2 * Raspberry Pi emulation (c) 2012 Gregory Estrade
3 * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
5 * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
6 * Written by Andrew Baumann
8 * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
9 * Upstream code cleanup (c) 2018 Pekka Enberg
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qemu/units.h"
17 #include "qemu/cutils.h"
18 #include "qapi/error.h"
19 #include "hw/arm/bcm2836.h"
20 #include "hw/registerfields.h"
21 #include "qemu/error-report.h"
22 #include "hw/boards.h"
23 #include "hw/loader.h"
24 #include "hw/arm/boot.h"
25 #include "qom/object.h"
27 #define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */
28 #define MVBAR_ADDR 0x400 /* secure vectors */
29 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
30 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
31 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
32 #define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */
34 /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
35 #define MACH_TYPE_BCM2708 3138
37 struct RaspiMachineState
{
39 MachineState parent_obj
;
42 struct arm_boot_info binfo
;
44 typedef struct RaspiMachineState RaspiMachineState
;
46 struct RaspiMachineClass
{
48 MachineClass parent_obj
;
52 typedef struct RaspiMachineClass RaspiMachineClass
;
54 #define TYPE_RASPI_MACHINE MACHINE_TYPE_NAME("raspi-common")
55 DECLARE_OBJ_CHECKERS(RaspiMachineState
, RaspiMachineClass
,
56 RASPI_MACHINE
, TYPE_RASPI_MACHINE
)
60 * Board revision codes:
61 * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
63 FIELD(REV_CODE
, REVISION
, 0, 4);
64 FIELD(REV_CODE
, TYPE
, 4, 8);
65 FIELD(REV_CODE
, PROCESSOR
, 12, 4);
66 FIELD(REV_CODE
, MANUFACTURER
, 16, 4);
67 FIELD(REV_CODE
, MEMORY_SIZE
, 20, 3);
68 FIELD(REV_CODE
, STYLE
, 23, 1);
70 typedef enum RaspiProcessorId
{
71 PROCESSOR_ID_BCM2835
= 0,
72 PROCESSOR_ID_BCM2836
= 1,
73 PROCESSOR_ID_BCM2837
= 2,
80 [PROCESSOR_ID_BCM2835
] = {TYPE_BCM2835
, 1},
81 [PROCESSOR_ID_BCM2836
] = {TYPE_BCM2836
, BCM283X_NCPUS
},
82 [PROCESSOR_ID_BCM2837
] = {TYPE_BCM2837
, BCM283X_NCPUS
},
85 static uint64_t board_ram_size(uint32_t board_rev
)
87 assert(FIELD_EX32(board_rev
, REV_CODE
, STYLE
)); /* Only new style */
88 return 256 * MiB
<< FIELD_EX32(board_rev
, REV_CODE
, MEMORY_SIZE
);
91 static RaspiProcessorId
board_processor_id(uint32_t board_rev
)
93 int proc_id
= FIELD_EX32(board_rev
, REV_CODE
, PROCESSOR
);
95 assert(FIELD_EX32(board_rev
, REV_CODE
, STYLE
)); /* Only new style */
96 assert(proc_id
< ARRAY_SIZE(soc_property
) && soc_property
[proc_id
].type
);
101 static const char *board_soc_type(uint32_t board_rev
)
103 return soc_property
[board_processor_id(board_rev
)].type
;
106 static int cores_count(uint32_t board_rev
)
108 return soc_property
[board_processor_id(board_rev
)].cores_count
;
111 static const char *board_type(uint32_t board_rev
)
113 static const char *types
[] = {
114 "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL
, "3B", "Zero",
115 "CM3", NULL
, "Zero W", "3B+", "3A+", NULL
, "CM3+", "4B",
117 assert(FIELD_EX32(board_rev
, REV_CODE
, STYLE
)); /* Only new style */
118 int bt
= FIELD_EX32(board_rev
, REV_CODE
, TYPE
);
119 if (bt
>= ARRAY_SIZE(types
) || !types
[bt
]) {
125 static void write_smpboot(ARMCPU
*cpu
, const struct arm_boot_info
*info
)
127 static const uint32_t smpboot
[] = {
128 0xe1a0e00f, /* mov lr, pc */
129 0xe3a0fe00 + (BOARDSETUP_ADDR
>> 4), /* mov pc, BOARDSETUP_ADDR */
130 0xee100fb0, /* mrc p15, 0, r0, c0, c0, 5;get core ID */
131 0xe7e10050, /* ubfx r0, r0, #0, #2 ;extract LSB */
132 0xe59f5014, /* ldr r5, =0x400000CC ;load mbox base */
133 0xe320f001, /* 1: yield */
134 0xe7953200, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core*/
135 0xe3530000, /* cmp r3, #0 ;spin while zero */
136 0x0afffffb, /* beq 1b */
137 0xe7853200, /* str r3, [r5, r0, lsl #4] ;clear mbox */
138 0xe12fff13, /* bx r3 ;jump to target */
139 0x400000cc, /* (constant: mailbox 3 read/clear base) */
142 /* check that we don't overrun board setup vectors */
143 QEMU_BUILD_BUG_ON(SMPBOOT_ADDR
+ sizeof(smpboot
) > MVBAR_ADDR
);
144 /* check that board setup address is correctly relocated */
145 QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR
& 0xf) != 0
146 || (BOARDSETUP_ADDR
>> 4) >= 0x100);
148 rom_add_blob_fixed_as("raspi_smpboot", smpboot
, sizeof(smpboot
),
149 info
->smp_loader_start
,
150 arm_boot_address_space(cpu
, info
));
153 static void write_smpboot64(ARMCPU
*cpu
, const struct arm_boot_info
*info
)
155 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
156 /* Unlike the AArch32 version we don't need to call the board setup hook.
157 * The mechanism for doing the spin-table is also entirely different.
158 * We must have four 64-bit fields at absolute addresses
159 * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
160 * our CPUs, and which we must ensure are zero initialized before
161 * the primary CPU goes into the kernel. We put these variables inside
162 * a rom blob, so that the reset for ROM contents zeroes them for us.
164 static const uint32_t smpboot
[] = {
165 0xd2801b05, /* mov x5, 0xd8 */
166 0xd53800a6, /* mrs x6, mpidr_el1 */
167 0x924004c6, /* and x6, x6, #0x3 */
168 0xd503205f, /* spin: wfe */
169 0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */
170 0xb4ffffc4, /* cbz x4, spin */
171 0xd2800000, /* mov x0, #0x0 */
172 0xd2800001, /* mov x1, #0x0 */
173 0xd2800002, /* mov x2, #0x0 */
174 0xd2800003, /* mov x3, #0x0 */
175 0xd61f0080, /* br x4 */
178 static const uint64_t spintables
[] = {
182 rom_add_blob_fixed_as("raspi_smpboot", smpboot
, sizeof(smpboot
),
183 info
->smp_loader_start
, as
);
184 rom_add_blob_fixed_as("raspi_spintables", spintables
, sizeof(spintables
),
188 static void write_board_setup(ARMCPU
*cpu
, const struct arm_boot_info
*info
)
190 arm_write_secure_board_setup_dummy_smc(cpu
, info
, MVBAR_ADDR
);
193 static void reset_secondary(ARMCPU
*cpu
, const struct arm_boot_info
*info
)
195 CPUState
*cs
= CPU(cpu
);
196 cpu_set_pc(cs
, info
->smp_loader_start
);
199 static void setup_boot(MachineState
*machine
, RaspiProcessorId processor_id
,
202 RaspiMachineState
*s
= RASPI_MACHINE(machine
);
205 s
->binfo
.board_id
= MACH_TYPE_BCM2708
;
206 s
->binfo
.ram_size
= ram_size
;
208 if (processor_id
<= PROCESSOR_ID_BCM2836
) {
210 * The BCM2835 and BCM2836 require some custom setup code to run
211 * in Secure mode before booting a kernel (to set up the SMC vectors
212 * so that we get a no-op SMC; this is used by Linux to call the
213 * firmware for some cache maintenance operations.
214 * The BCM2837 doesn't need this.
216 s
->binfo
.board_setup_addr
= BOARDSETUP_ADDR
;
217 s
->binfo
.write_board_setup
= write_board_setup
;
218 s
->binfo
.secure_board_setup
= true;
219 s
->binfo
.secure_boot
= true;
222 /* BCM2836 and BCM2837 requires SMP setup */
223 if (processor_id
>= PROCESSOR_ID_BCM2836
) {
224 s
->binfo
.smp_loader_start
= SMPBOOT_ADDR
;
225 if (processor_id
== PROCESSOR_ID_BCM2836
) {
226 s
->binfo
.write_secondary_boot
= write_smpboot
;
228 s
->binfo
.write_secondary_boot
= write_smpboot64
;
230 s
->binfo
.secondary_cpu_reset_hook
= reset_secondary
;
233 /* If the user specified a "firmware" image (e.g. UEFI), we bypass
234 * the normal Linux boot process
236 if (machine
->firmware
) {
237 hwaddr firmware_addr
= processor_id
<= PROCESSOR_ID_BCM2836
238 ? FIRMWARE_ADDR_2
: FIRMWARE_ADDR_3
;
239 /* load the firmware image (typically kernel.img) */
240 r
= load_image_targphys(machine
->firmware
, firmware_addr
,
241 ram_size
- firmware_addr
);
243 error_report("Failed to load firmware from %s", machine
->firmware
);
247 s
->binfo
.entry
= firmware_addr
;
248 s
->binfo
.firmware_loaded
= true;
251 arm_load_kernel(&s
->soc
.cpu
[0].core
, machine
, &s
->binfo
);
254 static void raspi_machine_init(MachineState
*machine
)
256 RaspiMachineClass
*mc
= RASPI_MACHINE_GET_CLASS(machine
);
257 RaspiMachineState
*s
= RASPI_MACHINE(machine
);
258 uint32_t board_rev
= mc
->board_rev
;
259 uint64_t ram_size
= board_ram_size(board_rev
);
264 DeviceState
*carddev
;
266 if (machine
->ram_size
!= ram_size
) {
267 char *size_str
= size_to_str(ram_size
);
268 error_report("Invalid RAM size, should be %s", size_str
);
273 /* FIXME: Remove when we have custom CPU address space support */
274 memory_region_add_subregion_overlap(get_system_memory(), 0,
278 object_initialize_child(OBJECT(machine
), "soc", &s
->soc
,
279 board_soc_type(board_rev
));
280 object_property_add_const_link(OBJECT(&s
->soc
), "ram", OBJECT(machine
->ram
));
281 object_property_set_int(OBJECT(&s
->soc
), "board-rev", board_rev
,
283 qdev_realize(DEVICE(&s
->soc
), NULL
, &error_fatal
);
285 /* Create and plug in the SD cards */
286 di
= drive_get(IF_SD
, 0, 0);
287 blk
= di
? blk_by_legacy_dinfo(di
) : NULL
;
288 bus
= qdev_get_child_bus(DEVICE(&s
->soc
), "sd-bus");
290 error_report("No SD bus found in SOC object");
293 carddev
= qdev_new(TYPE_SD_CARD
);
294 qdev_prop_set_drive_err(carddev
, "drive", blk
, &error_fatal
);
295 qdev_realize_and_unref(carddev
, bus
, &error_fatal
);
297 vcram_size
= object_property_get_uint(OBJECT(&s
->soc
), "vcram-size",
299 setup_boot(machine
, board_processor_id(mc
->board_rev
),
300 machine
->ram_size
- vcram_size
);
303 static void raspi_machine_class_common_init(MachineClass
*mc
,
306 mc
->desc
= g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
307 board_type(board_rev
),
308 FIELD_EX32(board_rev
, REV_CODE
, REVISION
));
309 mc
->init
= raspi_machine_init
;
310 mc
->block_default_type
= IF_SD
;
314 mc
->default_cpus
= mc
->min_cpus
= mc
->max_cpus
= cores_count(board_rev
);
315 mc
->default_ram_size
= board_ram_size(board_rev
);
316 mc
->default_ram_id
= "ram";
319 static void raspi0_machine_class_init(ObjectClass
*oc
, void *data
)
321 MachineClass
*mc
= MACHINE_CLASS(oc
);
322 RaspiMachineClass
*rmc
= RASPI_MACHINE_CLASS(oc
);
324 rmc
->board_rev
= 0x920092; /* Revision 1.2 */
325 raspi_machine_class_common_init(mc
, rmc
->board_rev
);
328 static void raspi1ap_machine_class_init(ObjectClass
*oc
, void *data
)
330 MachineClass
*mc
= MACHINE_CLASS(oc
);
331 RaspiMachineClass
*rmc
= RASPI_MACHINE_CLASS(oc
);
333 rmc
->board_rev
= 0x900021; /* Revision 1.1 */
334 raspi_machine_class_common_init(mc
, rmc
->board_rev
);
337 static void raspi2b_machine_class_init(ObjectClass
*oc
, void *data
)
339 MachineClass
*mc
= MACHINE_CLASS(oc
);
340 RaspiMachineClass
*rmc
= RASPI_MACHINE_CLASS(oc
);
342 rmc
->board_rev
= 0xa21041;
343 raspi_machine_class_common_init(mc
, rmc
->board_rev
);
346 #ifdef TARGET_AARCH64
347 static void raspi3ap_machine_class_init(ObjectClass
*oc
, void *data
)
349 MachineClass
*mc
= MACHINE_CLASS(oc
);
350 RaspiMachineClass
*rmc
= RASPI_MACHINE_CLASS(oc
);
352 rmc
->board_rev
= 0x9020e0; /* Revision 1.0 */
353 raspi_machine_class_common_init(mc
, rmc
->board_rev
);
356 static void raspi3b_machine_class_init(ObjectClass
*oc
, void *data
)
358 MachineClass
*mc
= MACHINE_CLASS(oc
);
359 RaspiMachineClass
*rmc
= RASPI_MACHINE_CLASS(oc
);
361 rmc
->board_rev
= 0xa02082;
362 raspi_machine_class_common_init(mc
, rmc
->board_rev
);
364 #endif /* TARGET_AARCH64 */
366 static const TypeInfo raspi_machine_types
[] = {
368 .name
= MACHINE_TYPE_NAME("raspi0"),
369 .parent
= TYPE_RASPI_MACHINE
,
370 .class_init
= raspi0_machine_class_init
,
372 .name
= MACHINE_TYPE_NAME("raspi1ap"),
373 .parent
= TYPE_RASPI_MACHINE
,
374 .class_init
= raspi1ap_machine_class_init
,
376 .name
= MACHINE_TYPE_NAME("raspi2b"),
377 .parent
= TYPE_RASPI_MACHINE
,
378 .class_init
= raspi2b_machine_class_init
,
379 #ifdef TARGET_AARCH64
381 .name
= MACHINE_TYPE_NAME("raspi3ap"),
382 .parent
= TYPE_RASPI_MACHINE
,
383 .class_init
= raspi3ap_machine_class_init
,
385 .name
= MACHINE_TYPE_NAME("raspi3b"),
386 .parent
= TYPE_RASPI_MACHINE
,
387 .class_init
= raspi3b_machine_class_init
,
390 .name
= TYPE_RASPI_MACHINE
,
391 .parent
= TYPE_MACHINE
,
392 .instance_size
= sizeof(RaspiMachineState
),
393 .class_size
= sizeof(RaspiMachineClass
),
398 DEFINE_TYPES(raspi_machine_types
)