 space->as = as;
1874 QLIST_INIT(&space->containers);
1876 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
1878 return space;
1881 static void vfio_put_address_space(VFIOAddressSpace *space)
1883 if (QLIST_EMPTY(&space->containers)) {
1884 QLIST_REMOVE(space, list);
1885 g_free(space);
1890 * vfio_get_iommu_type - selects the richest iommu_type (v2 first)
1892 static int vfio_get_iommu_type(VFIOContainer *container,
1893 Error **errp)
1895 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU,
1896 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU };
1897 int i;
1899 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) {
1900 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) {
1901 return iommu_types[i];
1904 error_setg(errp, "No available IOMMU models");
1905 return -EINVAL;
1908 static int vfio_init_container(VFIOContainer *container, int group_fd,
1909 Error **errp)
1911 int iommu_type, ret;
1913 iommu_type = vfio_get_iommu_type(container, errp);
1914 if (iommu_type < 0) {
1915 return iommu_type;
1918 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd);
1919 if (ret) {
1920 error_setg_errno(errp, errno, "Failed to set group container");
1921 return -errno;
1924 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) {
1925 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1927 * On sPAPR, despite the IOMMU subdriver always advertises v1 and
1928 * v2, the running platform may not support v2 and there is no
1929 * way to guess it until an IOMMU group gets added to the container.
1930 * So in case it fails with v2, try v1 as a fallback.
1932 iommu_type = VFIO_SPAPR_TCE_IOMMU;
1933 continue;
1935 error_setg_errno(errp, errno, "Failed to set iommu for container");
1936 return -errno;
1939 container->iommu_type = iommu_type;
1940 return 0;
1943 static int vfio_get_iommu_info(VFIOContainer *container,
1944 struct vfio_iommu_type1_info **info)
1947 size_t argsz = sizeof(struct vfio_iommu_type1_info);
1949 *info = g_new0(struct vfio_iommu_type1_info, 1);
1950 again:
1951 (*info)->argsz = argsz;
1953 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) {
1954 g_free(*info);
1955 *info = NULL;
1956 return -errno;
1959 if (((*info)->argsz > argsz)) {
1960 argsz = (*info)->argsz;
1961 *info = g_realloc(*info, argsz);
1962 goto again;
1965 return 0;
1968 static struct vfio_info_cap_header *
1969 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1971 struct vfio_info_cap_header *hdr;
1972 void *ptr = info;
1974 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1975 return NULL;
1978 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1979 if (hdr->id == id) {
1980 return hdr;
1984 return NULL;
1987 static void vfio_get_iommu_info_migration(VFIOContainer *container,
1988 struct vfio_iommu_type1_info *info)
1990 struct vfio_info_cap_header *hdr;
1991 struct vfio_iommu_type1_info_cap_migration *cap_mig;
1993 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION);
1994 if (!hdr) {
1995 return;
1998 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration,
1999 header);
2002 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
2003 * qemu_real_host_page_size to mark those dirty.
2005 if (cap_mig->pgsize_bitmap & qemu_real_host_page_size()) {
2006 container->dirty_pages_supported = true;
2007 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size;
2008 container->dirty_pgsizes = cap_mig->pgsize_bitmap;
2012 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
2013 Error **errp)
2015 VFIOContainer *container;
2016 int ret, fd;
2017 VFIOAddressSpace *space;
2019 space = vfio_get_address_space(as);
2022 * VFIO is currently incompatible with discarding of RAM insofar as the
2023 * madvise to purge (zap) the page from QEMU's address space does not
2024 * interact with the memory API and therefore leaves stale virtual to
2025 * physical mappings in the IOMMU if the page was previously pinned. We
2026 * therefore set discarding broken for each group added to a container,
2027 * whether the container is used individually or shared. This provides
2028 * us with options to allow devices within a group to opt-in and allow
2029 * discarding, so long as it is done consistently for a group (for instance
2030 * if the device is an mdev device where it is known that the host vendor
2031 * driver will never pin pages outside of the working set of the guest
2032 * driver, which would thus not be discarding candidates).
2034 * The first opportunity to induce pinning occurs here where we attempt to
2035 * attach the group to existing containers within the AddressSpace. If any
2036 * pages are already zapped from the virtual address space, such as from
2037 * previous discards, new pinning will cause valid mappings to be
2038 * re-established. Likewise, when the overall MemoryListener for a new
2039 * container is registered, a replay of mappings within the AddressSpace
2040 * will occur, re-establishing any previously zapped pages as well.
2042 * Especially virtio-balloon is currently only prevented from discarding
2043 * new memory, it will not yet set ram_block_discard_set_required() and
2044 * therefore, neither stops us here or deals with the sudden memory
2045 * consumption of inflated memory.
2047 * We do support discarding of memory coordinated via the RamDiscardManager
2048 * with some IOMMU types. vfio_ram_block_discard_disable() handles the
2049 * details once we know which type of IOMMU we are using.
2052 QLIST_FOREACH(container, &space->containers, next) {
2053 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
2054 ret = vfio_ram_block_discard_disable(container, true);
2055 if (ret) {
2056 error_setg_errno(errp, -ret,
2057 "Cannot set discarding of RAM broken");
2058 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER,
2059 &container->fd)) {
2060 error_report("vfio: error disconnecting group %d from"
2061 " container", group->groupid);
2063 return ret;
2065 group->container = container;
2066 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2067 vfio_kvm_device_add_group(group);
2068 return 0;
2072 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR);
2073 if (fd < 0) {
2074 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio");
2075 ret = -errno;
2076 goto put_space_exit;
2079 ret = ioctl(fd, VFIO_GET_API_VERSION);
2080 if (ret != VFIO_API_VERSION) {
2081 error_setg(errp, "supported vfio version: %d, "
2082 "reported version: %d", VFIO_API_VERSION, ret);
2083 ret = -EINVAL;
2084 goto close_fd_exit;
2087 container = g_malloc0(sizeof(*container));
2088 container->space = space;
2089 container->fd = fd;
2090 container->error = NULL;
2091 container->dirty_pages_supported = false;
2092 container->dma_max_mappings = 0;
2093 QLIST_INIT(&container->giommu_list);
2094 QLIST_INIT(&container->hostwin_list);
2095 QLIST_INIT(&container->vrdl_list);
2097 ret = vfio_init_container(container, group->fd, errp);
2098 if (ret) {
2099 goto free_container_exit;
2102 ret = vfio_ram_block_discard_disable(container, true);
2103 if (ret) {
2104 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
2105 goto free_container_exit;
2108 switch (container->iommu_type) {
2109 case VFIO_TYPE1v2_IOMMU:
2110 case VFIO_TYPE1_IOMMU:
2112 struct vfio_iommu_type1_info *info;
2115 * FIXME: This assumes that a Type1 IOMMU can map any 64-bit
2116 * IOVA whatsoever. That's not actually true, but the current
2117 * kernel interface doesn't tell us what it can map, and the
2118 * existing Type1 IOMMUs generally support any IOVA we're
2119 * going to actually try in practice.
2121 ret = vfio_get_iommu_info(container, &info);
2123 if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) {
2124 /* Assume 4k IOVA page size */
2125 info->iova_pgsizes = 4096;
2127 vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes);
2128 container->pgsizes = info->iova_pgsizes;
2130 /* The default in the kernel ("dma_entry_limit") is 65535. */
2131 container->dma_max_mappings = 65535;
2132 if (!ret) {
2133 vfio_get_info_dma_avail(info, &container->dma_max_mappings);
2134 vfio_get_iommu_info_migration(container, info);
2136 g_free(info);
2137 break;
2139 case VFIO_SPAPR_TCE_v2_IOMMU:
2140 case VFIO_SPAPR_TCE_IOMMU:
2142 struct vfio_iommu_spapr_tce_info info;
2143 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU;
2146 * The host kernel code implementing VFIO_IOMMU_DISABLE is called
2147 * when container fd is closed so we do not call it explicitly
2148 * in this file.
2150 if (!v2) {
2151 ret = ioctl(fd, VFIO_IOMMU_ENABLE);
2152 if (ret) {
2153 error_setg_errno(errp, errno, "failed to enable container");
2154 ret = -errno;
2155 goto enable_discards_exit;
2157 } else {
2158 container->prereg_listener = vfio_prereg_listener;
2160 memory_listener_register(&container->prereg_listener,
2161 &address_space_memory);
2162 if (container->error) {
2163 memory_listener_unregister(&container->prereg_listener);
2164 ret = -1;
2165 error_propagate_prepend(errp, container->error,
2166 "RAM memory listener initialization failed: ");
2167 goto enable_discards_exit;
2171 info.argsz = sizeof(info);
2172 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
2173 if (ret) {
2174 error_setg_errno(errp, errno,
2175 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed");
2176 ret = -errno;
2177 if (v2) {
2178 memory_listener_unregister(&container->prereg_listener);
2180 goto enable_discards_exit;
2183 if (v2) {
2184 container->pgsizes = info.ddw.pgsizes;
2186 * There is a default window in just created container.
2187 * To make region_add/del simpler, we better remove this
2188 * window now and let those iommu_listener callbacks
2189 * create/remove them when needed.
2191 ret = vfio_spapr_remove_window(container, info.dma32_window_start);
2192 if (ret) {
2193 error_setg_errno(errp, -ret,
2194 "failed to remove existing window");
2195 goto enable_discards_exit;
2197 } else {
2198 /* The default table uses 4K pages */
2199 container->pgsizes = 0x1000;
2200 vfio_host_win_add(container, info.dma32_window_start,
2201 info.dma32_window_start +
2202 info.dma32_window_size - 1,
2203 0x1000);
2208 vfio_kvm_device_add_group(group);
2210 QLIST_INIT(&container->group_list);
2211 QLIST_INSERT_HEAD(&space->containers, container, next);
2213 group->container = container;
2214 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2216 container->listener = vfio_memory_listener;
2218 memory_listener_register(&container->listener, container->space->as);
2220 if (container->error) {
2221 ret = -1;
2222 error_propagate_prepend(errp, container->error,
2223 "memory listener initialization failed: ");
2224 goto listener_release_exit;
2227 container->initialized = true;
2229 return 0;
2230 listener_release_exit:
2231 QLIST_REMOVE(group, container_next);
2232 QLIST_REMOVE(container, next);
2233 vfio_kvm_device_del_group(group);
2234 vfio_listener_release(container);
2236 enable_discards_exit:
2237 vfio_ram_block_discard_disable(container, false);
2239 free_container_exit:
2240 g_free(container);
2242 close_fd_exit:
2243 close(fd);
2245 put_space_exit:
2246 vfio_put_address_space(space);
2248 return ret;
2251 static void vfio_disconnect_container(VFIOGroup *group)
2253 VFIOContainer *container = group->container;
2255 QLIST_REMOVE(group, container_next);
2256 group->container = NULL;
2259 * Explicitly release the listener first before unset container,
2260 * since unset may destroy the backend container if it's the last
2261 * group.
2263 if (QLIST_EMPTY(&container->group_list)) {
2264 vfio_listener_release(container);
2267 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
2268 error_report("vfio: error disconnecting group %d from container",
2269 group->groupid);
2272 if (QLIST_EMPTY(&container->group_list)) {
2273 VFIOAddressSpace *space = container->space;
2274 VFIOGuestIOMMU *giommu, *tmp;
2275 VFIOHostDMAWindow *hostwin, *next;
2277 QLIST_REMOVE(container, next);
2279 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) {
2280 memory_region_unregister_iommu_notifier(
2281 MEMORY_REGION(giommu->iommu_mr), &giommu->n);
2282 QLIST_REMOVE(giommu, giommu_next);
2283 g_free(giommu);
2286 QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next,
2287 next) {
2288 QLIST_REMOVE(hostwin, hostwin_next);
2289 g_free(hostwin);
2292 trace_vfio_disconnect_container(container->fd);
2293 close(container->fd);
2294 g_free(container);
2296 vfio_put_address_space(space);
2300 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp)
2302 VFIOGroup *group;
2303 char path[32];
2304 struct vfio_group_status status = { .argsz = sizeof(status) };
2306 QLIST_FOREACH(group, &vfio_group_list, next) {
2307 if (group->groupid == groupid) {
2308 /* Found it. Now is it already in the right context? */
2309 if (group->container->space->as == as) {
2310 return group;
2311 } else {
2312 error_setg(errp, "group %d used in multiple address spaces",
2313 group->groupid);
2314 return NULL;
2319 group = g_malloc0(sizeof(*group));
2321 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
2322 group->fd = qemu_open_old(path, O_RDWR);
2323 if (group->fd < 0) {
2324 error_setg_errno(errp, errno, "failed to open %s", path);
2325 goto free_group_exit;
2328 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
2329 error_setg_errno(errp, errno, "failed to get group %d status", groupid);
2330 goto close_fd_exit;
2333 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
2334 error_setg(errp, "group %d is not viable", groupid);
2335 error_append_hint(errp,
2336 "Please ensure all devices within the iommu_group "
2337 "are bound to their vfio bus driver.\n");
2338 goto close_fd_exit;
2341 group->groupid = groupid;
2342 QLIST_INIT(&group->device_list);
2344 if (vfio_connect_container(group, as, errp)) {
2345 error_prepend(errp, "failed to setup container for group %d: ",
2346 groupid);
2347 goto close_fd_exit;
2350 if (QLIST_EMPTY(&vfio_group_list)) {
2351 qemu_register_reset(vfio_reset_handler, NULL);
2354 QLIST_INSERT_HEAD(&vfio_group_list, group, next);
2356 return group;
2358 close_fd_exit:
2359 close(group->fd);
2361 free_group_exit:
2362 g_free(group);
2364 return NULL;
2367 void vfio_put_group(VFIOGroup *group)
2369 if (!group || !QLIST_EMPTY(&group->device_list)) {
2370 return;
2373 if (!group->ram_block_discard_allowed) {
2374 vfio_ram_block_discard_disable(group->container, false);
2376 vfio_kvm_device_del_group(group);
2377 vfio_disconnect_container(group);
2378 QLIST_REMOVE(group, next);
2379 trace_vfio_put_group(group->fd);
2380 close(group->fd);
2381 g_free(group);
2383 if (QLIST_EMPTY(&vfio_group_list)) {
2384 qemu_unregister_reset(vfio_reset_handler, NULL);
2388 int vfio_get_device(VFIOGroup *group, const char *name,
2389 VFIODevice *vbasedev, Error **errp)
2391 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
2392 int ret, fd;
2394 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
2395 if (fd < 0) {
2396 error_setg_errno(errp, errno, "error getting device from group %d",
2397 group->groupid);
2398 error_append_hint(errp,
2399 "Verify all devices in group %d are bound to vfio-<bus> "
2400 "or pci-stub and not already in use\n", group->groupid);
2401 return fd;
2404 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info);
2405 if (ret) {
2406 error_setg_errno(errp, errno, "error getting device info");
2407 close(fd);
2408 return ret;
2412 * Set discarding of RAM as not broken for this group if the driver knows
2413 * the device operates compatibly with discarding. Setting must be
2414 * consistent per group, but since compatibility is really only possible
2415 * with mdev currently, we expect singleton groups.
2417 if (vbasedev->ram_block_discard_allowed !=
2418 group->ram_block_discard_allowed) {
2419 if (!QLIST_EMPTY(&group->device_list)) {
2420 error_setg(errp, "Inconsistent setting of support for discarding "
2421 "RAM (e.g., balloon) within group");
2422 close(fd);
2423 return -1;
2426 if (!group->ram_block_discard_allowed) {
2427 group->ram_block_discard_allowed = true;
2428 vfio_ram_block_discard_disable(group->container, false);
2432 vbasedev->fd = fd;
2433 vbasedev->group = group;
2434 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next);
2436 vbasedev->num_irqs = dev_info.num_irqs;
2437 vbasedev->num_regions = dev_info.num_regions;
2438 vbasedev->flags = dev_info.flags;
2440 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions,
2441 dev_info.num_irqs);
2443 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
2444 return 0;
2447 void vfio_put_base_device(VFIODevice *vbasedev)
2449 if (!vbasedev->group) {
2450 return;
2452 QLIST_REMOVE(vbasedev, next);
2453 vbasedev->group = NULL;
2454 trace_vfio_put_base_device(vbasedev->fd);
2455 close(vbasedev->fd);
2458 int vfio_get_region_info(VFIODevice *vbasedev, int index,
2459 struct vfio_region_info **info)
2461 size_t argsz = sizeof(struct vfio_region_info);
2463 *info = g_malloc0(argsz);
2465 (*info)->index = index;
2466 retry:
2467 (*info)->argsz = argsz;
2469 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
2470 g_free(*info);
2471 *info = NULL;
2472 return -errno;
2475 if ((*info)->argsz > argsz) {
2476 argsz = (*info)->argsz;
2477 *info = g_realloc(*info, argsz);
2479 goto retry;
2482 return 0;
2485 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
2486 uint32_t subtype, struct vfio_region_info **info)
2488 int i;
2490 for (i = 0; i < vbasedev->num_regions; i++) {
2491 struct vfio_info_cap_header *hdr;
2492 struct vfio_region_info_cap_type *cap_type;
2494 if (vfio_get_region_info(vbasedev, i, info)) {
2495 continue;
2498 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
2499 if (!hdr) {
2500 g_free(*info);
2501 continue;
2504 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
2506 trace_vfio_get_dev_region(vbasedev->name, i,
2507 cap_type->type, cap_type->subtype);
2509 if (cap_type->type == type && cap_type->subtype == subtype) {
2510 return 0;
2513 g_free(*info);
2516 *info = NULL;
2517 return -ENODEV;
2520 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
2522 struct vfio_region_info *info = NULL;
2523 bool ret = false;
2525 if (!vfio_get_region_info(vbasedev, region, &info)) {
2526 if (vfio_get_region_info_cap(info, cap_type)) {
2527 ret = true;
2529 g_free(info);
2532 return ret;
2536 * Interfaces for IBM EEH (Enhanced Error Handling)
2538 static bool vfio_eeh_container_ok(VFIOContainer *container)
2541 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO
2542 * implementation is broken if there are multiple groups in a
2543 * container. The hardware works in units of Partitionable
2544 * Endpoints (== IOMMU groups) and the EEH operations naively
2545 * iterate across all groups in the container, without any logic
2546 * to make sure the groups have their state synchronized. For
2547 * certain operations (ENABLE) that might be ok, until an error
2548 * occurs, but for others (GET_STATE) it's clearly broken.
2552 * XXX Once fixed kernels exist, test for them here
2555 if (QLIST_EMPTY(&container->group_list)) {
2556 return false;
2559 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) {
2560 return false;
2563 return true;
2566 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op)
2568 struct vfio_eeh_pe_op pe_op = {
2569 .argsz = sizeof(pe_op),
2570 .op = op,
2572 int ret;
2574 if (!vfio_eeh_container_ok(container)) {
2575 error_report("vfio/eeh: EEH_PE_OP 0x%x: "
2576 "kernel requires a container with exactly one group", op);
2577 return -EPERM;
2580 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op);
2581 if (ret < 0) {
2582 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op);
2583 return -errno;
2586 return ret;
2589 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as)
2591 VFIOAddressSpace *space = vfio_get_address_space(as);
2592 VFIOContainer *container = NULL;
2594 if (QLIST_EMPTY(&space->containers)) {
2595 /* No containers to act on */
2596 goto out;
2599 container = QLIST_FIRST(&space->containers);
2601 if (QLIST_NEXT(container, next)) {
2602 /* We don't yet have logic to synchronize EEH state across
2603 * multiple containers */
2604 container = NULL;
2605 goto out;
2608 out:
2609 vfio_put_address_space(space);
2610 return container;
2613 bool vfio_eeh_as_ok(AddressSpace *as)
2615 VFIOContainer *container = vfio_eeh_as_container(as);
2617 return (container != NULL) && vfio_eeh_container_ok(container);
2620 int vfio_eeh_as_op(AddressSpace *as, uint32_t op)
2622 VFIOContainer *container = vfio_eeh_as_container(as);
2624 if (!container) {
2625 return -ENODEV;
2627 return vfio_eeh_container_op(container, op);