gluster: Convert aio routines into coroutines
[qemu/rayw.git] / arch_init.c
blob77912e7a7dbf789b557288998d398f007fa429c0
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "exec/ram_addr.h"
52 #include "hw/acpi/acpi.h"
53 #include "qemu/host-utils.h"
55 #ifdef DEBUG_ARCH_INIT
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 #ifdef TARGET_SPARC
64 int graphic_width = 1024;
65 int graphic_height = 768;
66 int graphic_depth = 8;
67 #else
68 int graphic_width = 800;
69 int graphic_height = 600;
70 int graphic_depth = 32;
71 #endif
74 #if defined(TARGET_ALPHA)
75 #define QEMU_ARCH QEMU_ARCH_ALPHA
76 #elif defined(TARGET_ARM)
77 #define QEMU_ARCH QEMU_ARCH_ARM
78 #elif defined(TARGET_CRIS)
79 #define QEMU_ARCH QEMU_ARCH_CRIS
80 #elif defined(TARGET_I386)
81 #define QEMU_ARCH QEMU_ARCH_I386
82 #elif defined(TARGET_M68K)
83 #define QEMU_ARCH QEMU_ARCH_M68K
84 #elif defined(TARGET_LM32)
85 #define QEMU_ARCH QEMU_ARCH_LM32
86 #elif defined(TARGET_MICROBLAZE)
87 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
88 #elif defined(TARGET_MIPS)
89 #define QEMU_ARCH QEMU_ARCH_MIPS
90 #elif defined(TARGET_MOXIE)
91 #define QEMU_ARCH QEMU_ARCH_MOXIE
92 #elif defined(TARGET_OPENRISC)
93 #define QEMU_ARCH QEMU_ARCH_OPENRISC
94 #elif defined(TARGET_PPC)
95 #define QEMU_ARCH QEMU_ARCH_PPC
96 #elif defined(TARGET_S390X)
97 #define QEMU_ARCH QEMU_ARCH_S390X
98 #elif defined(TARGET_SH4)
99 #define QEMU_ARCH QEMU_ARCH_SH4
100 #elif defined(TARGET_SPARC)
101 #define QEMU_ARCH QEMU_ARCH_SPARC
102 #elif defined(TARGET_XTENSA)
103 #define QEMU_ARCH QEMU_ARCH_XTENSA
104 #elif defined(TARGET_UNICORE32)
105 #define QEMU_ARCH QEMU_ARCH_UNICORE32
106 #endif
108 const uint32_t arch_type = QEMU_ARCH;
109 static bool mig_throttle_on;
110 static int dirty_rate_high_cnt;
111 static void check_guest_throttling(void);
113 /***********************************************************/
114 /* ram save/restore */
116 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
117 #define RAM_SAVE_FLAG_COMPRESS 0x02
118 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
119 #define RAM_SAVE_FLAG_PAGE 0x08
120 #define RAM_SAVE_FLAG_EOS 0x10
121 #define RAM_SAVE_FLAG_CONTINUE 0x20
122 #define RAM_SAVE_FLAG_XBZRLE 0x40
123 /* 0x80 is reserved in migration.h start with 0x100 next */
126 static struct defconfig_file {
127 const char *filename;
128 /* Indicates it is an user config file (disabled by -no-user-config) */
129 bool userconfig;
130 } default_config_files[] = {
131 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
132 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
133 { NULL }, /* end of list */
137 int qemu_read_default_config_files(bool userconfig)
139 int ret;
140 struct defconfig_file *f;
142 for (f = default_config_files; f->filename; f++) {
143 if (!userconfig && f->userconfig) {
144 continue;
146 ret = qemu_read_config_file(f->filename);
147 if (ret < 0 && ret != -ENOENT) {
148 return ret;
152 return 0;
155 static inline bool is_zero_range(uint8_t *p, uint64_t size)
157 return buffer_find_nonzero_offset(p, size) == size;
160 /* struct contains XBZRLE cache and a static page
161 used by the compression */
162 static struct {
163 /* buffer used for XBZRLE encoding */
164 uint8_t *encoded_buf;
165 /* buffer for storing page content */
166 uint8_t *current_buf;
167 /* buffer used for XBZRLE decoding */
168 uint8_t *decoded_buf;
169 /* Cache for XBZRLE */
170 PageCache *cache;
171 } XBZRLE = {
172 .encoded_buf = NULL,
173 .current_buf = NULL,
174 .decoded_buf = NULL,
175 .cache = NULL,
179 int64_t xbzrle_cache_resize(int64_t new_size)
181 if (XBZRLE.cache != NULL) {
182 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
183 TARGET_PAGE_SIZE;
185 return pow2floor(new_size);
188 /* accounting for migration statistics */
189 typedef struct AccountingInfo {
190 uint64_t dup_pages;
191 uint64_t skipped_pages;
192 uint64_t norm_pages;
193 uint64_t iterations;
194 uint64_t xbzrle_bytes;
195 uint64_t xbzrle_pages;
196 uint64_t xbzrle_cache_miss;
197 uint64_t xbzrle_overflows;
198 } AccountingInfo;
200 static AccountingInfo acct_info;
202 static void acct_clear(void)
204 memset(&acct_info, 0, sizeof(acct_info));
207 uint64_t dup_mig_bytes_transferred(void)
209 return acct_info.dup_pages * TARGET_PAGE_SIZE;
212 uint64_t dup_mig_pages_transferred(void)
214 return acct_info.dup_pages;
217 uint64_t skipped_mig_bytes_transferred(void)
219 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
222 uint64_t skipped_mig_pages_transferred(void)
224 return acct_info.skipped_pages;
227 uint64_t norm_mig_bytes_transferred(void)
229 return acct_info.norm_pages * TARGET_PAGE_SIZE;
232 uint64_t norm_mig_pages_transferred(void)
234 return acct_info.norm_pages;
237 uint64_t xbzrle_mig_bytes_transferred(void)
239 return acct_info.xbzrle_bytes;
242 uint64_t xbzrle_mig_pages_transferred(void)
244 return acct_info.xbzrle_pages;
247 uint64_t xbzrle_mig_pages_cache_miss(void)
249 return acct_info.xbzrle_cache_miss;
252 uint64_t xbzrle_mig_pages_overflow(void)
254 return acct_info.xbzrle_overflows;
257 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
258 int cont, int flag)
260 size_t size;
262 qemu_put_be64(f, offset | cont | flag);
263 size = 8;
265 if (!cont) {
266 qemu_put_byte(f, strlen(block->idstr));
267 qemu_put_buffer(f, (uint8_t *)block->idstr,
268 strlen(block->idstr));
269 size += 1 + strlen(block->idstr);
271 return size;
274 #define ENCODING_FLAG_XBZRLE 0x1
276 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
277 ram_addr_t current_addr, RAMBlock *block,
278 ram_addr_t offset, int cont, bool last_stage)
280 int encoded_len = 0, bytes_sent = -1;
281 uint8_t *prev_cached_page;
283 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
284 if (!last_stage) {
285 cache_insert(XBZRLE.cache, current_addr, current_data);
287 acct_info.xbzrle_cache_miss++;
288 return -1;
291 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
293 /* save current buffer into memory */
294 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
296 /* XBZRLE encoding (if there is no overflow) */
297 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
298 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
299 TARGET_PAGE_SIZE);
300 if (encoded_len == 0) {
301 DPRINTF("Skipping unmodified page\n");
302 return 0;
303 } else if (encoded_len == -1) {
304 DPRINTF("Overflow\n");
305 acct_info.xbzrle_overflows++;
306 /* update data in the cache */
307 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
308 return -1;
311 /* we need to update the data in the cache, in order to get the same data */
312 if (!last_stage) {
313 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
316 /* Send XBZRLE based compressed page */
317 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
318 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
319 qemu_put_be16(f, encoded_len);
320 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
321 bytes_sent += encoded_len + 1 + 2;
322 acct_info.xbzrle_pages++;
323 acct_info.xbzrle_bytes += bytes_sent;
325 return bytes_sent;
329 /* This is the last block that we have visited serching for dirty pages
331 static RAMBlock *last_seen_block;
332 /* This is the last block from where we have sent data */
333 static RAMBlock *last_sent_block;
334 static ram_addr_t last_offset;
335 static unsigned long *migration_bitmap;
336 static uint64_t migration_dirty_pages;
337 static uint32_t last_version;
338 static bool ram_bulk_stage;
340 static inline
341 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
342 ram_addr_t start)
344 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
345 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
346 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
347 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
349 unsigned long next;
351 if (ram_bulk_stage && nr > base) {
352 next = nr + 1;
353 } else {
354 next = find_next_bit(migration_bitmap, size, nr);
357 if (next < size) {
358 clear_bit(next, migration_bitmap);
359 migration_dirty_pages--;
361 return (next - base) << TARGET_PAGE_BITS;
364 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
366 bool ret;
367 int nr = addr >> TARGET_PAGE_BITS;
369 ret = test_and_set_bit(nr, migration_bitmap);
371 if (!ret) {
372 migration_dirty_pages++;
374 return ret;
377 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
379 ram_addr_t addr;
380 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
382 /* start address is aligned at the start of a word? */
383 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
384 int k;
385 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
386 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
388 for (k = page; k < page + nr; k++) {
389 if (src[k]) {
390 unsigned long new_dirty;
391 new_dirty = ~migration_bitmap[k];
392 migration_bitmap[k] |= src[k];
393 new_dirty &= src[k];
394 migration_dirty_pages += ctpopl(new_dirty);
395 src[k] = 0;
398 } else {
399 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
400 if (cpu_physical_memory_get_dirty(start + addr,
401 TARGET_PAGE_SIZE,
402 DIRTY_MEMORY_MIGRATION)) {
403 cpu_physical_memory_reset_dirty(start + addr,
404 TARGET_PAGE_SIZE,
405 DIRTY_MEMORY_MIGRATION);
406 migration_bitmap_set_dirty(start + addr);
413 /* Needs iothread lock! */
415 static void migration_bitmap_sync(void)
417 RAMBlock *block;
418 uint64_t num_dirty_pages_init = migration_dirty_pages;
419 MigrationState *s = migrate_get_current();
420 static int64_t start_time;
421 static int64_t bytes_xfer_prev;
422 static int64_t num_dirty_pages_period;
423 int64_t end_time;
424 int64_t bytes_xfer_now;
426 if (!bytes_xfer_prev) {
427 bytes_xfer_prev = ram_bytes_transferred();
430 if (!start_time) {
431 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
434 trace_migration_bitmap_sync_start();
435 address_space_sync_dirty_bitmap(&address_space_memory);
437 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
438 migration_bitmap_sync_range(block->mr->ram_addr, block->length);
440 trace_migration_bitmap_sync_end(migration_dirty_pages
441 - num_dirty_pages_init);
442 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
443 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
445 /* more than 1 second = 1000 millisecons */
446 if (end_time > start_time + 1000) {
447 if (migrate_auto_converge()) {
448 /* The following detection logic can be refined later. For now:
449 Check to see if the dirtied bytes is 50% more than the approx.
450 amount of bytes that just got transferred since the last time we
451 were in this routine. If that happens >N times (for now N==4)
452 we turn on the throttle down logic */
453 bytes_xfer_now = ram_bytes_transferred();
454 if (s->dirty_pages_rate &&
455 (num_dirty_pages_period * TARGET_PAGE_SIZE >
456 (bytes_xfer_now - bytes_xfer_prev)/2) &&
457 (dirty_rate_high_cnt++ > 4)) {
458 trace_migration_throttle();
459 mig_throttle_on = true;
460 dirty_rate_high_cnt = 0;
462 bytes_xfer_prev = bytes_xfer_now;
463 } else {
464 mig_throttle_on = false;
466 s->dirty_pages_rate = num_dirty_pages_period * 1000
467 / (end_time - start_time);
468 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
469 start_time = end_time;
470 num_dirty_pages_period = 0;
475 * ram_save_block: Writes a page of memory to the stream f
477 * Returns: The number of bytes written.
478 * 0 means no dirty pages
481 static int ram_save_block(QEMUFile *f, bool last_stage)
483 RAMBlock *block = last_seen_block;
484 ram_addr_t offset = last_offset;
485 bool complete_round = false;
486 int bytes_sent = 0;
487 MemoryRegion *mr;
488 ram_addr_t current_addr;
490 if (!block)
491 block = QTAILQ_FIRST(&ram_list.blocks);
493 while (true) {
494 mr = block->mr;
495 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
496 if (complete_round && block == last_seen_block &&
497 offset >= last_offset) {
498 break;
500 if (offset >= block->length) {
501 offset = 0;
502 block = QTAILQ_NEXT(block, next);
503 if (!block) {
504 block = QTAILQ_FIRST(&ram_list.blocks);
505 complete_round = true;
506 ram_bulk_stage = false;
508 } else {
509 int ret;
510 uint8_t *p;
511 int cont = (block == last_sent_block) ?
512 RAM_SAVE_FLAG_CONTINUE : 0;
514 p = memory_region_get_ram_ptr(mr) + offset;
516 /* In doubt sent page as normal */
517 bytes_sent = -1;
518 ret = ram_control_save_page(f, block->offset,
519 offset, TARGET_PAGE_SIZE, &bytes_sent);
521 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
522 if (ret != RAM_SAVE_CONTROL_DELAYED) {
523 if (bytes_sent > 0) {
524 acct_info.norm_pages++;
525 } else if (bytes_sent == 0) {
526 acct_info.dup_pages++;
529 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
530 acct_info.dup_pages++;
531 bytes_sent = save_block_hdr(f, block, offset, cont,
532 RAM_SAVE_FLAG_COMPRESS);
533 qemu_put_byte(f, 0);
534 bytes_sent++;
535 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
536 current_addr = block->offset + offset;
537 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
538 offset, cont, last_stage);
539 if (!last_stage) {
540 p = get_cached_data(XBZRLE.cache, current_addr);
544 /* XBZRLE overflow or normal page */
545 if (bytes_sent == -1) {
546 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
547 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
548 bytes_sent += TARGET_PAGE_SIZE;
549 acct_info.norm_pages++;
552 /* if page is unmodified, continue to the next */
553 if (bytes_sent > 0) {
554 last_sent_block = block;
555 break;
559 last_seen_block = block;
560 last_offset = offset;
562 return bytes_sent;
565 static uint64_t bytes_transferred;
567 void acct_update_position(QEMUFile *f, size_t size, bool zero)
569 uint64_t pages = size / TARGET_PAGE_SIZE;
570 if (zero) {
571 acct_info.dup_pages += pages;
572 } else {
573 acct_info.norm_pages += pages;
574 bytes_transferred += size;
575 qemu_update_position(f, size);
579 static ram_addr_t ram_save_remaining(void)
581 return migration_dirty_pages;
584 uint64_t ram_bytes_remaining(void)
586 return ram_save_remaining() * TARGET_PAGE_SIZE;
589 uint64_t ram_bytes_transferred(void)
591 return bytes_transferred;
594 uint64_t ram_bytes_total(void)
596 RAMBlock *block;
597 uint64_t total = 0;
599 QTAILQ_FOREACH(block, &ram_list.blocks, next)
600 total += block->length;
602 return total;
605 static void migration_end(void)
607 if (migration_bitmap) {
608 memory_global_dirty_log_stop();
609 g_free(migration_bitmap);
610 migration_bitmap = NULL;
613 if (XBZRLE.cache) {
614 cache_fini(XBZRLE.cache);
615 g_free(XBZRLE.cache);
616 g_free(XBZRLE.encoded_buf);
617 g_free(XBZRLE.current_buf);
618 g_free(XBZRLE.decoded_buf);
619 XBZRLE.cache = NULL;
623 static void ram_migration_cancel(void *opaque)
625 migration_end();
628 static void reset_ram_globals(void)
630 last_seen_block = NULL;
631 last_sent_block = NULL;
632 last_offset = 0;
633 last_version = ram_list.version;
634 ram_bulk_stage = true;
637 #define MAX_WAIT 50 /* ms, half buffered_file limit */
639 static int ram_save_setup(QEMUFile *f, void *opaque)
641 RAMBlock *block;
642 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
644 migration_bitmap = bitmap_new(ram_pages);
645 bitmap_set(migration_bitmap, 0, ram_pages);
646 migration_dirty_pages = ram_pages;
647 mig_throttle_on = false;
648 dirty_rate_high_cnt = 0;
650 if (migrate_use_xbzrle()) {
651 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
652 TARGET_PAGE_SIZE,
653 TARGET_PAGE_SIZE);
654 if (!XBZRLE.cache) {
655 DPRINTF("Error creating cache\n");
656 return -1;
658 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
659 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
660 acct_clear();
663 qemu_mutex_lock_iothread();
664 qemu_mutex_lock_ramlist();
665 bytes_transferred = 0;
666 reset_ram_globals();
668 memory_global_dirty_log_start();
669 migration_bitmap_sync();
670 qemu_mutex_unlock_iothread();
672 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
674 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
675 qemu_put_byte(f, strlen(block->idstr));
676 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
677 qemu_put_be64(f, block->length);
680 qemu_mutex_unlock_ramlist();
682 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
683 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
685 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
687 return 0;
690 static int ram_save_iterate(QEMUFile *f, void *opaque)
692 int ret;
693 int i;
694 int64_t t0;
695 int total_sent = 0;
697 qemu_mutex_lock_ramlist();
699 if (ram_list.version != last_version) {
700 reset_ram_globals();
703 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
705 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
706 i = 0;
707 while ((ret = qemu_file_rate_limit(f)) == 0) {
708 int bytes_sent;
710 bytes_sent = ram_save_block(f, false);
711 /* no more blocks to sent */
712 if (bytes_sent == 0) {
713 break;
715 total_sent += bytes_sent;
716 acct_info.iterations++;
717 check_guest_throttling();
718 /* we want to check in the 1st loop, just in case it was the 1st time
719 and we had to sync the dirty bitmap.
720 qemu_get_clock_ns() is a bit expensive, so we only check each some
721 iterations
723 if ((i & 63) == 0) {
724 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
725 if (t1 > MAX_WAIT) {
726 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
727 t1, i);
728 break;
731 i++;
734 qemu_mutex_unlock_ramlist();
737 * Must occur before EOS (or any QEMUFile operation)
738 * because of RDMA protocol.
740 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
742 bytes_transferred += total_sent;
745 * Do not count these 8 bytes into total_sent, so that we can
746 * return 0 if no page had been dirtied.
748 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
749 bytes_transferred += 8;
751 ret = qemu_file_get_error(f);
752 if (ret < 0) {
753 return ret;
756 return total_sent;
759 static int ram_save_complete(QEMUFile *f, void *opaque)
761 qemu_mutex_lock_ramlist();
762 migration_bitmap_sync();
764 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
766 /* try transferring iterative blocks of memory */
768 /* flush all remaining blocks regardless of rate limiting */
769 while (true) {
770 int bytes_sent;
772 bytes_sent = ram_save_block(f, true);
773 /* no more blocks to sent */
774 if (bytes_sent == 0) {
775 break;
777 bytes_transferred += bytes_sent;
780 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
781 migration_end();
783 qemu_mutex_unlock_ramlist();
784 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
786 return 0;
789 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
791 uint64_t remaining_size;
793 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
795 if (remaining_size < max_size) {
796 qemu_mutex_lock_iothread();
797 migration_bitmap_sync();
798 qemu_mutex_unlock_iothread();
799 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
801 return remaining_size;
804 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
806 int ret, rc = 0;
807 unsigned int xh_len;
808 int xh_flags;
810 if (!XBZRLE.decoded_buf) {
811 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
814 /* extract RLE header */
815 xh_flags = qemu_get_byte(f);
816 xh_len = qemu_get_be16(f);
818 if (xh_flags != ENCODING_FLAG_XBZRLE) {
819 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
820 return -1;
823 if (xh_len > TARGET_PAGE_SIZE) {
824 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
825 return -1;
827 /* load data and decode */
828 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
830 /* decode RLE */
831 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
832 TARGET_PAGE_SIZE);
833 if (ret == -1) {
834 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
835 rc = -1;
836 } else if (ret > TARGET_PAGE_SIZE) {
837 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
838 ret, TARGET_PAGE_SIZE);
839 abort();
842 return rc;
845 static inline void *host_from_stream_offset(QEMUFile *f,
846 ram_addr_t offset,
847 int flags)
849 static RAMBlock *block = NULL;
850 char id[256];
851 uint8_t len;
853 if (flags & RAM_SAVE_FLAG_CONTINUE) {
854 if (!block) {
855 fprintf(stderr, "Ack, bad migration stream!\n");
856 return NULL;
859 return memory_region_get_ram_ptr(block->mr) + offset;
862 len = qemu_get_byte(f);
863 qemu_get_buffer(f, (uint8_t *)id, len);
864 id[len] = 0;
866 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
867 if (!strncmp(id, block->idstr, sizeof(id)))
868 return memory_region_get_ram_ptr(block->mr) + offset;
871 fprintf(stderr, "Can't find block %s!\n", id);
872 return NULL;
876 * If a page (or a whole RDMA chunk) has been
877 * determined to be zero, then zap it.
879 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
881 if (ch != 0 || !is_zero_range(host, size)) {
882 memset(host, ch, size);
886 static int ram_load(QEMUFile *f, void *opaque, int version_id)
888 ram_addr_t addr;
889 int flags, ret = 0;
890 int error;
891 static uint64_t seq_iter;
893 seq_iter++;
895 if (version_id < 4 || version_id > 4) {
896 return -EINVAL;
899 do {
900 addr = qemu_get_be64(f);
902 flags = addr & ~TARGET_PAGE_MASK;
903 addr &= TARGET_PAGE_MASK;
905 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
906 if (version_id == 4) {
907 /* Synchronize RAM block list */
908 char id[256];
909 ram_addr_t length;
910 ram_addr_t total_ram_bytes = addr;
912 while (total_ram_bytes) {
913 RAMBlock *block;
914 uint8_t len;
916 len = qemu_get_byte(f);
917 qemu_get_buffer(f, (uint8_t *)id, len);
918 id[len] = 0;
919 length = qemu_get_be64(f);
921 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
922 if (!strncmp(id, block->idstr, sizeof(id))) {
923 if (block->length != length) {
924 fprintf(stderr,
925 "Length mismatch: %s: " RAM_ADDR_FMT
926 " in != " RAM_ADDR_FMT "\n", id, length,
927 block->length);
928 ret = -EINVAL;
929 goto done;
931 break;
935 if (!block) {
936 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
937 "accept migration\n", id);
938 ret = -EINVAL;
939 goto done;
942 total_ram_bytes -= length;
947 if (flags & RAM_SAVE_FLAG_COMPRESS) {
948 void *host;
949 uint8_t ch;
951 host = host_from_stream_offset(f, addr, flags);
952 if (!host) {
953 return -EINVAL;
956 ch = qemu_get_byte(f);
957 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
958 } else if (flags & RAM_SAVE_FLAG_PAGE) {
959 void *host;
961 host = host_from_stream_offset(f, addr, flags);
962 if (!host) {
963 return -EINVAL;
966 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
967 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
968 void *host = host_from_stream_offset(f, addr, flags);
969 if (!host) {
970 return -EINVAL;
973 if (load_xbzrle(f, addr, host) < 0) {
974 ret = -EINVAL;
975 goto done;
977 } else if (flags & RAM_SAVE_FLAG_HOOK) {
978 ram_control_load_hook(f, flags);
980 error = qemu_file_get_error(f);
981 if (error) {
982 ret = error;
983 goto done;
985 } while (!(flags & RAM_SAVE_FLAG_EOS));
987 done:
988 DPRINTF("Completed load of VM with exit code %d seq iteration "
989 "%" PRIu64 "\n", ret, seq_iter);
990 return ret;
993 SaveVMHandlers savevm_ram_handlers = {
994 .save_live_setup = ram_save_setup,
995 .save_live_iterate = ram_save_iterate,
996 .save_live_complete = ram_save_complete,
997 .save_live_pending = ram_save_pending,
998 .load_state = ram_load,
999 .cancel = ram_migration_cancel,
1002 struct soundhw {
1003 const char *name;
1004 const char *descr;
1005 int enabled;
1006 int isa;
1007 union {
1008 int (*init_isa) (ISABus *bus);
1009 int (*init_pci) (PCIBus *bus);
1010 } init;
1013 static struct soundhw soundhw[9];
1014 static int soundhw_count;
1016 void isa_register_soundhw(const char *name, const char *descr,
1017 int (*init_isa)(ISABus *bus))
1019 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1020 soundhw[soundhw_count].name = name;
1021 soundhw[soundhw_count].descr = descr;
1022 soundhw[soundhw_count].isa = 1;
1023 soundhw[soundhw_count].init.init_isa = init_isa;
1024 soundhw_count++;
1027 void pci_register_soundhw(const char *name, const char *descr,
1028 int (*init_pci)(PCIBus *bus))
1030 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1031 soundhw[soundhw_count].name = name;
1032 soundhw[soundhw_count].descr = descr;
1033 soundhw[soundhw_count].isa = 0;
1034 soundhw[soundhw_count].init.init_pci = init_pci;
1035 soundhw_count++;
1038 void select_soundhw(const char *optarg)
1040 struct soundhw *c;
1042 if (is_help_option(optarg)) {
1043 show_valid_cards:
1045 if (soundhw_count) {
1046 printf("Valid sound card names (comma separated):\n");
1047 for (c = soundhw; c->name; ++c) {
1048 printf ("%-11s %s\n", c->name, c->descr);
1050 printf("\n-soundhw all will enable all of the above\n");
1051 } else {
1052 printf("Machine has no user-selectable audio hardware "
1053 "(it may or may not have always-present audio hardware).\n");
1055 exit(!is_help_option(optarg));
1057 else {
1058 size_t l;
1059 const char *p;
1060 char *e;
1061 int bad_card = 0;
1063 if (!strcmp(optarg, "all")) {
1064 for (c = soundhw; c->name; ++c) {
1065 c->enabled = 1;
1067 return;
1070 p = optarg;
1071 while (*p) {
1072 e = strchr(p, ',');
1073 l = !e ? strlen(p) : (size_t) (e - p);
1075 for (c = soundhw; c->name; ++c) {
1076 if (!strncmp(c->name, p, l) && !c->name[l]) {
1077 c->enabled = 1;
1078 break;
1082 if (!c->name) {
1083 if (l > 80) {
1084 fprintf(stderr,
1085 "Unknown sound card name (too big to show)\n");
1087 else {
1088 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1089 (int) l, p);
1091 bad_card = 1;
1093 p += l + (e != NULL);
1096 if (bad_card) {
1097 goto show_valid_cards;
1102 void audio_init(void)
1104 struct soundhw *c;
1105 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1106 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1108 for (c = soundhw; c->name; ++c) {
1109 if (c->enabled) {
1110 if (c->isa) {
1111 if (!isa_bus) {
1112 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1113 exit(1);
1115 c->init.init_isa(isa_bus);
1116 } else {
1117 if (!pci_bus) {
1118 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1119 exit(1);
1121 c->init.init_pci(pci_bus);
1127 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1129 int ret;
1131 if (strlen(str) != 36) {
1132 return -1;
1135 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1136 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1137 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1138 &uuid[15]);
1140 if (ret != 16) {
1141 return -1;
1143 return 0;
1146 void do_acpitable_option(const QemuOpts *opts)
1148 #ifdef TARGET_I386
1149 Error *err = NULL;
1151 acpi_table_add(opts, &err);
1152 if (err) {
1153 error_report("Wrong acpi table provided: %s",
1154 error_get_pretty(err));
1155 error_free(err);
1156 exit(1);
1158 #endif
1161 void do_smbios_option(QemuOpts *opts)
1163 #ifdef TARGET_I386
1164 smbios_entry_add(opts);
1165 #endif
1168 void cpudef_init(void)
1170 #if defined(cpudef_setup)
1171 cpudef_setup(); /* parse cpu definitions in target config file */
1172 #endif
1175 int tcg_available(void)
1177 return 1;
1180 int kvm_available(void)
1182 #ifdef CONFIG_KVM
1183 return 1;
1184 #else
1185 return 0;
1186 #endif
1189 int xen_available(void)
1191 #ifdef CONFIG_XEN
1192 return 1;
1193 #else
1194 return 0;
1195 #endif
1199 TargetInfo *qmp_query_target(Error **errp)
1201 TargetInfo *info = g_malloc0(sizeof(*info));
1203 info->arch = g_strdup(TARGET_NAME);
1205 return info;
1208 /* Stub function that's gets run on the vcpu when its brought out of the
1209 VM to run inside qemu via async_run_on_cpu()*/
1210 static void mig_sleep_cpu(void *opq)
1212 qemu_mutex_unlock_iothread();
1213 g_usleep(30*1000);
1214 qemu_mutex_lock_iothread();
1217 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1218 much time in the VM. The migration thread will try to catchup.
1219 Workload will experience a performance drop.
1221 static void mig_throttle_guest_down(void)
1223 CPUState *cpu;
1225 qemu_mutex_lock_iothread();
1226 CPU_FOREACH(cpu) {
1227 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1229 qemu_mutex_unlock_iothread();
1232 static void check_guest_throttling(void)
1234 static int64_t t0;
1235 int64_t t1;
1237 if (!mig_throttle_on) {
1238 return;
1241 if (!t0) {
1242 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1243 return;
1246 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1248 /* If it has been more than 40 ms since the last time the guest
1249 * was throttled then do it again.
1251 if (40 < (t1-t0)/1000000) {
1252 mig_throttle_guest_down();
1253 t0 = t1;