2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/module.h"
29 #include "hw/acpi/acpi_aml_interface.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/qdev-properties-system.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "sysemu/rtc.h"
39 #include "hw/rtc/mc146818rtc.h"
40 #include "hw/rtc/mc146818rtc_regs.h"
41 #include "migration/vmstate.h"
42 #include "qapi/error.h"
43 #include "qapi/qapi-events-misc.h"
44 #include "qapi/visitor.h"
45 #include "hw/rtc/mc146818rtc_regs.h"
48 #include "qapi/qapi-commands-misc-target.h"
49 #include "hw/i386/apic.h"
53 //#define DEBUG_COALESCED
56 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
58 # define CMOS_DPRINTF(format, ...) do { } while (0)
61 #ifdef DEBUG_COALESCED
62 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
64 # define DPRINTF_C(format, ...) do { } while (0)
67 #define SEC_PER_MIN 60
68 #define MIN_PER_HOUR 60
69 #define SEC_PER_HOUR 3600
70 #define HOUR_PER_DAY 24
71 #define SEC_PER_DAY 86400
73 #define RTC_REINJECT_ON_ACK_COUNT 20
74 #define RTC_CLOCK_RATE 32768
75 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
77 #define RTC_ISA_BASE 0x70
79 static void rtc_set_time(RTCState
*s
);
80 static void rtc_update_time(RTCState
*s
);
81 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
82 static inline int rtc_from_bcd(RTCState
*s
, int a
);
83 static uint64_t get_next_alarm(RTCState
*s
);
85 static inline bool rtc_running(RTCState
*s
)
87 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
88 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
91 static uint64_t get_guest_rtc_ns(RTCState
*s
)
93 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
95 return s
->base_rtc
* NANOSECONDS_PER_SECOND
+
96 guest_clock
- s
->last_update
+ s
->offset
;
99 static void rtc_coalesced_timer_update(RTCState
*s
)
101 if (s
->irq_coalesced
== 0) {
102 timer_del(s
->coalesced_timer
);
104 /* divide each RTC interval to 2 - 8 smaller intervals */
105 int c
= MIN(s
->irq_coalesced
, 7) + 1;
106 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
107 periodic_clock_to_ns(s
->period
/ c
);
108 timer_mod(s
->coalesced_timer
, next_clock
);
112 static QLIST_HEAD(, RTCState
) rtc_devices
=
113 QLIST_HEAD_INITIALIZER(rtc_devices
);
116 void qmp_rtc_reset_reinjection(Error
**errp
)
120 QLIST_FOREACH(s
, &rtc_devices
, link
) {
121 s
->irq_coalesced
= 0;
125 static bool rtc_policy_slew_deliver_irq(RTCState
*s
)
127 apic_reset_irq_delivered();
128 qemu_irq_raise(s
->irq
);
129 return apic_get_irq_delivered();
132 static void rtc_coalesced_timer(void *opaque
)
134 RTCState
*s
= opaque
;
136 if (s
->irq_coalesced
!= 0) {
137 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
138 DPRINTF_C("cmos: injecting from timer\n");
139 if (rtc_policy_slew_deliver_irq(s
)) {
141 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
146 rtc_coalesced_timer_update(s
);
149 static bool rtc_policy_slew_deliver_irq(RTCState
*s
)
156 static uint32_t rtc_periodic_clock_ticks(RTCState
*s
)
160 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
164 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
166 return periodic_period_to_clock(period_code
);
170 * handle periodic timer. @old_period indicates the periodic timer update
171 * is just due to period adjustment.
174 periodic_timer_update(RTCState
*s
, int64_t current_time
, uint32_t old_period
, bool period_change
)
177 int64_t cur_clock
, next_irq_clock
, lost_clock
= 0;
179 period
= rtc_periodic_clock_ticks(s
);
183 s
->irq_coalesced
= 0;
184 timer_del(s
->periodic_timer
);
188 /* compute 32 khz clock */
190 muldiv64(current_time
, RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
193 * if the periodic timer's update is due to period re-configuration,
194 * we should count the clock since last interrupt.
196 if (old_period
&& period_change
) {
197 int64_t last_periodic_clock
, next_periodic_clock
;
199 next_periodic_clock
= muldiv64(s
->next_periodic_time
,
200 RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
201 last_periodic_clock
= next_periodic_clock
- old_period
;
202 lost_clock
= cur_clock
- last_periodic_clock
;
203 assert(lost_clock
>= 0);
207 * s->irq_coalesced can change for two reasons:
209 * a) if one or more periodic timer interrupts have been lost,
210 * lost_clock will be more that a period.
212 * b) when the period may be reconfigured, we expect the OS to
213 * treat delayed tick as the new period. So, when switching
214 * from a shorter to a longer period, scale down the missing,
215 * because the OS will treat past delayed ticks as longer
216 * (leftovers are put back into lost_clock). When switching
217 * to a shorter period, scale up the missing ticks since the
218 * OS handler will treat past delayed ticks as shorter.
220 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
221 uint32_t old_irq_coalesced
= s
->irq_coalesced
;
223 lost_clock
+= old_irq_coalesced
* old_period
;
224 s
->irq_coalesced
= lost_clock
/ s
->period
;
225 lost_clock
%= s
->period
;
226 if (old_irq_coalesced
!= s
->irq_coalesced
||
227 old_period
!= s
->period
) {
228 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
229 "period scaled from %d to %d\n", old_irq_coalesced
,
230 s
->irq_coalesced
, old_period
, s
->period
);
231 rtc_coalesced_timer_update(s
);
235 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
236 * is not used, we should make the time progress anyway.
238 lost_clock
= MIN(lost_clock
, period
);
241 assert(lost_clock
>= 0 && lost_clock
<= period
);
243 next_irq_clock
= cur_clock
+ period
- lost_clock
;
244 s
->next_periodic_time
= periodic_clock_to_ns(next_irq_clock
) + 1;
245 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
248 static void rtc_periodic_timer(void *opaque
)
250 RTCState
*s
= opaque
;
252 periodic_timer_update(s
, s
->next_periodic_time
, s
->period
, false);
253 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
254 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
255 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
256 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
257 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
258 s
->irq_reinject_on_ack_count
= 0;
259 if (!rtc_policy_slew_deliver_irq(s
)) {
261 rtc_coalesced_timer_update(s
);
262 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
266 qemu_irq_raise(s
->irq
);
270 /* handle update-ended timer */
271 static void check_update_timer(RTCState
*s
)
273 uint64_t next_update_time
;
277 /* From the data sheet: "Holding the dividers in reset prevents
278 * interrupts from operating, while setting the SET bit allows"
281 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
282 assert((s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) == 0);
283 timer_del(s
->update_timer
);
287 guest_nsec
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
288 next_update_time
= qemu_clock_get_ns(rtc_clock
)
289 + NANOSECONDS_PER_SECOND
- guest_nsec
;
291 /* Compute time of next alarm. One second is already accounted
292 * for in next_update_time.
294 next_alarm_sec
= get_next_alarm(s
);
295 s
->next_alarm_time
= next_update_time
+
296 (next_alarm_sec
- 1) * NANOSECONDS_PER_SECOND
;
298 /* If update_in_progress latched the UIP bit, we must keep the timer
299 * programmed to the next second, so that UIP is cleared. Otherwise,
300 * if UF is already set, we might be able to optimize.
302 if (!(s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) &&
303 (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
)) {
304 /* If AF cannot change (i.e. either it is set already, or
305 * SET=1 and then the time is not updated), nothing to do.
307 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) ||
308 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
309 timer_del(s
->update_timer
);
313 /* UF is set, but AF is clear. Program the timer to target
315 next_update_time
= s
->next_alarm_time
;
317 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
318 timer_mod(s
->update_timer
, next_update_time
);
322 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
324 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
326 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
333 static uint64_t get_next_alarm(RTCState
*s
)
335 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
336 int32_t hour
, min
, sec
;
340 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
341 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
342 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
343 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
345 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
346 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
347 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
348 cur_hour
= convert_hour(s
, cur_hour
);
350 if (alarm_hour
== -1) {
351 alarm_hour
= cur_hour
;
352 if (alarm_min
== -1) {
354 if (alarm_sec
== -1) {
355 alarm_sec
= cur_sec
+ 1;
356 } else if (cur_sec
> alarm_sec
) {
359 } else if (cur_min
== alarm_min
) {
360 if (alarm_sec
== -1) {
361 alarm_sec
= cur_sec
+ 1;
363 if (cur_sec
> alarm_sec
) {
367 if (alarm_sec
== SEC_PER_MIN
) {
368 /* wrap to next hour, minutes is not in don't care mode */
372 } else if (cur_min
> alarm_min
) {
375 } else if (cur_hour
== alarm_hour
) {
376 if (alarm_min
== -1) {
378 if (alarm_sec
== -1) {
379 alarm_sec
= cur_sec
+ 1;
380 } else if (cur_sec
> alarm_sec
) {
384 if (alarm_sec
== SEC_PER_MIN
) {
388 /* wrap to next day, hour is not in don't care mode */
389 alarm_min
%= MIN_PER_HOUR
;
390 } else if (cur_min
== alarm_min
) {
391 if (alarm_sec
== -1) {
392 alarm_sec
= cur_sec
+ 1;
394 /* wrap to next day, hours+minutes not in don't care mode */
395 alarm_sec
%= SEC_PER_MIN
;
399 /* values that are still don't care fire at the next min/sec */
400 if (alarm_min
== -1) {
403 if (alarm_sec
== -1) {
407 /* keep values in range */
408 if (alarm_sec
== SEC_PER_MIN
) {
412 if (alarm_min
== MIN_PER_HOUR
) {
416 alarm_hour
%= HOUR_PER_DAY
;
418 hour
= alarm_hour
- cur_hour
;
419 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
420 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
421 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
424 static void rtc_update_timer(void *opaque
)
426 RTCState
*s
= opaque
;
427 int32_t irqs
= REG_C_UF
;
430 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
432 /* UIP might have been latched, update time and clear it. */
434 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
436 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
438 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
439 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
, NULL
);
443 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
444 s
->cmos_data
[RTC_REG_C
] |= irqs
;
445 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
446 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
447 qemu_irq_raise(s
->irq
);
449 check_update_timer(s
);
452 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
453 uint64_t data
, unsigned size
)
455 RTCState
*s
= opaque
;
457 bool update_periodic_timer
;
459 if ((addr
& 1) == 0) {
460 s
->cmos_index
= data
& 0x7f;
462 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
463 s
->cmos_index
, data
);
464 switch(s
->cmos_index
) {
465 case RTC_SECONDS_ALARM
:
466 case RTC_MINUTES_ALARM
:
467 case RTC_HOURS_ALARM
:
468 s
->cmos_data
[s
->cmos_index
] = data
;
469 check_update_timer(s
);
471 case RTC_IBM_PS2_CENTURY_BYTE
:
472 s
->cmos_index
= RTC_CENTURY
;
478 case RTC_DAY_OF_WEEK
:
479 case RTC_DAY_OF_MONTH
:
482 s
->cmos_data
[s
->cmos_index
] = data
;
483 /* if in set mode, do not update the time */
484 if (rtc_running(s
)) {
486 check_update_timer(s
);
490 update_periodic_timer
= (s
->cmos_data
[RTC_REG_A
] ^ data
) & 0x0f;
491 old_period
= rtc_periodic_clock_ticks(s
);
493 if ((data
& 0x60) == 0x60) {
494 if (rtc_running(s
)) {
497 /* What happens to UIP when divider reset is enabled is
498 * unclear from the datasheet. Shouldn't matter much
501 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
502 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
503 (data
& 0x70) <= 0x20) {
504 /* when the divider reset is removed, the first update cycle
505 * begins one-half second later*/
506 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
507 s
->offset
= 500000000;
510 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
512 /* UIP bit is read only */
513 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
514 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
516 if (update_periodic_timer
) {
517 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
521 check_update_timer(s
);
524 update_periodic_timer
= (s
->cmos_data
[RTC_REG_B
] ^ data
)
526 old_period
= rtc_periodic_clock_ticks(s
);
528 if (data
& REG_B_SET
) {
529 /* update cmos to when the rtc was stopping */
530 if (rtc_running(s
)) {
533 /* set mode: reset UIP mode */
534 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
537 /* if disabling set mode, update the time */
538 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
539 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
540 s
->offset
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
544 /* if an interrupt flag is already set when the interrupt
545 * becomes enabled, raise an interrupt immediately. */
546 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
547 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
548 qemu_irq_raise(s
->irq
);
550 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
551 qemu_irq_lower(s
->irq
);
553 s
->cmos_data
[RTC_REG_B
] = data
;
555 if (update_periodic_timer
) {
556 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
560 check_update_timer(s
);
564 /* cannot write to them */
567 s
->cmos_data
[s
->cmos_index
] = data
;
573 static inline int rtc_to_bcd(RTCState
*s
, int a
)
575 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
578 return ((a
/ 10) << 4) | (a
% 10);
582 static inline int rtc_from_bcd(RTCState
*s
, int a
)
584 if ((a
& 0xc0) == 0xc0) {
587 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
590 return ((a
>> 4) * 10) + (a
& 0x0f);
594 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
596 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
597 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
598 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
599 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
601 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
605 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
606 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
607 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
609 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
610 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
613 static void rtc_set_time(RTCState
*s
)
616 g_autofree
const char *qom_path
= object_get_canonical_path(OBJECT(s
));
618 rtc_get_time(s
, &tm
);
619 s
->base_rtc
= mktimegm(&tm
);
620 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
622 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), qom_path
);
625 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
629 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
630 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
631 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
633 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
636 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
637 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
638 if (tm
->tm_hour
>= 12)
639 s
->cmos_data
[RTC_HOURS
] |= 0x80;
641 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
642 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
643 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
644 year
= tm
->tm_year
+ 1900 - s
->base_year
;
645 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
646 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
649 static void rtc_update_time(RTCState
*s
)
655 guest_nsec
= get_guest_rtc_ns(s
);
656 guest_sec
= guest_nsec
/ NANOSECONDS_PER_SECOND
;
657 gmtime_r(&guest_sec
, &ret
);
659 /* Is SET flag of Register B disabled? */
660 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
661 rtc_set_cmos(s
, &ret
);
665 static int update_in_progress(RTCState
*s
)
669 if (!rtc_running(s
)) {
672 if (timer_pending(s
->update_timer
)) {
673 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
674 /* Latch UIP until the timer expires. */
675 if (qemu_clock_get_ns(rtc_clock
) >=
676 (next_update_time
- UIP_HOLD_LENGTH
)) {
677 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
682 guest_nsec
= get_guest_rtc_ns(s
);
683 /* UIP bit will be set at last 244us of every second. */
684 if ((guest_nsec
% NANOSECONDS_PER_SECOND
) >=
685 (NANOSECONDS_PER_SECOND
- UIP_HOLD_LENGTH
)) {
691 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
694 RTCState
*s
= opaque
;
696 if ((addr
& 1) == 0) {
699 switch(s
->cmos_index
) {
700 case RTC_IBM_PS2_CENTURY_BYTE
:
701 s
->cmos_index
= RTC_CENTURY
;
707 case RTC_DAY_OF_WEEK
:
708 case RTC_DAY_OF_MONTH
:
711 /* if not in set mode, calibrate cmos before
713 if (rtc_running(s
)) {
716 ret
= s
->cmos_data
[s
->cmos_index
];
719 ret
= s
->cmos_data
[s
->cmos_index
];
720 if (update_in_progress(s
)) {
725 ret
= s
->cmos_data
[s
->cmos_index
];
726 qemu_irq_lower(s
->irq
);
727 s
->cmos_data
[RTC_REG_C
] = 0x00;
728 if (ret
& (REG_C_UF
| REG_C_AF
)) {
729 check_update_timer(s
);
732 if(s
->irq_coalesced
&&
733 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
734 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
735 s
->irq_reinject_on_ack_count
++;
736 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
737 DPRINTF_C("cmos: injecting on ack\n");
738 if (rtc_policy_slew_deliver_irq(s
)) {
740 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
746 ret
= s
->cmos_data
[s
->cmos_index
];
749 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
755 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
757 RTCState
*s
= MC146818_RTC(dev
);
758 if (addr
>= 0 && addr
<= 127)
759 s
->cmos_data
[addr
] = val
;
762 int rtc_get_memory(ISADevice
*dev
, int addr
)
764 RTCState
*s
= MC146818_RTC(dev
);
765 assert(addr
>= 0 && addr
<= 127);
766 return s
->cmos_data
[addr
];
769 static void rtc_set_date_from_host(ISADevice
*dev
)
771 RTCState
*s
= MC146818_RTC(dev
);
774 qemu_get_timedate(&tm
, 0);
776 s
->base_rtc
= mktimegm(&tm
);
777 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
780 /* set the CMOS date */
781 rtc_set_cmos(s
, &tm
);
784 static int rtc_pre_save(void *opaque
)
786 RTCState
*s
= opaque
;
793 static int rtc_post_load(void *opaque
, int version_id
)
795 RTCState
*s
= opaque
;
797 if (version_id
<= 2 || rtc_clock
== QEMU_CLOCK_REALTIME
) {
800 check_update_timer(s
);
802 s
->period
= rtc_periodic_clock_ticks(s
);
804 /* The periodic timer is deterministic in record/replay mode,
805 * so there is no need to update it after loading the vmstate.
806 * Reading RTC here would misalign record and replay.
808 if (replay_mode
== REPLAY_MODE_NONE
) {
809 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
810 if (now
< s
->next_periodic_time
||
811 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
812 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
), s
->period
, false);
816 if (version_id
>= 2) {
817 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
818 rtc_coalesced_timer_update(s
);
824 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
826 RTCState
*s
= (RTCState
*)opaque
;
827 return s
->irq_reinject_on_ack_count
!= 0;
830 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
831 .name
= "mc146818rtc/irq_reinject_on_ack_count",
833 .minimum_version_id
= 1,
834 .needed
= rtc_irq_reinject_on_ack_count_needed
,
835 .fields
= (VMStateField
[]) {
836 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
837 VMSTATE_END_OF_LIST()
841 static const VMStateDescription vmstate_rtc
= {
842 .name
= "mc146818rtc",
844 .minimum_version_id
= 1,
845 .pre_save
= rtc_pre_save
,
846 .post_load
= rtc_post_load
,
847 .fields
= (VMStateField
[]) {
848 VMSTATE_BUFFER(cmos_data
, RTCState
),
849 VMSTATE_UINT8(cmos_index
, RTCState
),
851 VMSTATE_TIMER_PTR(periodic_timer
, RTCState
),
852 VMSTATE_INT64(next_periodic_time
, RTCState
),
854 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
855 VMSTATE_UINT32_V(period
, RTCState
, 2),
856 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
857 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
858 VMSTATE_INT64_V(offset
, RTCState
, 3),
859 VMSTATE_TIMER_PTR_V(update_timer
, RTCState
, 3),
860 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
861 VMSTATE_END_OF_LIST()
863 .subsections
= (const VMStateDescription
*[]) {
864 &vmstate_rtc_irq_reinject_on_ack_count
,
869 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
870 BIOS will read it and start S3 resume at POST Entry */
871 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
873 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
874 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
877 static const MemoryRegionOps cmos_ops
= {
878 .read
= cmos_ioport_read
,
879 .write
= cmos_ioport_write
,
881 .min_access_size
= 1,
882 .max_access_size
= 1,
884 .endianness
= DEVICE_LITTLE_ENDIAN
,
887 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
889 RTCState
*s
= MC146818_RTC(obj
);
892 rtc_get_time(s
, current_tm
);
895 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
897 ISADevice
*isadev
= ISA_DEVICE(dev
);
898 RTCState
*s
= MC146818_RTC(dev
);
900 s
->cmos_data
[RTC_REG_A
] = 0x26;
901 s
->cmos_data
[RTC_REG_B
] = 0x02;
902 s
->cmos_data
[RTC_REG_C
] = 0x00;
903 s
->cmos_data
[RTC_REG_D
] = 0x80;
905 /* This is for historical reasons. The default base year qdev property
906 * was set to 2000 for most machine types before the century byte was
909 * This if statement means that the century byte will be always 0
910 * (at least until 2079...) for base_year = 1980, but will be set
911 * correctly for base_year = 2000.
913 if (s
->base_year
== 2000) {
917 if (s
->isairq
>= ISA_NUM_IRQS
) {
918 error_setg(errp
, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS
- 1);
922 rtc_set_date_from_host(isadev
);
924 switch (s
->lost_tick_policy
) {
926 case LOST_TICK_POLICY_SLEW
:
928 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
931 case LOST_TICK_POLICY_DISCARD
:
934 error_setg(errp
, "Invalid lost tick policy.");
938 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
939 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
940 check_update_timer(s
);
942 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
943 qemu_register_suspend_notifier(&s
->suspend_notifier
);
945 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
946 isa_register_ioport(isadev
, &s
->io
, s
->io_base
);
948 /* register rtc 0x70 port for coalesced_pio */
949 memory_region_set_flush_coalesced(&s
->io
);
950 memory_region_init_io(&s
->coalesced_io
, OBJECT(s
), &cmos_ops
,
952 memory_region_add_subregion(&s
->io
, 0, &s
->coalesced_io
);
953 memory_region_add_coalescing(&s
->coalesced_io
, 0, 1);
955 qdev_set_legacy_instance_id(dev
, s
->io_base
, 3);
957 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
);
959 qdev_init_gpio_out(dev
, &s
->irq
, 1);
960 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
963 ISADevice
*mc146818_rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
969 isadev
= isa_new(TYPE_MC146818_RTC
);
970 dev
= DEVICE(isadev
);
971 s
= MC146818_RTC(isadev
);
972 qdev_prop_set_int32(dev
, "base_year", base_year
);
973 isa_realize_and_unref(isadev
, bus
, &error_fatal
);
975 qdev_connect_gpio_out(dev
, 0, intercept_irq
);
977 isa_connect_gpio_out(isadev
, 0, s
->isairq
);
980 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev
),
986 static Property mc146818rtc_properties
[] = {
987 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
988 DEFINE_PROP_UINT16("iobase", RTCState
, io_base
, RTC_ISA_BASE
),
989 DEFINE_PROP_UINT8("irq", RTCState
, isairq
, RTC_ISA_IRQ
),
990 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
991 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
992 DEFINE_PROP_END_OF_LIST(),
995 static void rtc_reset_enter(Object
*obj
, ResetType type
)
997 RTCState
*s
= MC146818_RTC(obj
);
999 /* Reason: VM do suspend self will set 0xfe
1000 * Reset any values other than 0xfe(Guest suspend case) */
1001 if (s
->cmos_data
[0x0f] != 0xfe) {
1002 s
->cmos_data
[0x0f] = 0x00;
1005 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
1006 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
1007 check_update_timer(s
);
1010 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
1011 s
->irq_coalesced
= 0;
1012 s
->irq_reinject_on_ack_count
= 0;
1016 static void rtc_reset_hold(Object
*obj
)
1018 RTCState
*s
= MC146818_RTC(obj
);
1020 qemu_irq_lower(s
->irq
);
1023 static void rtc_build_aml(AcpiDevAmlIf
*adev
, Aml
*scope
)
1025 RTCState
*s
= MC146818_RTC(adev
);
1030 * Reserving 8 io ports here, following what physical hardware
1031 * does, even though qemu only responds to the first two ports.
1033 crs
= aml_resource_template();
1034 aml_append(crs
, aml_io(AML_DECODE16
, s
->io_base
, s
->io_base
,
1036 aml_append(crs
, aml_irq_no_flags(s
->isairq
));
1038 dev
= aml_device("RTC");
1039 aml_append(dev
, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1040 aml_append(dev
, aml_name_decl("_CRS", crs
));
1042 aml_append(scope
, dev
);
1045 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
1047 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1048 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
1049 AcpiDevAmlIfClass
*adevc
= ACPI_DEV_AML_IF_CLASS(klass
);
1051 dc
->realize
= rtc_realizefn
;
1052 dc
->vmsd
= &vmstate_rtc
;
1053 rc
->phases
.enter
= rtc_reset_enter
;
1054 rc
->phases
.hold
= rtc_reset_hold
;
1055 adevc
->build_dev_aml
= rtc_build_aml
;
1056 device_class_set_props(dc
, mc146818rtc_properties
);
1057 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
1060 static const TypeInfo mc146818rtc_info
= {
1061 .name
= TYPE_MC146818_RTC
,
1062 .parent
= TYPE_ISA_DEVICE
,
1063 .instance_size
= sizeof(RTCState
),
1064 .class_init
= rtc_class_initfn
,
1065 .interfaces
= (InterfaceInfo
[]) {
1066 { TYPE_ACPI_DEV_AML_IF
},
1071 static void mc146818rtc_register_types(void)
1073 type_register_static(&mc146818rtc_info
);
1076 type_init(mc146818rtc_register_types
)