2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
27 #define WANT_EXEC_OBSOLETE
28 #include "exec-obsolete.h"
31 //#define DEBUG_TLB_CHECK
36 static const CPUTLBEntry s_cputlb_empty_entry
= {
44 * If flush_global is true (the usual case), flush all tlb entries.
45 * If flush_global is false, flush (at least) all tlb entries not
48 * Since QEMU doesn't currently implement a global/not-global flag
49 * for tlb entries, at the moment tlb_flush() will also flush all
50 * tlb entries in the flush_global == false case. This is OK because
51 * CPU architectures generally permit an implementation to drop
52 * entries from the TLB at any time, so flushing more entries than
53 * required is only an efficiency issue, not a correctness issue.
55 void tlb_flush(CPUArchState
*env
, int flush_global
)
59 #if defined(DEBUG_TLB)
60 printf("tlb_flush:\n");
62 /* must reset current TB so that interrupts cannot modify the
63 links while we are modifying them */
64 env
->current_tb
= NULL
;
66 for (i
= 0; i
< CPU_TLB_SIZE
; i
++) {
69 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
70 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
74 memset(env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
76 env
->tlb_flush_addr
= -1;
77 env
->tlb_flush_mask
= 0;
81 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
83 if (addr
== (tlb_entry
->addr_read
&
84 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
85 addr
== (tlb_entry
->addr_write
&
86 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
87 addr
== (tlb_entry
->addr_code
&
88 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
89 *tlb_entry
= s_cputlb_empty_entry
;
93 void tlb_flush_page(CPUArchState
*env
, target_ulong addr
)
98 #if defined(DEBUG_TLB)
99 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
101 /* Check if we need to flush due to large pages. */
102 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
103 #if defined(DEBUG_TLB)
104 printf("tlb_flush_page: forced full flush ("
105 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
106 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
111 /* must reset current TB so that interrupts cannot modify the
112 links while we are modifying them */
113 env
->current_tb
= NULL
;
115 addr
&= TARGET_PAGE_MASK
;
116 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
117 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
118 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
121 tb_flush_jmp_cache(env
, addr
);
124 /* update the TLBs so that writes to code in the virtual page 'addr'
126 void tlb_protect_code(ram_addr_t ram_addr
)
128 cpu_physical_memory_reset_dirty(ram_addr
,
129 ram_addr
+ TARGET_PAGE_SIZE
,
133 /* update the TLB so that writes in physical page 'phys_addr' are no longer
134 tested for self modifying code */
135 void tlb_unprotect_code_phys(CPUArchState
*env
, ram_addr_t ram_addr
,
138 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
141 static bool tlb_is_dirty_ram(CPUTLBEntry
*tlbe
)
143 return (tlbe
->addr_write
& (TLB_INVALID_MASK
|TLB_MMIO
|TLB_NOTDIRTY
)) == 0;
146 void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
, uintptr_t start
,
151 if (tlb_is_dirty_ram(tlb_entry
)) {
152 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
153 if ((addr
- start
) < length
) {
154 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
159 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
164 if (tlb_is_dirty_ram(tlb_entry
)) {
165 p
= (void *)(uintptr_t)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
166 + tlb_entry
->addend
);
167 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
168 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
169 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
174 void cpu_tlb_reset_dirty_all(ram_addr_t start1
, ram_addr_t length
)
178 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
181 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
184 for (i
= 0; i
< CPU_TLB_SIZE
; i
++) {
185 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
192 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
194 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
)) {
195 tlb_entry
->addr_write
= vaddr
;
199 /* update the TLB corresponding to virtual page vaddr
200 so that it is no longer dirty */
201 void tlb_set_dirty(CPUArchState
*env
, target_ulong vaddr
)
206 vaddr
&= TARGET_PAGE_MASK
;
207 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
208 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
209 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
213 /* Our TLB does not support large pages, so remember the area covered by
214 large pages and trigger a full TLB flush if these are invalidated. */
215 static void tlb_add_large_page(CPUArchState
*env
, target_ulong vaddr
,
218 target_ulong mask
= ~(size
- 1);
220 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
221 env
->tlb_flush_addr
= vaddr
& mask
;
222 env
->tlb_flush_mask
= mask
;
225 /* Extend the existing region to include the new page.
226 This is a compromise between unnecessary flushes and the cost
227 of maintaining a full variable size TLB. */
228 mask
&= env
->tlb_flush_mask
;
229 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
232 env
->tlb_flush_addr
&= mask
;
233 env
->tlb_flush_mask
= mask
;
236 /* Add a new TLB entry. At most one entry for a given virtual address
237 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
238 supplied size is only used by tlb_flush_page. */
239 void tlb_set_page(CPUArchState
*env
, target_ulong vaddr
,
240 target_phys_addr_t paddr
, int prot
,
241 int mmu_idx
, target_ulong size
)
243 MemoryRegionSection
*section
;
245 target_ulong address
;
246 target_ulong code_address
;
249 target_phys_addr_t iotlb
;
251 assert(size
>= TARGET_PAGE_SIZE
);
252 if (size
!= TARGET_PAGE_SIZE
) {
253 tlb_add_large_page(env
, vaddr
, size
);
255 section
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
256 #if defined(DEBUG_TLB)
257 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
258 " prot=%x idx=%d pd=0x%08lx\n",
259 vaddr
, paddr
, prot
, mmu_idx
, pd
);
263 if (!(memory_region_is_ram(section
->mr
) ||
264 memory_region_is_romd(section
->mr
))) {
265 /* IO memory case (romd handled later) */
268 if (memory_region_is_ram(section
->mr
) ||
269 memory_region_is_romd(section
->mr
)) {
270 addend
= (uintptr_t)memory_region_get_ram_ptr(section
->mr
)
271 + memory_region_section_addr(section
, paddr
);
276 code_address
= address
;
277 iotlb
= memory_region_section_get_iotlb(env
, section
, vaddr
, paddr
, prot
,
280 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
281 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
282 te
= &env
->tlb_table
[mmu_idx
][index
];
283 te
->addend
= addend
- vaddr
;
284 if (prot
& PAGE_READ
) {
285 te
->addr_read
= address
;
290 if (prot
& PAGE_EXEC
) {
291 te
->addr_code
= code_address
;
295 if (prot
& PAGE_WRITE
) {
296 if ((memory_region_is_ram(section
->mr
) && section
->readonly
)
297 || memory_region_is_romd(section
->mr
)) {
298 /* Write access calls the I/O callback. */
299 te
->addr_write
= address
| TLB_MMIO
;
300 } else if (memory_region_is_ram(section
->mr
)
301 && !cpu_physical_memory_is_dirty(
302 section
->mr
->ram_addr
303 + memory_region_section_addr(section
, paddr
))) {
304 te
->addr_write
= address
| TLB_NOTDIRTY
;
306 te
->addr_write
= address
;
313 /* NOTE: this function can trigger an exception */
314 /* NOTE2: the returned address is not exactly the physical address: it
315 * is actually a ram_addr_t (in system mode; the user mode emulation
316 * version of this function returns a guest virtual address).
318 tb_page_addr_t
get_page_addr_code(CPUArchState
*env1
, target_ulong addr
)
320 int mmu_idx
, page_index
, pd
;
324 page_index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
325 mmu_idx
= cpu_mmu_index(env1
);
326 if (unlikely(env1
->tlb_table
[mmu_idx
][page_index
].addr_code
!=
327 (addr
& TARGET_PAGE_MASK
))) {
328 #ifdef CONFIG_TCG_PASS_AREG0
329 cpu_ldub_code(env1
, addr
);
334 pd
= env1
->iotlb
[mmu_idx
][page_index
] & ~TARGET_PAGE_MASK
;
335 mr
= iotlb_to_region(pd
);
336 if (memory_region_is_unassigned(mr
)) {
337 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
338 cpu_unassigned_access(env1
, addr
, 0, 1, 0, 4);
340 cpu_abort(env1
, "Trying to execute code outside RAM or ROM at 0x"
341 TARGET_FMT_lx
"\n", addr
);
344 p
= (void *)((uintptr_t)addr
+ env1
->tlb_table
[mmu_idx
][page_index
].addend
);
345 return qemu_ram_addr_from_host_nofail(p
);
348 #define MMUSUFFIX _cmmu
350 #define GETPC() ((uintptr_t)0)
351 #define env cpu_single_env
352 #define SOFTMMU_CODE_ACCESS
355 #include "softmmu_template.h"
358 #include "softmmu_template.h"
361 #include "softmmu_template.h"
364 #include "softmmu_template.h"