Merge tag 'pull-la-20220704' of https://gitlab.com/rth7680/qemu into staging
[qemu/rayw.git] / hw / rtc / mc146818rtc.c
blob1ebb412479d9576e05a6086a337ddbcd51ebaeec
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/module.h"
28 #include "qemu/bcd.h"
29 #include "hw/acpi/acpi_aml_interface.h"
30 #include "hw/irq.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/qdev-properties-system.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "sysemu/rtc.h"
39 #include "hw/rtc/mc146818rtc.h"
40 #include "hw/rtc/mc146818rtc_regs.h"
41 #include "migration/vmstate.h"
42 #include "qapi/error.h"
43 #include "qapi/qapi-events-misc.h"
44 #include "qapi/visitor.h"
45 #include "hw/rtc/mc146818rtc_regs.h"
47 #ifdef TARGET_I386
48 #include "qapi/qapi-commands-misc-target.h"
49 #include "hw/i386/apic.h"
50 #endif
52 //#define DEBUG_CMOS
53 //#define DEBUG_COALESCED
55 #ifdef DEBUG_CMOS
56 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
57 #else
58 # define CMOS_DPRINTF(format, ...) do { } while (0)
59 #endif
61 #ifdef DEBUG_COALESCED
62 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
63 #else
64 # define DPRINTF_C(format, ...) do { } while (0)
65 #endif
67 #define SEC_PER_MIN 60
68 #define MIN_PER_HOUR 60
69 #define SEC_PER_HOUR 3600
70 #define HOUR_PER_DAY 24
71 #define SEC_PER_DAY 86400
73 #define RTC_REINJECT_ON_ACK_COUNT 20
74 #define RTC_CLOCK_RATE 32768
75 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
77 #define RTC_ISA_BASE 0x70
79 static void rtc_set_time(RTCState *s);
80 static void rtc_update_time(RTCState *s);
81 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
82 static inline int rtc_from_bcd(RTCState *s, int a);
83 static uint64_t get_next_alarm(RTCState *s);
85 static inline bool rtc_running(RTCState *s)
87 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
88 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
91 static uint64_t get_guest_rtc_ns(RTCState *s)
93 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
95 return s->base_rtc * NANOSECONDS_PER_SECOND +
96 guest_clock - s->last_update + s->offset;
99 static void rtc_coalesced_timer_update(RTCState *s)
101 if (s->irq_coalesced == 0) {
102 timer_del(s->coalesced_timer);
103 } else {
104 /* divide each RTC interval to 2 - 8 smaller intervals */
105 int c = MIN(s->irq_coalesced, 7) + 1;
106 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
107 periodic_clock_to_ns(s->period / c);
108 timer_mod(s->coalesced_timer, next_clock);
112 static QLIST_HEAD(, RTCState) rtc_devices =
113 QLIST_HEAD_INITIALIZER(rtc_devices);
115 #ifdef TARGET_I386
116 void qmp_rtc_reset_reinjection(Error **errp)
118 RTCState *s;
120 QLIST_FOREACH(s, &rtc_devices, link) {
121 s->irq_coalesced = 0;
125 static bool rtc_policy_slew_deliver_irq(RTCState *s)
127 apic_reset_irq_delivered();
128 qemu_irq_raise(s->irq);
129 return apic_get_irq_delivered();
132 static void rtc_coalesced_timer(void *opaque)
134 RTCState *s = opaque;
136 if (s->irq_coalesced != 0) {
137 s->cmos_data[RTC_REG_C] |= 0xc0;
138 DPRINTF_C("cmos: injecting from timer\n");
139 if (rtc_policy_slew_deliver_irq(s)) {
140 s->irq_coalesced--;
141 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
142 s->irq_coalesced);
146 rtc_coalesced_timer_update(s);
148 #else
149 static bool rtc_policy_slew_deliver_irq(RTCState *s)
151 assert(0);
152 return false;
154 #endif
156 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
158 int period_code;
160 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
161 return 0;
164 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
166 return periodic_period_to_clock(period_code);
170 * handle periodic timer. @old_period indicates the periodic timer update
171 * is just due to period adjustment.
173 static void
174 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
176 uint32_t period;
177 int64_t cur_clock, next_irq_clock, lost_clock = 0;
179 period = rtc_periodic_clock_ticks(s);
180 s->period = period;
182 if (!period) {
183 s->irq_coalesced = 0;
184 timer_del(s->periodic_timer);
185 return;
188 /* compute 32 khz clock */
189 cur_clock =
190 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
193 * if the periodic timer's update is due to period re-configuration,
194 * we should count the clock since last interrupt.
196 if (old_period && period_change) {
197 int64_t last_periodic_clock, next_periodic_clock;
199 next_periodic_clock = muldiv64(s->next_periodic_time,
200 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
201 last_periodic_clock = next_periodic_clock - old_period;
202 lost_clock = cur_clock - last_periodic_clock;
203 assert(lost_clock >= 0);
207 * s->irq_coalesced can change for two reasons:
209 * a) if one or more periodic timer interrupts have been lost,
210 * lost_clock will be more that a period.
212 * b) when the period may be reconfigured, we expect the OS to
213 * treat delayed tick as the new period. So, when switching
214 * from a shorter to a longer period, scale down the missing,
215 * because the OS will treat past delayed ticks as longer
216 * (leftovers are put back into lost_clock). When switching
217 * to a shorter period, scale up the missing ticks since the
218 * OS handler will treat past delayed ticks as shorter.
220 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
221 uint32_t old_irq_coalesced = s->irq_coalesced;
223 lost_clock += old_irq_coalesced * old_period;
224 s->irq_coalesced = lost_clock / s->period;
225 lost_clock %= s->period;
226 if (old_irq_coalesced != s->irq_coalesced ||
227 old_period != s->period) {
228 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
229 "period scaled from %d to %d\n", old_irq_coalesced,
230 s->irq_coalesced, old_period, s->period);
231 rtc_coalesced_timer_update(s);
233 } else {
235 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
236 * is not used, we should make the time progress anyway.
238 lost_clock = MIN(lost_clock, period);
241 assert(lost_clock >= 0 && lost_clock <= period);
243 next_irq_clock = cur_clock + period - lost_clock;
244 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
245 timer_mod(s->periodic_timer, s->next_periodic_time);
248 static void rtc_periodic_timer(void *opaque)
250 RTCState *s = opaque;
252 periodic_timer_update(s, s->next_periodic_time, s->period, false);
253 s->cmos_data[RTC_REG_C] |= REG_C_PF;
254 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
255 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
256 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
257 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
258 s->irq_reinject_on_ack_count = 0;
259 if (!rtc_policy_slew_deliver_irq(s)) {
260 s->irq_coalesced++;
261 rtc_coalesced_timer_update(s);
262 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
263 s->irq_coalesced);
265 } else
266 qemu_irq_raise(s->irq);
270 /* handle update-ended timer */
271 static void check_update_timer(RTCState *s)
273 uint64_t next_update_time;
274 uint64_t guest_nsec;
275 int next_alarm_sec;
277 /* From the data sheet: "Holding the dividers in reset prevents
278 * interrupts from operating, while setting the SET bit allows"
279 * them to occur.
281 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
282 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
283 timer_del(s->update_timer);
284 return;
287 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
288 next_update_time = qemu_clock_get_ns(rtc_clock)
289 + NANOSECONDS_PER_SECOND - guest_nsec;
291 /* Compute time of next alarm. One second is already accounted
292 * for in next_update_time.
294 next_alarm_sec = get_next_alarm(s);
295 s->next_alarm_time = next_update_time +
296 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
298 /* If update_in_progress latched the UIP bit, we must keep the timer
299 * programmed to the next second, so that UIP is cleared. Otherwise,
300 * if UF is already set, we might be able to optimize.
302 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
303 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
304 /* If AF cannot change (i.e. either it is set already, or
305 * SET=1 and then the time is not updated), nothing to do.
307 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
308 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
309 timer_del(s->update_timer);
310 return;
313 /* UF is set, but AF is clear. Program the timer to target
314 * the alarm time. */
315 next_update_time = s->next_alarm_time;
317 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
318 timer_mod(s->update_timer, next_update_time);
322 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
324 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
325 hour %= 12;
326 if (s->cmos_data[RTC_HOURS] & 0x80) {
327 hour += 12;
330 return hour;
333 static uint64_t get_next_alarm(RTCState *s)
335 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
336 int32_t hour, min, sec;
338 rtc_update_time(s);
340 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
341 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
342 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
343 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
345 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
346 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
347 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
348 cur_hour = convert_hour(s, cur_hour);
350 if (alarm_hour == -1) {
351 alarm_hour = cur_hour;
352 if (alarm_min == -1) {
353 alarm_min = cur_min;
354 if (alarm_sec == -1) {
355 alarm_sec = cur_sec + 1;
356 } else if (cur_sec > alarm_sec) {
357 alarm_min++;
359 } else if (cur_min == alarm_min) {
360 if (alarm_sec == -1) {
361 alarm_sec = cur_sec + 1;
362 } else {
363 if (cur_sec > alarm_sec) {
364 alarm_hour++;
367 if (alarm_sec == SEC_PER_MIN) {
368 /* wrap to next hour, minutes is not in don't care mode */
369 alarm_sec = 0;
370 alarm_hour++;
372 } else if (cur_min > alarm_min) {
373 alarm_hour++;
375 } else if (cur_hour == alarm_hour) {
376 if (alarm_min == -1) {
377 alarm_min = cur_min;
378 if (alarm_sec == -1) {
379 alarm_sec = cur_sec + 1;
380 } else if (cur_sec > alarm_sec) {
381 alarm_min++;
384 if (alarm_sec == SEC_PER_MIN) {
385 alarm_sec = 0;
386 alarm_min++;
388 /* wrap to next day, hour is not in don't care mode */
389 alarm_min %= MIN_PER_HOUR;
390 } else if (cur_min == alarm_min) {
391 if (alarm_sec == -1) {
392 alarm_sec = cur_sec + 1;
394 /* wrap to next day, hours+minutes not in don't care mode */
395 alarm_sec %= SEC_PER_MIN;
399 /* values that are still don't care fire at the next min/sec */
400 if (alarm_min == -1) {
401 alarm_min = 0;
403 if (alarm_sec == -1) {
404 alarm_sec = 0;
407 /* keep values in range */
408 if (alarm_sec == SEC_PER_MIN) {
409 alarm_sec = 0;
410 alarm_min++;
412 if (alarm_min == MIN_PER_HOUR) {
413 alarm_min = 0;
414 alarm_hour++;
416 alarm_hour %= HOUR_PER_DAY;
418 hour = alarm_hour - cur_hour;
419 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
420 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
421 return sec <= 0 ? sec + SEC_PER_DAY : sec;
424 static void rtc_update_timer(void *opaque)
426 RTCState *s = opaque;
427 int32_t irqs = REG_C_UF;
428 int32_t new_irqs;
430 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
432 /* UIP might have been latched, update time and clear it. */
433 rtc_update_time(s);
434 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
436 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
437 irqs |= REG_C_AF;
438 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
439 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
443 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
444 s->cmos_data[RTC_REG_C] |= irqs;
445 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
446 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
447 qemu_irq_raise(s->irq);
449 check_update_timer(s);
452 static void cmos_ioport_write(void *opaque, hwaddr addr,
453 uint64_t data, unsigned size)
455 RTCState *s = opaque;
456 uint32_t old_period;
457 bool update_periodic_timer;
459 if ((addr & 1) == 0) {
460 s->cmos_index = data & 0x7f;
461 } else {
462 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
463 s->cmos_index, data);
464 switch(s->cmos_index) {
465 case RTC_SECONDS_ALARM:
466 case RTC_MINUTES_ALARM:
467 case RTC_HOURS_ALARM:
468 s->cmos_data[s->cmos_index] = data;
469 check_update_timer(s);
470 break;
471 case RTC_IBM_PS2_CENTURY_BYTE:
472 s->cmos_index = RTC_CENTURY;
473 /* fall through */
474 case RTC_CENTURY:
475 case RTC_SECONDS:
476 case RTC_MINUTES:
477 case RTC_HOURS:
478 case RTC_DAY_OF_WEEK:
479 case RTC_DAY_OF_MONTH:
480 case RTC_MONTH:
481 case RTC_YEAR:
482 s->cmos_data[s->cmos_index] = data;
483 /* if in set mode, do not update the time */
484 if (rtc_running(s)) {
485 rtc_set_time(s);
486 check_update_timer(s);
488 break;
489 case RTC_REG_A:
490 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
491 old_period = rtc_periodic_clock_ticks(s);
493 if ((data & 0x60) == 0x60) {
494 if (rtc_running(s)) {
495 rtc_update_time(s);
497 /* What happens to UIP when divider reset is enabled is
498 * unclear from the datasheet. Shouldn't matter much
499 * though.
501 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
502 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
503 (data & 0x70) <= 0x20) {
504 /* when the divider reset is removed, the first update cycle
505 * begins one-half second later*/
506 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
507 s->offset = 500000000;
508 rtc_set_time(s);
510 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
512 /* UIP bit is read only */
513 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
514 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
516 if (update_periodic_timer) {
517 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
518 old_period, true);
521 check_update_timer(s);
522 break;
523 case RTC_REG_B:
524 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
525 & REG_B_PIE;
526 old_period = rtc_periodic_clock_ticks(s);
528 if (data & REG_B_SET) {
529 /* update cmos to when the rtc was stopping */
530 if (rtc_running(s)) {
531 rtc_update_time(s);
533 /* set mode: reset UIP mode */
534 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
535 data &= ~REG_B_UIE;
536 } else {
537 /* if disabling set mode, update the time */
538 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
539 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
540 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
541 rtc_set_time(s);
544 /* if an interrupt flag is already set when the interrupt
545 * becomes enabled, raise an interrupt immediately. */
546 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
547 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
548 qemu_irq_raise(s->irq);
549 } else {
550 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
551 qemu_irq_lower(s->irq);
553 s->cmos_data[RTC_REG_B] = data;
555 if (update_periodic_timer) {
556 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
557 old_period, true);
560 check_update_timer(s);
561 break;
562 case RTC_REG_C:
563 case RTC_REG_D:
564 /* cannot write to them */
565 break;
566 default:
567 s->cmos_data[s->cmos_index] = data;
568 break;
573 static inline int rtc_to_bcd(RTCState *s, int a)
575 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
576 return a;
577 } else {
578 return ((a / 10) << 4) | (a % 10);
582 static inline int rtc_from_bcd(RTCState *s, int a)
584 if ((a & 0xc0) == 0xc0) {
585 return -1;
587 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
588 return a;
589 } else {
590 return ((a >> 4) * 10) + (a & 0x0f);
594 static void rtc_get_time(RTCState *s, struct tm *tm)
596 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
597 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
598 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
599 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
600 tm->tm_hour %= 12;
601 if (s->cmos_data[RTC_HOURS] & 0x80) {
602 tm->tm_hour += 12;
605 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
606 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
607 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
608 tm->tm_year =
609 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
610 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
613 static void rtc_set_time(RTCState *s)
615 struct tm tm;
616 g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s));
618 rtc_get_time(s, &tm);
619 s->base_rtc = mktimegm(&tm);
620 s->last_update = qemu_clock_get_ns(rtc_clock);
622 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path);
625 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
627 int year;
629 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
630 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
631 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
632 /* 24 hour format */
633 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
634 } else {
635 /* 12 hour format */
636 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
637 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
638 if (tm->tm_hour >= 12)
639 s->cmos_data[RTC_HOURS] |= 0x80;
641 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
642 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
643 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
644 year = tm->tm_year + 1900 - s->base_year;
645 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
646 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
649 static void rtc_update_time(RTCState *s)
651 struct tm ret;
652 time_t guest_sec;
653 int64_t guest_nsec;
655 guest_nsec = get_guest_rtc_ns(s);
656 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
657 gmtime_r(&guest_sec, &ret);
659 /* Is SET flag of Register B disabled? */
660 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
661 rtc_set_cmos(s, &ret);
665 static int update_in_progress(RTCState *s)
667 int64_t guest_nsec;
669 if (!rtc_running(s)) {
670 return 0;
672 if (timer_pending(s->update_timer)) {
673 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
674 /* Latch UIP until the timer expires. */
675 if (qemu_clock_get_ns(rtc_clock) >=
676 (next_update_time - UIP_HOLD_LENGTH)) {
677 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
678 return 1;
682 guest_nsec = get_guest_rtc_ns(s);
683 /* UIP bit will be set at last 244us of every second. */
684 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
685 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
686 return 1;
688 return 0;
691 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
692 unsigned size)
694 RTCState *s = opaque;
695 int ret;
696 if ((addr & 1) == 0) {
697 return 0xff;
698 } else {
699 switch(s->cmos_index) {
700 case RTC_IBM_PS2_CENTURY_BYTE:
701 s->cmos_index = RTC_CENTURY;
702 /* fall through */
703 case RTC_CENTURY:
704 case RTC_SECONDS:
705 case RTC_MINUTES:
706 case RTC_HOURS:
707 case RTC_DAY_OF_WEEK:
708 case RTC_DAY_OF_MONTH:
709 case RTC_MONTH:
710 case RTC_YEAR:
711 /* if not in set mode, calibrate cmos before
712 * reading*/
713 if (rtc_running(s)) {
714 rtc_update_time(s);
716 ret = s->cmos_data[s->cmos_index];
717 break;
718 case RTC_REG_A:
719 ret = s->cmos_data[s->cmos_index];
720 if (update_in_progress(s)) {
721 ret |= REG_A_UIP;
723 break;
724 case RTC_REG_C:
725 ret = s->cmos_data[s->cmos_index];
726 qemu_irq_lower(s->irq);
727 s->cmos_data[RTC_REG_C] = 0x00;
728 if (ret & (REG_C_UF | REG_C_AF)) {
729 check_update_timer(s);
732 if(s->irq_coalesced &&
733 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
734 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
735 s->irq_reinject_on_ack_count++;
736 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
737 DPRINTF_C("cmos: injecting on ack\n");
738 if (rtc_policy_slew_deliver_irq(s)) {
739 s->irq_coalesced--;
740 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
741 s->irq_coalesced);
744 break;
745 default:
746 ret = s->cmos_data[s->cmos_index];
747 break;
749 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
750 s->cmos_index, ret);
751 return ret;
755 void rtc_set_memory(ISADevice *dev, int addr, int val)
757 RTCState *s = MC146818_RTC(dev);
758 if (addr >= 0 && addr <= 127)
759 s->cmos_data[addr] = val;
762 int rtc_get_memory(ISADevice *dev, int addr)
764 RTCState *s = MC146818_RTC(dev);
765 assert(addr >= 0 && addr <= 127);
766 return s->cmos_data[addr];
769 static void rtc_set_date_from_host(ISADevice *dev)
771 RTCState *s = MC146818_RTC(dev);
772 struct tm tm;
774 qemu_get_timedate(&tm, 0);
776 s->base_rtc = mktimegm(&tm);
777 s->last_update = qemu_clock_get_ns(rtc_clock);
778 s->offset = 0;
780 /* set the CMOS date */
781 rtc_set_cmos(s, &tm);
784 static int rtc_pre_save(void *opaque)
786 RTCState *s = opaque;
788 rtc_update_time(s);
790 return 0;
793 static int rtc_post_load(void *opaque, int version_id)
795 RTCState *s = opaque;
797 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
798 rtc_set_time(s);
799 s->offset = 0;
800 check_update_timer(s);
802 s->period = rtc_periodic_clock_ticks(s);
804 /* The periodic timer is deterministic in record/replay mode,
805 * so there is no need to update it after loading the vmstate.
806 * Reading RTC here would misalign record and replay.
808 if (replay_mode == REPLAY_MODE_NONE) {
809 uint64_t now = qemu_clock_get_ns(rtc_clock);
810 if (now < s->next_periodic_time ||
811 now > (s->next_periodic_time + get_max_clock_jump())) {
812 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
816 if (version_id >= 2) {
817 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
818 rtc_coalesced_timer_update(s);
821 return 0;
824 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
826 RTCState *s = (RTCState *)opaque;
827 return s->irq_reinject_on_ack_count != 0;
830 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
831 .name = "mc146818rtc/irq_reinject_on_ack_count",
832 .version_id = 1,
833 .minimum_version_id = 1,
834 .needed = rtc_irq_reinject_on_ack_count_needed,
835 .fields = (VMStateField[]) {
836 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
837 VMSTATE_END_OF_LIST()
841 static const VMStateDescription vmstate_rtc = {
842 .name = "mc146818rtc",
843 .version_id = 3,
844 .minimum_version_id = 1,
845 .pre_save = rtc_pre_save,
846 .post_load = rtc_post_load,
847 .fields = (VMStateField[]) {
848 VMSTATE_BUFFER(cmos_data, RTCState),
849 VMSTATE_UINT8(cmos_index, RTCState),
850 VMSTATE_UNUSED(7*4),
851 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
852 VMSTATE_INT64(next_periodic_time, RTCState),
853 VMSTATE_UNUSED(3*8),
854 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
855 VMSTATE_UINT32_V(period, RTCState, 2),
856 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
857 VMSTATE_UINT64_V(last_update, RTCState, 3),
858 VMSTATE_INT64_V(offset, RTCState, 3),
859 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
860 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
861 VMSTATE_END_OF_LIST()
863 .subsections = (const VMStateDescription*[]) {
864 &vmstate_rtc_irq_reinject_on_ack_count,
865 NULL
869 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
870 BIOS will read it and start S3 resume at POST Entry */
871 static void rtc_notify_suspend(Notifier *notifier, void *data)
873 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
874 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
877 static const MemoryRegionOps cmos_ops = {
878 .read = cmos_ioport_read,
879 .write = cmos_ioport_write,
880 .impl = {
881 .min_access_size = 1,
882 .max_access_size = 1,
884 .endianness = DEVICE_LITTLE_ENDIAN,
887 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
889 RTCState *s = MC146818_RTC(obj);
891 rtc_update_time(s);
892 rtc_get_time(s, current_tm);
895 static void rtc_realizefn(DeviceState *dev, Error **errp)
897 ISADevice *isadev = ISA_DEVICE(dev);
898 RTCState *s = MC146818_RTC(dev);
900 s->cmos_data[RTC_REG_A] = 0x26;
901 s->cmos_data[RTC_REG_B] = 0x02;
902 s->cmos_data[RTC_REG_C] = 0x00;
903 s->cmos_data[RTC_REG_D] = 0x80;
905 /* This is for historical reasons. The default base year qdev property
906 * was set to 2000 for most machine types before the century byte was
907 * implemented.
909 * This if statement means that the century byte will be always 0
910 * (at least until 2079...) for base_year = 1980, but will be set
911 * correctly for base_year = 2000.
913 if (s->base_year == 2000) {
914 s->base_year = 0;
917 if (s->isairq >= ISA_NUM_IRQS) {
918 error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1);
919 return;
922 rtc_set_date_from_host(isadev);
924 switch (s->lost_tick_policy) {
925 #ifdef TARGET_I386
926 case LOST_TICK_POLICY_SLEW:
927 s->coalesced_timer =
928 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
929 break;
930 #endif
931 case LOST_TICK_POLICY_DISCARD:
932 break;
933 default:
934 error_setg(errp, "Invalid lost tick policy.");
935 return;
938 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
939 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
940 check_update_timer(s);
942 s->suspend_notifier.notify = rtc_notify_suspend;
943 qemu_register_suspend_notifier(&s->suspend_notifier);
945 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
946 isa_register_ioport(isadev, &s->io, s->io_base);
948 /* register rtc 0x70 port for coalesced_pio */
949 memory_region_set_flush_coalesced(&s->io);
950 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
951 s, "rtc-index", 1);
952 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
953 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
955 qdev_set_legacy_instance_id(dev, s->io_base, 3);
957 object_property_add_tm(OBJECT(s), "date", rtc_get_date);
959 qdev_init_gpio_out(dev, &s->irq, 1);
960 QLIST_INSERT_HEAD(&rtc_devices, s, link);
963 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
965 DeviceState *dev;
966 ISADevice *isadev;
967 RTCState *s;
969 isadev = isa_new(TYPE_MC146818_RTC);
970 dev = DEVICE(isadev);
971 s = MC146818_RTC(isadev);
972 qdev_prop_set_int32(dev, "base_year", base_year);
973 isa_realize_and_unref(isadev, bus, &error_fatal);
974 if (intercept_irq) {
975 qdev_connect_gpio_out(dev, 0, intercept_irq);
976 } else {
977 isa_connect_gpio_out(isadev, 0, s->isairq);
980 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
981 "date");
983 return isadev;
986 static Property mc146818rtc_properties[] = {
987 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
988 DEFINE_PROP_UINT16("iobase", RTCState, io_base, RTC_ISA_BASE),
989 DEFINE_PROP_UINT8("irq", RTCState, isairq, RTC_ISA_IRQ),
990 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
991 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
992 DEFINE_PROP_END_OF_LIST(),
995 static void rtc_reset_enter(Object *obj, ResetType type)
997 RTCState *s = MC146818_RTC(obj);
999 /* Reason: VM do suspend self will set 0xfe
1000 * Reset any values other than 0xfe(Guest suspend case) */
1001 if (s->cmos_data[0x0f] != 0xfe) {
1002 s->cmos_data[0x0f] = 0x00;
1005 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
1006 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
1007 check_update_timer(s);
1010 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
1011 s->irq_coalesced = 0;
1012 s->irq_reinject_on_ack_count = 0;
1016 static void rtc_reset_hold(Object *obj)
1018 RTCState *s = MC146818_RTC(obj);
1020 qemu_irq_lower(s->irq);
1023 static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope)
1025 RTCState *s = MC146818_RTC(adev);
1026 Aml *dev;
1027 Aml *crs;
1030 * Reserving 8 io ports here, following what physical hardware
1031 * does, even though qemu only responds to the first two ports.
1033 crs = aml_resource_template();
1034 aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base,
1035 0x01, 0x08));
1036 aml_append(crs, aml_irq_no_flags(s->isairq));
1038 dev = aml_device("RTC");
1039 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1040 aml_append(dev, aml_name_decl("_CRS", crs));
1042 aml_append(scope, dev);
1045 static void rtc_class_initfn(ObjectClass *klass, void *data)
1047 DeviceClass *dc = DEVICE_CLASS(klass);
1048 ResettableClass *rc = RESETTABLE_CLASS(klass);
1049 AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass);
1051 dc->realize = rtc_realizefn;
1052 dc->vmsd = &vmstate_rtc;
1053 rc->phases.enter = rtc_reset_enter;
1054 rc->phases.hold = rtc_reset_hold;
1055 adevc->build_dev_aml = rtc_build_aml;
1056 device_class_set_props(dc, mc146818rtc_properties);
1057 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1060 static const TypeInfo mc146818rtc_info = {
1061 .name = TYPE_MC146818_RTC,
1062 .parent = TYPE_ISA_DEVICE,
1063 .instance_size = sizeof(RTCState),
1064 .class_init = rtc_class_initfn,
1065 .interfaces = (InterfaceInfo[]) {
1066 { TYPE_ACPI_DEV_AML_IF },
1067 { },
1071 static void mc146818rtc_register_types(void)
1073 type_register_static(&mc146818rtc_info);
1076 type_init(mc146818rtc_register_types)