hw/block/nvme: Add support for Namespace Types
[qemu/rayw.git] / hw / block / nvme.c
blob27679c8be81660c7cebba0871ae58dd8cfe4df6a
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,serial=<serial>,id=<bus_name>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * max_ioqpairs=<N[optional]>, \
24 * aerl=<N[optional]>, aer_max_queued=<N[optional]>, \
25 * mdts=<N[optional]>
26 * -device nvme-ns,drive=<drive_id>,bus=bus_name,nsid=<nsid>
28 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
29 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
31 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
32 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
33 * both provided.
34 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
35 * For example:
36 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
37 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
40 * nvme device parameters
41 * ~~~~~~~~~~~~~~~~~~~~~~
42 * - `aerl`
43 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
44 * of concurrently outstanding Asynchronous Event Request commands suppoert
45 * by the controller. This is a 0's based value.
47 * - `aer_max_queued`
48 * This is the maximum number of events that the device will enqueue for
49 * completion when there are no oustanding AERs. When the maximum number of
50 * enqueued events are reached, subsequent events will be dropped.
54 #include "qemu/osdep.h"
55 #include "qemu/units.h"
56 #include "qemu/error-report.h"
57 #include "hw/block/block.h"
58 #include "hw/pci/msix.h"
59 #include "hw/pci/pci.h"
60 #include "hw/qdev-properties.h"
61 #include "migration/vmstate.h"
62 #include "sysemu/sysemu.h"
63 #include "qapi/error.h"
64 #include "qapi/visitor.h"
65 #include "sysemu/hostmem.h"
66 #include "sysemu/block-backend.h"
67 #include "exec/memory.h"
68 #include "qemu/log.h"
69 #include "qemu/module.h"
70 #include "qemu/cutils.h"
71 #include "trace.h"
72 #include "nvme.h"
73 #include "nvme-ns.h"
75 #define NVME_MAX_IOQPAIRS 0xffff
76 #define NVME_DB_SIZE 4
77 #define NVME_SPEC_VER 0x00010300
78 #define NVME_CMB_BIR 2
79 #define NVME_PMR_BIR 2
80 #define NVME_TEMPERATURE 0x143
81 #define NVME_TEMPERATURE_WARNING 0x157
82 #define NVME_TEMPERATURE_CRITICAL 0x175
83 #define NVME_NUM_FW_SLOTS 1
85 #define NVME_GUEST_ERR(trace, fmt, ...) \
86 do { \
87 (trace_##trace)(__VA_ARGS__); \
88 qemu_log_mask(LOG_GUEST_ERROR, #trace \
89 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
90 } while (0)
92 static const bool nvme_feature_support[NVME_FID_MAX] = {
93 [NVME_ARBITRATION] = true,
94 [NVME_POWER_MANAGEMENT] = true,
95 [NVME_TEMPERATURE_THRESHOLD] = true,
96 [NVME_ERROR_RECOVERY] = true,
97 [NVME_VOLATILE_WRITE_CACHE] = true,
98 [NVME_NUMBER_OF_QUEUES] = true,
99 [NVME_INTERRUPT_COALESCING] = true,
100 [NVME_INTERRUPT_VECTOR_CONF] = true,
101 [NVME_WRITE_ATOMICITY] = true,
102 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
103 [NVME_TIMESTAMP] = true,
106 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
107 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
108 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
109 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
110 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
111 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
112 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
115 static const uint32_t nvme_cse_acs[256] = {
116 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
117 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
118 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
119 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
120 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
121 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
122 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
123 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
124 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
125 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
128 static const uint32_t nvme_cse_iocs_none[256];
130 static const uint32_t nvme_cse_iocs_nvm[256] = {
131 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
132 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
133 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
134 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
135 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
136 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
139 static void nvme_process_sq(void *opaque);
141 static uint16_t nvme_cid(NvmeRequest *req)
143 if (!req) {
144 return 0xffff;
147 return le16_to_cpu(req->cqe.cid);
150 static uint16_t nvme_sqid(NvmeRequest *req)
152 return le16_to_cpu(req->sq->sqid);
155 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
157 hwaddr low = n->ctrl_mem.addr;
158 hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
160 return addr >= low && addr < hi;
163 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
165 assert(nvme_addr_is_cmb(n, addr));
167 return &n->cmbuf[addr - n->ctrl_mem.addr];
170 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
172 hwaddr hi = addr + size - 1;
173 if (hi < addr) {
174 return 1;
177 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
178 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
179 return 0;
182 return pci_dma_read(&n->parent_obj, addr, buf, size);
185 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
187 return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
190 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
192 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
195 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
197 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
200 static void nvme_inc_cq_tail(NvmeCQueue *cq)
202 cq->tail++;
203 if (cq->tail >= cq->size) {
204 cq->tail = 0;
205 cq->phase = !cq->phase;
209 static void nvme_inc_sq_head(NvmeSQueue *sq)
211 sq->head = (sq->head + 1) % sq->size;
214 static uint8_t nvme_cq_full(NvmeCQueue *cq)
216 return (cq->tail + 1) % cq->size == cq->head;
219 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
221 return sq->head == sq->tail;
224 static void nvme_irq_check(NvmeCtrl *n)
226 if (msix_enabled(&(n->parent_obj))) {
227 return;
229 if (~n->bar.intms & n->irq_status) {
230 pci_irq_assert(&n->parent_obj);
231 } else {
232 pci_irq_deassert(&n->parent_obj);
236 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
238 if (cq->irq_enabled) {
239 if (msix_enabled(&(n->parent_obj))) {
240 trace_pci_nvme_irq_msix(cq->vector);
241 msix_notify(&(n->parent_obj), cq->vector);
242 } else {
243 trace_pci_nvme_irq_pin();
244 assert(cq->vector < 32);
245 n->irq_status |= 1 << cq->vector;
246 nvme_irq_check(n);
248 } else {
249 trace_pci_nvme_irq_masked();
253 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
255 if (cq->irq_enabled) {
256 if (msix_enabled(&(n->parent_obj))) {
257 return;
258 } else {
259 assert(cq->vector < 32);
260 n->irq_status &= ~(1 << cq->vector);
261 nvme_irq_check(n);
266 static void nvme_req_clear(NvmeRequest *req)
268 req->ns = NULL;
269 req->opaque = NULL;
270 memset(&req->cqe, 0x0, sizeof(req->cqe));
271 req->status = NVME_SUCCESS;
274 static void nvme_req_exit(NvmeRequest *req)
276 if (req->qsg.sg) {
277 qemu_sglist_destroy(&req->qsg);
280 if (req->iov.iov) {
281 qemu_iovec_destroy(&req->iov);
285 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
286 size_t len)
288 if (!len) {
289 return NVME_SUCCESS;
292 trace_pci_nvme_map_addr_cmb(addr, len);
294 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
295 return NVME_DATA_TRAS_ERROR;
298 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
300 return NVME_SUCCESS;
303 static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
304 hwaddr addr, size_t len)
306 if (!len) {
307 return NVME_SUCCESS;
310 trace_pci_nvme_map_addr(addr, len);
312 if (nvme_addr_is_cmb(n, addr)) {
313 if (qsg && qsg->sg) {
314 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
317 assert(iov);
319 if (!iov->iov) {
320 qemu_iovec_init(iov, 1);
323 return nvme_map_addr_cmb(n, iov, addr, len);
326 if (iov && iov->iov) {
327 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
330 assert(qsg);
332 if (!qsg->sg) {
333 pci_dma_sglist_init(qsg, &n->parent_obj, 1);
336 qemu_sglist_add(qsg, addr, len);
338 return NVME_SUCCESS;
341 static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2,
342 uint32_t len, NvmeRequest *req)
344 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
345 trans_len = MIN(len, trans_len);
346 int num_prps = (len >> n->page_bits) + 1;
347 uint16_t status;
348 bool prp_list_in_cmb = false;
349 int ret;
351 QEMUSGList *qsg = &req->qsg;
352 QEMUIOVector *iov = &req->iov;
354 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
356 if (nvme_addr_is_cmb(n, prp1)) {
357 qemu_iovec_init(iov, num_prps);
358 } else {
359 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
362 status = nvme_map_addr(n, qsg, iov, prp1, trans_len);
363 if (status) {
364 return status;
367 len -= trans_len;
368 if (len) {
369 if (len > n->page_size) {
370 uint64_t prp_list[n->max_prp_ents];
371 uint32_t nents, prp_trans;
372 int i = 0;
374 if (nvme_addr_is_cmb(n, prp2)) {
375 prp_list_in_cmb = true;
378 nents = (len + n->page_size - 1) >> n->page_bits;
379 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
380 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
381 if (ret) {
382 trace_pci_nvme_err_addr_read(prp2);
383 return NVME_DATA_TRAS_ERROR;
385 while (len != 0) {
386 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
388 if (i == n->max_prp_ents - 1 && len > n->page_size) {
389 if (unlikely(prp_ent & (n->page_size - 1))) {
390 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
391 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
394 if (prp_list_in_cmb != nvme_addr_is_cmb(n, prp_ent)) {
395 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
398 i = 0;
399 nents = (len + n->page_size - 1) >> n->page_bits;
400 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
401 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
402 prp_trans);
403 if (ret) {
404 trace_pci_nvme_err_addr_read(prp_ent);
405 return NVME_DATA_TRAS_ERROR;
407 prp_ent = le64_to_cpu(prp_list[i]);
410 if (unlikely(prp_ent & (n->page_size - 1))) {
411 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
412 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
415 trans_len = MIN(len, n->page_size);
416 status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len);
417 if (status) {
418 return status;
421 len -= trans_len;
422 i++;
424 } else {
425 if (unlikely(prp2 & (n->page_size - 1))) {
426 trace_pci_nvme_err_invalid_prp2_align(prp2);
427 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
429 status = nvme_map_addr(n, qsg, iov, prp2, len);
430 if (status) {
431 return status;
436 return NVME_SUCCESS;
440 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
441 * number of bytes mapped in len.
443 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg,
444 QEMUIOVector *iov,
445 NvmeSglDescriptor *segment, uint64_t nsgld,
446 size_t *len, NvmeRequest *req)
448 dma_addr_t addr, trans_len;
449 uint32_t dlen;
450 uint16_t status;
452 for (int i = 0; i < nsgld; i++) {
453 uint8_t type = NVME_SGL_TYPE(segment[i].type);
455 switch (type) {
456 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
457 if (req->cmd.opcode == NVME_CMD_WRITE) {
458 continue;
460 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
461 break;
462 case NVME_SGL_DESCR_TYPE_SEGMENT:
463 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
464 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
465 default:
466 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
469 dlen = le32_to_cpu(segment[i].len);
471 if (!dlen) {
472 continue;
475 if (*len == 0) {
477 * All data has been mapped, but the SGL contains additional
478 * segments and/or descriptors. The controller might accept
479 * ignoring the rest of the SGL.
481 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
482 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
483 break;
486 trace_pci_nvme_err_invalid_sgl_excess_length(nvme_cid(req));
487 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
490 trans_len = MIN(*len, dlen);
492 if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
493 goto next;
496 addr = le64_to_cpu(segment[i].addr);
498 if (UINT64_MAX - addr < dlen) {
499 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
502 status = nvme_map_addr(n, qsg, iov, addr, trans_len);
503 if (status) {
504 return status;
507 next:
508 *len -= trans_len;
511 return NVME_SUCCESS;
514 static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
515 NvmeSglDescriptor sgl, size_t len,
516 NvmeRequest *req)
519 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
520 * dynamically allocating a potentially huge SGL. The spec allows the SGL
521 * to be larger (as in number of bytes required to describe the SGL
522 * descriptors and segment chain) than the command transfer size, so it is
523 * not bounded by MDTS.
525 const int SEG_CHUNK_SIZE = 256;
527 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
528 uint64_t nsgld;
529 uint32_t seg_len;
530 uint16_t status;
531 bool sgl_in_cmb = false;
532 hwaddr addr;
533 int ret;
535 sgld = &sgl;
536 addr = le64_to_cpu(sgl.addr);
538 trace_pci_nvme_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), len);
541 * If the entire transfer can be described with a single data block it can
542 * be mapped directly.
544 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
545 status = nvme_map_sgl_data(n, qsg, iov, sgld, 1, &len, req);
546 if (status) {
547 goto unmap;
550 goto out;
554 * If the segment is located in the CMB, the submission queue of the
555 * request must also reside there.
557 if (nvme_addr_is_cmb(n, addr)) {
558 if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) {
559 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
562 sgl_in_cmb = true;
565 for (;;) {
566 switch (NVME_SGL_TYPE(sgld->type)) {
567 case NVME_SGL_DESCR_TYPE_SEGMENT:
568 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
569 break;
570 default:
571 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
574 seg_len = le32_to_cpu(sgld->len);
576 /* check the length of the (Last) Segment descriptor */
577 if ((!seg_len || seg_len & 0xf) &&
578 (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
579 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
582 if (UINT64_MAX - addr < seg_len) {
583 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
586 nsgld = seg_len / sizeof(NvmeSglDescriptor);
588 while (nsgld > SEG_CHUNK_SIZE) {
589 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
590 trace_pci_nvme_err_addr_read(addr);
591 status = NVME_DATA_TRAS_ERROR;
592 goto unmap;
595 status = nvme_map_sgl_data(n, qsg, iov, segment, SEG_CHUNK_SIZE,
596 &len, req);
597 if (status) {
598 goto unmap;
601 nsgld -= SEG_CHUNK_SIZE;
602 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
605 ret = nvme_addr_read(n, addr, segment, nsgld *
606 sizeof(NvmeSglDescriptor));
607 if (ret) {
608 trace_pci_nvme_err_addr_read(addr);
609 status = NVME_DATA_TRAS_ERROR;
610 goto unmap;
613 last_sgld = &segment[nsgld - 1];
616 * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
617 * then we are done.
619 switch (NVME_SGL_TYPE(last_sgld->type)) {
620 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
621 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
622 status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, req);
623 if (status) {
624 goto unmap;
627 goto out;
629 default:
630 break;
634 * If the last descriptor was not a Data Block or Bit Bucket, then the
635 * current segment must not be a Last Segment.
637 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
638 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
639 goto unmap;
642 sgld = last_sgld;
643 addr = le64_to_cpu(sgld->addr);
646 * Do not map the last descriptor; it will be a Segment or Last Segment
647 * descriptor and is handled by the next iteration.
649 status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, req);
650 if (status) {
651 goto unmap;
655 * If the next segment is in the CMB, make sure that the sgl was
656 * already located there.
658 if (sgl_in_cmb != nvme_addr_is_cmb(n, addr)) {
659 status = NVME_INVALID_USE_OF_CMB | NVME_DNR;
660 goto unmap;
664 out:
665 /* if there is any residual left in len, the SGL was too short */
666 if (len) {
667 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
668 goto unmap;
671 return NVME_SUCCESS;
673 unmap:
674 if (iov->iov) {
675 qemu_iovec_destroy(iov);
678 if (qsg->sg) {
679 qemu_sglist_destroy(qsg);
682 return status;
685 static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req)
687 uint64_t prp1, prp2;
689 switch (NVME_CMD_FLAGS_PSDT(req->cmd.flags)) {
690 case NVME_PSDT_PRP:
691 prp1 = le64_to_cpu(req->cmd.dptr.prp1);
692 prp2 = le64_to_cpu(req->cmd.dptr.prp2);
694 return nvme_map_prp(n, prp1, prp2, len, req);
695 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
696 case NVME_PSDT_SGL_MPTR_SGL:
697 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
698 if (!req->sq->sqid) {
699 return NVME_INVALID_FIELD | NVME_DNR;
702 return nvme_map_sgl(n, &req->qsg, &req->iov, req->cmd.dptr.sgl, len,
703 req);
704 default:
705 return NVME_INVALID_FIELD;
709 static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
710 DMADirection dir, NvmeRequest *req)
712 uint16_t status = NVME_SUCCESS;
714 status = nvme_map_dptr(n, len, req);
715 if (status) {
716 return status;
719 /* assert that only one of qsg and iov carries data */
720 assert((req->qsg.nsg > 0) != (req->iov.niov > 0));
722 if (req->qsg.nsg > 0) {
723 uint64_t residual;
725 if (dir == DMA_DIRECTION_TO_DEVICE) {
726 residual = dma_buf_write(ptr, len, &req->qsg);
727 } else {
728 residual = dma_buf_read(ptr, len, &req->qsg);
731 if (unlikely(residual)) {
732 trace_pci_nvme_err_invalid_dma();
733 status = NVME_INVALID_FIELD | NVME_DNR;
735 } else {
736 size_t bytes;
738 if (dir == DMA_DIRECTION_TO_DEVICE) {
739 bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len);
740 } else {
741 bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len);
744 if (unlikely(bytes != len)) {
745 trace_pci_nvme_err_invalid_dma();
746 status = NVME_INVALID_FIELD | NVME_DNR;
750 return status;
753 static void nvme_post_cqes(void *opaque)
755 NvmeCQueue *cq = opaque;
756 NvmeCtrl *n = cq->ctrl;
757 NvmeRequest *req, *next;
758 int ret;
760 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
761 NvmeSQueue *sq;
762 hwaddr addr;
764 if (nvme_cq_full(cq)) {
765 break;
768 sq = req->sq;
769 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
770 req->cqe.sq_id = cpu_to_le16(sq->sqid);
771 req->cqe.sq_head = cpu_to_le16(sq->head);
772 addr = cq->dma_addr + cq->tail * n->cqe_size;
773 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
774 sizeof(req->cqe));
775 if (ret) {
776 trace_pci_nvme_err_addr_write(addr);
777 trace_pci_nvme_err_cfs();
778 n->bar.csts = NVME_CSTS_FAILED;
779 break;
781 QTAILQ_REMOVE(&cq->req_list, req, entry);
782 nvme_inc_cq_tail(cq);
783 nvme_req_exit(req);
784 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
786 if (cq->tail != cq->head) {
787 nvme_irq_assert(n, cq);
791 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
793 assert(cq->cqid == req->sq->cqid);
794 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
795 req->status);
797 if (req->status) {
798 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
799 req->status, req->cmd.opcode);
802 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
803 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
804 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
807 static void nvme_process_aers(void *opaque)
809 NvmeCtrl *n = opaque;
810 NvmeAsyncEvent *event, *next;
812 trace_pci_nvme_process_aers(n->aer_queued);
814 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
815 NvmeRequest *req;
816 NvmeAerResult *result;
818 /* can't post cqe if there is nothing to complete */
819 if (!n->outstanding_aers) {
820 trace_pci_nvme_no_outstanding_aers();
821 break;
824 /* ignore if masked (cqe posted, but event not cleared) */
825 if (n->aer_mask & (1 << event->result.event_type)) {
826 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
827 continue;
830 QTAILQ_REMOVE(&n->aer_queue, event, entry);
831 n->aer_queued--;
833 n->aer_mask |= 1 << event->result.event_type;
834 n->outstanding_aers--;
836 req = n->aer_reqs[n->outstanding_aers];
838 result = (NvmeAerResult *) &req->cqe.result;
839 result->event_type = event->result.event_type;
840 result->event_info = event->result.event_info;
841 result->log_page = event->result.log_page;
842 g_free(event);
844 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
845 result->log_page);
847 nvme_enqueue_req_completion(&n->admin_cq, req);
851 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
852 uint8_t event_info, uint8_t log_page)
854 NvmeAsyncEvent *event;
856 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
858 if (n->aer_queued == n->params.aer_max_queued) {
859 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
860 return;
863 event = g_new(NvmeAsyncEvent, 1);
864 event->result = (NvmeAerResult) {
865 .event_type = event_type,
866 .event_info = event_info,
867 .log_page = log_page,
870 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
871 n->aer_queued++;
873 nvme_process_aers(n);
876 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
878 n->aer_mask &= ~(1 << event_type);
879 if (!QTAILQ_EMPTY(&n->aer_queue)) {
880 nvme_process_aers(n);
884 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
886 uint8_t mdts = n->params.mdts;
888 if (mdts && len > n->page_size << mdts) {
889 return NVME_INVALID_FIELD | NVME_DNR;
892 return NVME_SUCCESS;
895 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
896 uint32_t nlb)
898 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
900 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
901 return NVME_LBA_RANGE | NVME_DNR;
904 return NVME_SUCCESS;
907 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
908 uint32_t nlb)
910 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
912 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
913 int64_t offset = nvme_l2b(ns, slba);
914 bool zeroed;
915 int ret;
917 Error *local_err = NULL;
920 * `pnum` holds the number of bytes after offset that shares the same
921 * allocation status as the byte at offset. If `pnum` is different from
922 * `bytes`, we should check the allocation status of the next range and
923 * continue this until all bytes have been checked.
925 do {
926 bytes -= pnum;
928 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
929 if (ret < 0) {
930 error_setg_errno(&local_err, -ret, "unable to get block status");
931 error_report_err(local_err);
933 return NVME_INTERNAL_DEV_ERROR;
936 zeroed = !!(ret & BDRV_BLOCK_ZERO);
938 trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
940 if (zeroed) {
941 return NVME_DULB;
944 offset += pnum;
945 } while (pnum != bytes);
947 return NVME_SUCCESS;
950 static void nvme_aio_err(NvmeRequest *req, int ret)
952 uint16_t status = NVME_SUCCESS;
953 Error *local_err = NULL;
955 switch (req->cmd.opcode) {
956 case NVME_CMD_READ:
957 status = NVME_UNRECOVERED_READ;
958 break;
959 case NVME_CMD_FLUSH:
960 case NVME_CMD_WRITE:
961 case NVME_CMD_WRITE_ZEROES:
962 status = NVME_WRITE_FAULT;
963 break;
964 default:
965 status = NVME_INTERNAL_DEV_ERROR;
966 break;
969 trace_pci_nvme_err_aio(nvme_cid(req), strerror(ret), status);
971 error_setg_errno(&local_err, -ret, "aio failed");
972 error_report_err(local_err);
975 * Set the command status code to the first encountered error but allow a
976 * subsequent Internal Device Error to trump it.
978 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
979 return;
982 req->status = status;
985 static void nvme_rw_cb(void *opaque, int ret)
987 NvmeRequest *req = opaque;
988 NvmeNamespace *ns = req->ns;
990 BlockBackend *blk = ns->blkconf.blk;
991 BlockAcctCookie *acct = &req->acct;
992 BlockAcctStats *stats = blk_get_stats(blk);
994 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
996 if (!ret) {
997 block_acct_done(stats, acct);
998 } else {
999 block_acct_failed(stats, acct);
1000 nvme_aio_err(req, ret);
1003 nvme_enqueue_req_completion(nvme_cq(req), req);
1006 static void nvme_aio_discard_cb(void *opaque, int ret)
1008 NvmeRequest *req = opaque;
1009 uintptr_t *discards = (uintptr_t *)&req->opaque;
1011 trace_pci_nvme_aio_discard_cb(nvme_cid(req));
1013 if (ret) {
1014 nvme_aio_err(req, ret);
1017 (*discards)--;
1019 if (*discards) {
1020 return;
1023 nvme_enqueue_req_completion(nvme_cq(req), req);
1026 struct nvme_compare_ctx {
1027 QEMUIOVector iov;
1028 uint8_t *bounce;
1029 size_t len;
1032 static void nvme_compare_cb(void *opaque, int ret)
1034 NvmeRequest *req = opaque;
1035 NvmeNamespace *ns = req->ns;
1036 struct nvme_compare_ctx *ctx = req->opaque;
1037 g_autofree uint8_t *buf = NULL;
1038 uint16_t status;
1040 trace_pci_nvme_compare_cb(nvme_cid(req));
1042 if (!ret) {
1043 block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
1044 } else {
1045 block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
1046 nvme_aio_err(req, ret);
1047 goto out;
1050 buf = g_malloc(ctx->len);
1052 status = nvme_dma(nvme_ctrl(req), buf, ctx->len, DMA_DIRECTION_TO_DEVICE,
1053 req);
1054 if (status) {
1055 req->status = status;
1056 goto out;
1059 if (memcmp(buf, ctx->bounce, ctx->len)) {
1060 req->status = NVME_CMP_FAILURE;
1063 out:
1064 qemu_iovec_destroy(&ctx->iov);
1065 g_free(ctx->bounce);
1066 g_free(ctx);
1068 nvme_enqueue_req_completion(nvme_cq(req), req);
1071 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
1073 NvmeNamespace *ns = req->ns;
1074 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
1076 uint32_t attr = le32_to_cpu(dsm->attributes);
1077 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
1079 uint16_t status = NVME_SUCCESS;
1081 trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr);
1083 if (attr & NVME_DSMGMT_AD) {
1084 int64_t offset;
1085 size_t len;
1086 NvmeDsmRange range[nr];
1087 uintptr_t *discards = (uintptr_t *)&req->opaque;
1089 status = nvme_dma(n, (uint8_t *)range, sizeof(range),
1090 DMA_DIRECTION_TO_DEVICE, req);
1091 if (status) {
1092 return status;
1096 * AIO callbacks may be called immediately, so initialize discards to 1
1097 * to make sure the the callback does not complete the request before
1098 * all discards have been issued.
1100 *discards = 1;
1102 for (int i = 0; i < nr; i++) {
1103 uint64_t slba = le64_to_cpu(range[i].slba);
1104 uint32_t nlb = le32_to_cpu(range[i].nlb);
1106 if (nvme_check_bounds(ns, slba, nlb)) {
1107 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
1108 ns->id_ns.nsze);
1109 continue;
1112 trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba,
1113 nlb);
1115 offset = nvme_l2b(ns, slba);
1116 len = nvme_l2b(ns, nlb);
1118 while (len) {
1119 size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
1121 (*discards)++;
1123 blk_aio_pdiscard(ns->blkconf.blk, offset, bytes,
1124 nvme_aio_discard_cb, req);
1126 offset += bytes;
1127 len -= bytes;
1131 /* account for the 1-initialization */
1132 (*discards)--;
1134 if (*discards) {
1135 status = NVME_NO_COMPLETE;
1136 } else {
1137 status = req->status;
1141 return status;
1144 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
1146 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1147 NvmeNamespace *ns = req->ns;
1148 BlockBackend *blk = ns->blkconf.blk;
1149 uint64_t slba = le64_to_cpu(rw->slba);
1150 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
1151 size_t len = nvme_l2b(ns, nlb);
1152 int64_t offset = nvme_l2b(ns, slba);
1153 uint8_t *bounce = NULL;
1154 struct nvme_compare_ctx *ctx = NULL;
1155 uint16_t status;
1157 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
1159 status = nvme_check_mdts(n, len);
1160 if (status) {
1161 trace_pci_nvme_err_mdts(nvme_cid(req), len);
1162 return status;
1165 status = nvme_check_bounds(ns, slba, nlb);
1166 if (status) {
1167 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
1168 return status;
1171 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
1172 status = nvme_check_dulbe(ns, slba, nlb);
1173 if (status) {
1174 return status;
1178 bounce = g_malloc(len);
1180 ctx = g_new(struct nvme_compare_ctx, 1);
1181 ctx->bounce = bounce;
1182 ctx->len = len;
1184 req->opaque = ctx;
1186 qemu_iovec_init(&ctx->iov, 1);
1187 qemu_iovec_add(&ctx->iov, bounce, len);
1189 block_acct_start(blk_get_stats(blk), &req->acct, len, BLOCK_ACCT_READ);
1190 blk_aio_preadv(blk, offset, &ctx->iov, 0, nvme_compare_cb, req);
1192 return NVME_NO_COMPLETE;
1195 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
1197 block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
1198 BLOCK_ACCT_FLUSH);
1199 req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_rw_cb, req);
1200 return NVME_NO_COMPLETE;
1203 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
1205 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1206 NvmeNamespace *ns = req->ns;
1207 uint64_t slba = le64_to_cpu(rw->slba);
1208 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
1209 uint64_t data_size = nvme_l2b(ns, nlb);
1210 uint64_t data_offset;
1211 BlockBackend *blk = ns->blkconf.blk;
1212 uint16_t status;
1214 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, data_size, slba);
1216 status = nvme_check_mdts(n, data_size);
1217 if (status) {
1218 trace_pci_nvme_err_mdts(nvme_cid(req), data_size);
1219 goto invalid;
1222 status = nvme_check_bounds(ns, slba, nlb);
1223 if (status) {
1224 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
1225 goto invalid;
1228 status = nvme_map_dptr(n, data_size, req);
1229 if (status) {
1230 goto invalid;
1233 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
1234 status = nvme_check_dulbe(ns, slba, nlb);
1235 if (status) {
1236 goto invalid;
1240 data_offset = nvme_l2b(ns, slba);
1242 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
1243 BLOCK_ACCT_READ);
1244 if (req->qsg.sg) {
1245 req->aiocb = dma_blk_read(blk, &req->qsg, data_offset,
1246 BDRV_SECTOR_SIZE, nvme_rw_cb, req);
1247 } else {
1248 req->aiocb = blk_aio_preadv(blk, data_offset, &req->iov, 0,
1249 nvme_rw_cb, req);
1251 return NVME_NO_COMPLETE;
1253 invalid:
1254 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
1255 return status | NVME_DNR;
1258 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool wrz)
1260 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1261 NvmeNamespace *ns = req->ns;
1262 uint64_t slba = le64_to_cpu(rw->slba);
1263 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
1264 uint64_t data_size = nvme_l2b(ns, nlb);
1265 uint64_t data_offset;
1266 BlockBackend *blk = ns->blkconf.blk;
1267 uint16_t status;
1269 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
1270 nvme_nsid(ns), nlb, data_size, slba);
1272 if (!wrz) {
1273 status = nvme_check_mdts(n, data_size);
1274 if (status) {
1275 trace_pci_nvme_err_mdts(nvme_cid(req), data_size);
1276 goto invalid;
1280 status = nvme_check_bounds(ns, slba, nlb);
1281 if (status) {
1282 trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
1283 goto invalid;
1286 data_offset = nvme_l2b(ns, slba);
1288 if (!wrz) {
1289 status = nvme_map_dptr(n, data_size, req);
1290 if (status) {
1291 goto invalid;
1294 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
1295 BLOCK_ACCT_WRITE);
1296 if (req->qsg.sg) {
1297 req->aiocb = dma_blk_write(blk, &req->qsg, data_offset,
1298 BDRV_SECTOR_SIZE, nvme_rw_cb, req);
1299 } else {
1300 req->aiocb = blk_aio_pwritev(blk, data_offset, &req->iov, 0,
1301 nvme_rw_cb, req);
1303 } else {
1304 block_acct_start(blk_get_stats(blk), &req->acct, 0, BLOCK_ACCT_WRITE);
1305 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
1306 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
1307 req);
1309 return NVME_NO_COMPLETE;
1311 invalid:
1312 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
1313 return status | NVME_DNR;
1316 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
1318 return nvme_do_write(n, req, false);
1321 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
1323 return nvme_do_write(n, req, true);
1326 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
1328 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
1330 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
1331 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
1333 if (!nvme_nsid_valid(n, nsid)) {
1334 return NVME_INVALID_NSID | NVME_DNR;
1337 req->ns = nvme_ns(n, nsid);
1338 if (unlikely(!req->ns)) {
1339 return NVME_INVALID_FIELD | NVME_DNR;
1342 if (!(req->ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
1343 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
1344 return NVME_INVALID_OPCODE | NVME_DNR;
1347 switch (req->cmd.opcode) {
1348 case NVME_CMD_FLUSH:
1349 return nvme_flush(n, req);
1350 case NVME_CMD_WRITE_ZEROES:
1351 return nvme_write_zeroes(n, req);
1352 case NVME_CMD_WRITE:
1353 return nvme_write(n, req);
1354 case NVME_CMD_READ:
1355 return nvme_read(n, req);
1356 case NVME_CMD_COMPARE:
1357 return nvme_compare(n, req);
1358 case NVME_CMD_DSM:
1359 return nvme_dsm(n, req);
1360 default:
1361 assert(false);
1364 return NVME_INVALID_OPCODE | NVME_DNR;
1367 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
1369 n->sq[sq->sqid] = NULL;
1370 timer_free(sq->timer);
1371 g_free(sq->io_req);
1372 if (sq->sqid) {
1373 g_free(sq);
1377 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
1379 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1380 NvmeRequest *r, *next;
1381 NvmeSQueue *sq;
1382 NvmeCQueue *cq;
1383 uint16_t qid = le16_to_cpu(c->qid);
1385 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
1386 trace_pci_nvme_err_invalid_del_sq(qid);
1387 return NVME_INVALID_QID | NVME_DNR;
1390 trace_pci_nvme_del_sq(qid);
1392 sq = n->sq[qid];
1393 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
1394 r = QTAILQ_FIRST(&sq->out_req_list);
1395 assert(r->aiocb);
1396 blk_aio_cancel(r->aiocb);
1398 if (!nvme_check_cqid(n, sq->cqid)) {
1399 cq = n->cq[sq->cqid];
1400 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
1402 nvme_post_cqes(cq);
1403 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
1404 if (r->sq == sq) {
1405 QTAILQ_REMOVE(&cq->req_list, r, entry);
1406 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
1411 nvme_free_sq(sq, n);
1412 return NVME_SUCCESS;
1415 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
1416 uint16_t sqid, uint16_t cqid, uint16_t size)
1418 int i;
1419 NvmeCQueue *cq;
1421 sq->ctrl = n;
1422 sq->dma_addr = dma_addr;
1423 sq->sqid = sqid;
1424 sq->size = size;
1425 sq->cqid = cqid;
1426 sq->head = sq->tail = 0;
1427 sq->io_req = g_new0(NvmeRequest, sq->size);
1429 QTAILQ_INIT(&sq->req_list);
1430 QTAILQ_INIT(&sq->out_req_list);
1431 for (i = 0; i < sq->size; i++) {
1432 sq->io_req[i].sq = sq;
1433 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
1435 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
1437 assert(n->cq[cqid]);
1438 cq = n->cq[cqid];
1439 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
1440 n->sq[sqid] = sq;
1443 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
1445 NvmeSQueue *sq;
1446 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
1448 uint16_t cqid = le16_to_cpu(c->cqid);
1449 uint16_t sqid = le16_to_cpu(c->sqid);
1450 uint16_t qsize = le16_to_cpu(c->qsize);
1451 uint16_t qflags = le16_to_cpu(c->sq_flags);
1452 uint64_t prp1 = le64_to_cpu(c->prp1);
1454 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
1456 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
1457 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
1458 return NVME_INVALID_CQID | NVME_DNR;
1460 if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
1461 n->sq[sqid] != NULL)) {
1462 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
1463 return NVME_INVALID_QID | NVME_DNR;
1465 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1466 trace_pci_nvme_err_invalid_create_sq_size(qsize);
1467 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1469 if (unlikely(prp1 & (n->page_size - 1))) {
1470 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
1471 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
1473 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
1474 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
1475 return NVME_INVALID_FIELD | NVME_DNR;
1477 sq = g_malloc0(sizeof(*sq));
1478 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
1479 return NVME_SUCCESS;
1482 struct nvme_stats {
1483 uint64_t units_read;
1484 uint64_t units_written;
1485 uint64_t read_commands;
1486 uint64_t write_commands;
1489 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
1491 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
1493 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
1494 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
1495 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
1496 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
1499 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
1500 uint64_t off, NvmeRequest *req)
1502 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
1503 struct nvme_stats stats = { 0 };
1504 NvmeSmartLog smart = { 0 };
1505 uint32_t trans_len;
1506 NvmeNamespace *ns;
1507 time_t current_ms;
1509 if (off >= sizeof(smart)) {
1510 return NVME_INVALID_FIELD | NVME_DNR;
1513 if (nsid != 0xffffffff) {
1514 ns = nvme_ns(n, nsid);
1515 if (!ns) {
1516 return NVME_INVALID_NSID | NVME_DNR;
1518 nvme_set_blk_stats(ns, &stats);
1519 } else {
1520 int i;
1522 for (i = 1; i <= n->num_namespaces; i++) {
1523 ns = nvme_ns(n, i);
1524 if (!ns) {
1525 continue;
1527 nvme_set_blk_stats(ns, &stats);
1531 trans_len = MIN(sizeof(smart) - off, buf_len);
1533 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
1534 1000));
1535 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
1536 1000));
1537 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
1538 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
1540 smart.temperature = cpu_to_le16(n->temperature);
1542 if ((n->temperature >= n->features.temp_thresh_hi) ||
1543 (n->temperature <= n->features.temp_thresh_low)) {
1544 smart.critical_warning |= NVME_SMART_TEMPERATURE;
1547 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1548 smart.power_on_hours[0] =
1549 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
1551 if (!rae) {
1552 nvme_clear_events(n, NVME_AER_TYPE_SMART);
1555 return nvme_dma(n, (uint8_t *) &smart + off, trans_len,
1556 DMA_DIRECTION_FROM_DEVICE, req);
1559 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
1560 NvmeRequest *req)
1562 uint32_t trans_len;
1563 NvmeFwSlotInfoLog fw_log = {
1564 .afi = 0x1,
1567 if (off >= sizeof(fw_log)) {
1568 return NVME_INVALID_FIELD | NVME_DNR;
1571 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
1572 trans_len = MIN(sizeof(fw_log) - off, buf_len);
1574 return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len,
1575 DMA_DIRECTION_FROM_DEVICE, req);
1578 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
1579 uint64_t off, NvmeRequest *req)
1581 uint32_t trans_len;
1582 NvmeErrorLog errlog;
1584 if (off >= sizeof(errlog)) {
1585 return NVME_INVALID_FIELD | NVME_DNR;
1588 if (!rae) {
1589 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
1592 memset(&errlog, 0x0, sizeof(errlog));
1593 trans_len = MIN(sizeof(errlog) - off, buf_len);
1595 return nvme_dma(n, (uint8_t *)&errlog, trans_len,
1596 DMA_DIRECTION_FROM_DEVICE, req);
1599 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
1600 uint64_t off, NvmeRequest *req)
1602 NvmeEffectsLog log = {};
1603 const uint32_t *src_iocs = NULL;
1604 uint32_t trans_len;
1606 if (off >= sizeof(log)) {
1607 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
1608 return NVME_INVALID_FIELD | NVME_DNR;
1611 switch (NVME_CC_CSS(n->bar.cc)) {
1612 case NVME_CC_CSS_NVM:
1613 src_iocs = nvme_cse_iocs_nvm;
1614 /* fall through */
1615 case NVME_CC_CSS_ADMIN_ONLY:
1616 break;
1617 case NVME_CC_CSS_CSI:
1618 switch (csi) {
1619 case NVME_CSI_NVM:
1620 src_iocs = nvme_cse_iocs_nvm;
1621 break;
1625 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
1627 if (src_iocs) {
1628 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
1631 trans_len = MIN(sizeof(log) - off, buf_len);
1633 return nvme_dma(n, ((uint8_t *)&log) + off, trans_len,
1634 DMA_DIRECTION_FROM_DEVICE, req);
1637 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
1639 NvmeCmd *cmd = &req->cmd;
1641 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1642 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1643 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
1644 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
1645 uint8_t lid = dw10 & 0xff;
1646 uint8_t lsp = (dw10 >> 8) & 0xf;
1647 uint8_t rae = (dw10 >> 15) & 0x1;
1648 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
1649 uint32_t numdl, numdu;
1650 uint64_t off, lpol, lpou;
1651 size_t len;
1652 uint16_t status;
1654 numdl = (dw10 >> 16);
1655 numdu = (dw11 & 0xffff);
1656 lpol = dw12;
1657 lpou = dw13;
1659 len = (((numdu << 16) | numdl) + 1) << 2;
1660 off = (lpou << 32ULL) | lpol;
1662 if (off & 0x3) {
1663 return NVME_INVALID_FIELD | NVME_DNR;
1666 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
1668 status = nvme_check_mdts(n, len);
1669 if (status) {
1670 trace_pci_nvme_err_mdts(nvme_cid(req), len);
1671 return status;
1674 switch (lid) {
1675 case NVME_LOG_ERROR_INFO:
1676 return nvme_error_info(n, rae, len, off, req);
1677 case NVME_LOG_SMART_INFO:
1678 return nvme_smart_info(n, rae, len, off, req);
1679 case NVME_LOG_FW_SLOT_INFO:
1680 return nvme_fw_log_info(n, len, off, req);
1681 case NVME_LOG_CMD_EFFECTS:
1682 return nvme_cmd_effects(n, csi, len, off, req);
1683 default:
1684 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
1685 return NVME_INVALID_FIELD | NVME_DNR;
1689 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
1691 n->cq[cq->cqid] = NULL;
1692 timer_free(cq->timer);
1693 msix_vector_unuse(&n->parent_obj, cq->vector);
1694 if (cq->cqid) {
1695 g_free(cq);
1699 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
1701 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1702 NvmeCQueue *cq;
1703 uint16_t qid = le16_to_cpu(c->qid);
1705 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
1706 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
1707 return NVME_INVALID_CQID | NVME_DNR;
1710 cq = n->cq[qid];
1711 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
1712 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
1713 return NVME_INVALID_QUEUE_DEL;
1715 nvme_irq_deassert(n, cq);
1716 trace_pci_nvme_del_cq(qid);
1717 nvme_free_cq(cq, n);
1718 return NVME_SUCCESS;
1721 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
1722 uint16_t cqid, uint16_t vector, uint16_t size,
1723 uint16_t irq_enabled)
1725 int ret;
1727 ret = msix_vector_use(&n->parent_obj, vector);
1728 assert(ret == 0);
1729 cq->ctrl = n;
1730 cq->cqid = cqid;
1731 cq->size = size;
1732 cq->dma_addr = dma_addr;
1733 cq->phase = 1;
1734 cq->irq_enabled = irq_enabled;
1735 cq->vector = vector;
1736 cq->head = cq->tail = 0;
1737 QTAILQ_INIT(&cq->req_list);
1738 QTAILQ_INIT(&cq->sq_list);
1739 n->cq[cqid] = cq;
1740 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
1743 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
1745 NvmeCQueue *cq;
1746 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
1747 uint16_t cqid = le16_to_cpu(c->cqid);
1748 uint16_t vector = le16_to_cpu(c->irq_vector);
1749 uint16_t qsize = le16_to_cpu(c->qsize);
1750 uint16_t qflags = le16_to_cpu(c->cq_flags);
1751 uint64_t prp1 = le64_to_cpu(c->prp1);
1753 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
1754 NVME_CQ_FLAGS_IEN(qflags) != 0);
1756 if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
1757 n->cq[cqid] != NULL)) {
1758 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
1759 return NVME_INVALID_QID | NVME_DNR;
1761 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1762 trace_pci_nvme_err_invalid_create_cq_size(qsize);
1763 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1765 if (unlikely(prp1 & (n->page_size - 1))) {
1766 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
1767 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
1769 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
1770 trace_pci_nvme_err_invalid_create_cq_vector(vector);
1771 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1773 if (unlikely(vector >= n->params.msix_qsize)) {
1774 trace_pci_nvme_err_invalid_create_cq_vector(vector);
1775 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1777 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
1778 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
1779 return NVME_INVALID_FIELD | NVME_DNR;
1782 cq = g_malloc0(sizeof(*cq));
1783 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
1784 NVME_CQ_FLAGS_IEN(qflags));
1787 * It is only required to set qs_created when creating a completion queue;
1788 * creating a submission queue without a matching completion queue will
1789 * fail.
1791 n->qs_created = true;
1792 return NVME_SUCCESS;
1795 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
1797 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
1799 return nvme_dma(n, id, sizeof(id), DMA_DIRECTION_FROM_DEVICE, req);
1802 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
1804 trace_pci_nvme_identify_ctrl();
1806 return nvme_dma(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
1807 DMA_DIRECTION_FROM_DEVICE, req);
1810 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
1812 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1814 trace_pci_nvme_identify_ctrl_csi(c->csi);
1816 if (c->csi == NVME_CSI_NVM) {
1817 return nvme_rpt_empty_id_struct(n, req);
1820 return NVME_INVALID_FIELD | NVME_DNR;
1823 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req)
1825 NvmeNamespace *ns;
1826 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1827 uint32_t nsid = le32_to_cpu(c->nsid);
1829 trace_pci_nvme_identify_ns(nsid);
1831 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1832 return NVME_INVALID_NSID | NVME_DNR;
1835 ns = nvme_ns(n, nsid);
1836 if (unlikely(!ns)) {
1837 return nvme_rpt_empty_id_struct(n, req);
1840 return nvme_dma(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs),
1841 DMA_DIRECTION_FROM_DEVICE, req);
1844 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req)
1846 NvmeNamespace *ns;
1847 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1848 uint32_t nsid = le32_to_cpu(c->nsid);
1850 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
1852 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1853 return NVME_INVALID_NSID | NVME_DNR;
1856 ns = nvme_ns(n, nsid);
1857 if (unlikely(!ns)) {
1858 return nvme_rpt_empty_id_struct(n, req);
1861 if (c->csi == NVME_CSI_NVM) {
1862 return nvme_rpt_empty_id_struct(n, req);
1865 return NVME_INVALID_FIELD | NVME_DNR;
1868 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req)
1870 NvmeNamespace *ns;
1871 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1872 uint32_t min_nsid = le32_to_cpu(c->nsid);
1873 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
1874 static const int data_len = sizeof(list);
1875 uint32_t *list_ptr = (uint32_t *)list;
1876 int i, j = 0;
1878 trace_pci_nvme_identify_nslist(min_nsid);
1881 * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
1882 * since the Active Namespace ID List should return namespaces with ids
1883 * *higher* than the NSID specified in the command. This is also specified
1884 * in the spec (NVM Express v1.3d, Section 5.15.4).
1886 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
1887 return NVME_INVALID_NSID | NVME_DNR;
1890 for (i = 1; i <= n->num_namespaces; i++) {
1891 ns = nvme_ns(n, i);
1892 if (!ns) {
1893 continue;
1895 if (ns->params.nsid <= min_nsid) {
1896 continue;
1898 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
1899 if (j == data_len / sizeof(uint32_t)) {
1900 break;
1904 return nvme_dma(n, list, data_len, DMA_DIRECTION_FROM_DEVICE, req);
1907 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req)
1909 NvmeNamespace *ns;
1910 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1911 uint32_t min_nsid = le32_to_cpu(c->nsid);
1912 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
1913 static const int data_len = sizeof(list);
1914 uint32_t *list_ptr = (uint32_t *)list;
1915 int i, j = 0;
1917 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
1920 * Same as in nvme_identify_nslist(), 0xffffffff/0xfffffffe are invalid.
1922 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
1923 return NVME_INVALID_NSID | NVME_DNR;
1926 if (c->csi != NVME_CSI_NVM) {
1927 return NVME_INVALID_FIELD | NVME_DNR;
1930 for (i = 1; i <= n->num_namespaces; i++) {
1931 ns = nvme_ns(n, i);
1932 if (!ns) {
1933 continue;
1935 if (ns->params.nsid <= min_nsid) {
1936 continue;
1938 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
1939 if (j == data_len / sizeof(uint32_t)) {
1940 break;
1944 return nvme_dma(n, list, data_len, DMA_DIRECTION_FROM_DEVICE, req);
1947 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
1949 NvmeNamespace *ns;
1950 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1951 uint32_t nsid = le32_to_cpu(c->nsid);
1952 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
1954 struct data {
1955 struct {
1956 NvmeIdNsDescr hdr;
1957 uint8_t v[NVME_NIDL_UUID];
1958 } uuid;
1959 struct {
1960 NvmeIdNsDescr hdr;
1961 uint8_t v;
1962 } csi;
1965 struct data *ns_descrs = (struct data *)list;
1967 trace_pci_nvme_identify_ns_descr_list(nsid);
1969 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1970 return NVME_INVALID_NSID | NVME_DNR;
1973 ns = nvme_ns(n, nsid);
1974 if (unlikely(!ns)) {
1975 return NVME_INVALID_FIELD | NVME_DNR;
1979 * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
1980 * structure, a Namespace UUID (nidt = 0x3) must be reported in the
1981 * Namespace Identification Descriptor. Add the namespace UUID here.
1983 ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
1984 ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID;
1985 memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
1987 ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI;
1988 ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI;
1989 ns_descrs->csi.v = ns->csi;
1991 return nvme_dma(n, list, sizeof(list), DMA_DIRECTION_FROM_DEVICE, req);
1994 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
1996 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
1997 static const int data_len = sizeof(list);
1999 trace_pci_nvme_identify_cmd_set();
2001 NVME_SET_CSI(*list, NVME_CSI_NVM);
2002 return nvme_dma(n, list, data_len, DMA_DIRECTION_FROM_DEVICE, req);
2005 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
2007 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
2009 switch (le32_to_cpu(c->cns)) {
2010 case NVME_ID_CNS_NS:
2011 return nvme_identify_ns(n, req);
2012 case NVME_ID_CNS_CS_NS:
2013 return nvme_identify_ns_csi(n, req);
2014 case NVME_ID_CNS_CTRL:
2015 return nvme_identify_ctrl(n, req);
2016 case NVME_ID_CNS_CS_CTRL:
2017 return nvme_identify_ctrl_csi(n, req);
2018 case NVME_ID_CNS_NS_ACTIVE_LIST:
2019 return nvme_identify_nslist(n, req);
2020 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
2021 return nvme_identify_nslist_csi(n, req);
2022 case NVME_ID_CNS_NS_DESCR_LIST:
2023 return nvme_identify_ns_descr_list(n, req);
2024 case NVME_ID_CNS_IO_COMMAND_SET:
2025 return nvme_identify_cmd_set(n, req);
2026 default:
2027 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
2028 return NVME_INVALID_FIELD | NVME_DNR;
2032 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
2034 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
2036 req->cqe.result = 1;
2037 if (nvme_check_sqid(n, sqid)) {
2038 return NVME_INVALID_FIELD | NVME_DNR;
2041 return NVME_SUCCESS;
2044 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
2046 trace_pci_nvme_setfeat_timestamp(ts);
2048 n->host_timestamp = le64_to_cpu(ts);
2049 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
2052 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
2054 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
2055 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
2057 union nvme_timestamp {
2058 struct {
2059 uint64_t timestamp:48;
2060 uint64_t sync:1;
2061 uint64_t origin:3;
2062 uint64_t rsvd1:12;
2064 uint64_t all;
2067 union nvme_timestamp ts;
2068 ts.all = 0;
2069 ts.timestamp = n->host_timestamp + elapsed_time;
2071 /* If the host timestamp is non-zero, set the timestamp origin */
2072 ts.origin = n->host_timestamp ? 0x01 : 0x00;
2074 trace_pci_nvme_getfeat_timestamp(ts.all);
2076 return cpu_to_le64(ts.all);
2079 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
2081 uint64_t timestamp = nvme_get_timestamp(n);
2083 return nvme_dma(n, (uint8_t *)&timestamp, sizeof(timestamp),
2084 DMA_DIRECTION_FROM_DEVICE, req);
2087 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
2089 NvmeCmd *cmd = &req->cmd;
2090 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
2091 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
2092 uint32_t nsid = le32_to_cpu(cmd->nsid);
2093 uint32_t result;
2094 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
2095 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
2096 uint16_t iv;
2097 NvmeNamespace *ns;
2099 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
2100 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
2103 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
2105 if (!nvme_feature_support[fid]) {
2106 return NVME_INVALID_FIELD | NVME_DNR;
2109 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
2110 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
2112 * The Reservation Notification Mask and Reservation Persistence
2113 * features require a status code of Invalid Field in Command when
2114 * NSID is 0xFFFFFFFF. Since the device does not support those
2115 * features we can always return Invalid Namespace or Format as we
2116 * should do for all other features.
2118 return NVME_INVALID_NSID | NVME_DNR;
2121 if (!nvme_ns(n, nsid)) {
2122 return NVME_INVALID_FIELD | NVME_DNR;
2126 switch (sel) {
2127 case NVME_GETFEAT_SELECT_CURRENT:
2128 break;
2129 case NVME_GETFEAT_SELECT_SAVED:
2130 /* no features are saveable by the controller; fallthrough */
2131 case NVME_GETFEAT_SELECT_DEFAULT:
2132 goto defaults;
2133 case NVME_GETFEAT_SELECT_CAP:
2134 result = nvme_feature_cap[fid];
2135 goto out;
2138 switch (fid) {
2139 case NVME_TEMPERATURE_THRESHOLD:
2140 result = 0;
2143 * The controller only implements the Composite Temperature sensor, so
2144 * return 0 for all other sensors.
2146 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
2147 goto out;
2150 switch (NVME_TEMP_THSEL(dw11)) {
2151 case NVME_TEMP_THSEL_OVER:
2152 result = n->features.temp_thresh_hi;
2153 goto out;
2154 case NVME_TEMP_THSEL_UNDER:
2155 result = n->features.temp_thresh_low;
2156 goto out;
2159 return NVME_INVALID_FIELD | NVME_DNR;
2160 case NVME_ERROR_RECOVERY:
2161 if (!nvme_nsid_valid(n, nsid)) {
2162 return NVME_INVALID_NSID | NVME_DNR;
2165 ns = nvme_ns(n, nsid);
2166 if (unlikely(!ns)) {
2167 return NVME_INVALID_FIELD | NVME_DNR;
2170 result = ns->features.err_rec;
2171 goto out;
2172 case NVME_VOLATILE_WRITE_CACHE:
2173 result = n->features.vwc;
2174 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
2175 goto out;
2176 case NVME_ASYNCHRONOUS_EVENT_CONF:
2177 result = n->features.async_config;
2178 goto out;
2179 case NVME_TIMESTAMP:
2180 return nvme_get_feature_timestamp(n, req);
2181 default:
2182 break;
2185 defaults:
2186 switch (fid) {
2187 case NVME_TEMPERATURE_THRESHOLD:
2188 result = 0;
2190 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
2191 break;
2194 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
2195 result = NVME_TEMPERATURE_WARNING;
2198 break;
2199 case NVME_NUMBER_OF_QUEUES:
2200 result = (n->params.max_ioqpairs - 1) |
2201 ((n->params.max_ioqpairs - 1) << 16);
2202 trace_pci_nvme_getfeat_numq(result);
2203 break;
2204 case NVME_INTERRUPT_VECTOR_CONF:
2205 iv = dw11 & 0xffff;
2206 if (iv >= n->params.max_ioqpairs + 1) {
2207 return NVME_INVALID_FIELD | NVME_DNR;
2210 result = iv;
2211 if (iv == n->admin_cq.vector) {
2212 result |= NVME_INTVC_NOCOALESCING;
2214 break;
2215 case NVME_COMMAND_SET_PROFILE:
2216 result = 0;
2217 break;
2218 default:
2219 result = nvme_feature_default[fid];
2220 break;
2223 out:
2224 req->cqe.result = cpu_to_le32(result);
2225 return NVME_SUCCESS;
2228 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
2230 uint16_t ret;
2231 uint64_t timestamp;
2233 ret = nvme_dma(n, (uint8_t *)&timestamp, sizeof(timestamp),
2234 DMA_DIRECTION_TO_DEVICE, req);
2235 if (ret != NVME_SUCCESS) {
2236 return ret;
2239 nvme_set_timestamp(n, timestamp);
2241 return NVME_SUCCESS;
2244 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
2246 NvmeNamespace *ns = NULL;
2248 NvmeCmd *cmd = &req->cmd;
2249 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
2250 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
2251 uint32_t nsid = le32_to_cpu(cmd->nsid);
2252 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
2253 uint8_t save = NVME_SETFEAT_SAVE(dw10);
2254 int i;
2256 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
2258 if (save) {
2259 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
2262 if (!nvme_feature_support[fid]) {
2263 return NVME_INVALID_FIELD | NVME_DNR;
2266 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
2267 if (nsid != NVME_NSID_BROADCAST) {
2268 if (!nvme_nsid_valid(n, nsid)) {
2269 return NVME_INVALID_NSID | NVME_DNR;
2272 ns = nvme_ns(n, nsid);
2273 if (unlikely(!ns)) {
2274 return NVME_INVALID_FIELD | NVME_DNR;
2277 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
2278 if (!nvme_nsid_valid(n, nsid)) {
2279 return NVME_INVALID_NSID | NVME_DNR;
2282 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
2285 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
2286 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
2289 switch (fid) {
2290 case NVME_TEMPERATURE_THRESHOLD:
2291 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
2292 break;
2295 switch (NVME_TEMP_THSEL(dw11)) {
2296 case NVME_TEMP_THSEL_OVER:
2297 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
2298 break;
2299 case NVME_TEMP_THSEL_UNDER:
2300 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
2301 break;
2302 default:
2303 return NVME_INVALID_FIELD | NVME_DNR;
2306 if (((n->temperature >= n->features.temp_thresh_hi) ||
2307 (n->temperature <= n->features.temp_thresh_low)) &&
2308 NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
2309 nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
2310 NVME_AER_INFO_SMART_TEMP_THRESH,
2311 NVME_LOG_SMART_INFO);
2314 break;
2315 case NVME_ERROR_RECOVERY:
2316 if (nsid == NVME_NSID_BROADCAST) {
2317 for (i = 1; i <= n->num_namespaces; i++) {
2318 ns = nvme_ns(n, i);
2320 if (!ns) {
2321 continue;
2324 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
2325 ns->features.err_rec = dw11;
2329 break;
2332 assert(ns);
2333 ns->features.err_rec = dw11;
2334 break;
2335 case NVME_VOLATILE_WRITE_CACHE:
2336 n->features.vwc = dw11 & 0x1;
2338 for (i = 1; i <= n->num_namespaces; i++) {
2339 ns = nvme_ns(n, i);
2340 if (!ns) {
2341 continue;
2344 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
2345 blk_flush(ns->blkconf.blk);
2348 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
2351 break;
2353 case NVME_NUMBER_OF_QUEUES:
2354 if (n->qs_created) {
2355 return NVME_CMD_SEQ_ERROR | NVME_DNR;
2359 * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
2360 * and NSQR.
2362 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
2363 return NVME_INVALID_FIELD | NVME_DNR;
2366 trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
2367 ((dw11 >> 16) & 0xFFFF) + 1,
2368 n->params.max_ioqpairs,
2369 n->params.max_ioqpairs);
2370 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
2371 ((n->params.max_ioqpairs - 1) << 16));
2372 break;
2373 case NVME_ASYNCHRONOUS_EVENT_CONF:
2374 n->features.async_config = dw11;
2375 break;
2376 case NVME_TIMESTAMP:
2377 return nvme_set_feature_timestamp(n, req);
2378 case NVME_COMMAND_SET_PROFILE:
2379 if (dw11 & 0x1ff) {
2380 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
2381 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
2383 break;
2384 default:
2385 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
2387 return NVME_SUCCESS;
2390 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
2392 trace_pci_nvme_aer(nvme_cid(req));
2394 if (n->outstanding_aers > n->params.aerl) {
2395 trace_pci_nvme_aer_aerl_exceeded();
2396 return NVME_AER_LIMIT_EXCEEDED;
2399 n->aer_reqs[n->outstanding_aers] = req;
2400 n->outstanding_aers++;
2402 if (!QTAILQ_EMPTY(&n->aer_queue)) {
2403 nvme_process_aers(n);
2406 return NVME_NO_COMPLETE;
2409 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
2411 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
2412 nvme_adm_opc_str(req->cmd.opcode));
2414 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
2415 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
2416 return NVME_INVALID_OPCODE | NVME_DNR;
2419 switch (req->cmd.opcode) {
2420 case NVME_ADM_CMD_DELETE_SQ:
2421 return nvme_del_sq(n, req);
2422 case NVME_ADM_CMD_CREATE_SQ:
2423 return nvme_create_sq(n, req);
2424 case NVME_ADM_CMD_GET_LOG_PAGE:
2425 return nvme_get_log(n, req);
2426 case NVME_ADM_CMD_DELETE_CQ:
2427 return nvme_del_cq(n, req);
2428 case NVME_ADM_CMD_CREATE_CQ:
2429 return nvme_create_cq(n, req);
2430 case NVME_ADM_CMD_IDENTIFY:
2431 return nvme_identify(n, req);
2432 case NVME_ADM_CMD_ABORT:
2433 return nvme_abort(n, req);
2434 case NVME_ADM_CMD_SET_FEATURES:
2435 return nvme_set_feature(n, req);
2436 case NVME_ADM_CMD_GET_FEATURES:
2437 return nvme_get_feature(n, req);
2438 case NVME_ADM_CMD_ASYNC_EV_REQ:
2439 return nvme_aer(n, req);
2440 default:
2441 assert(false);
2444 return NVME_INVALID_OPCODE | NVME_DNR;
2447 static void nvme_process_sq(void *opaque)
2449 NvmeSQueue *sq = opaque;
2450 NvmeCtrl *n = sq->ctrl;
2451 NvmeCQueue *cq = n->cq[sq->cqid];
2453 uint16_t status;
2454 hwaddr addr;
2455 NvmeCmd cmd;
2456 NvmeRequest *req;
2458 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
2459 addr = sq->dma_addr + sq->head * n->sqe_size;
2460 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
2461 trace_pci_nvme_err_addr_read(addr);
2462 trace_pci_nvme_err_cfs();
2463 n->bar.csts = NVME_CSTS_FAILED;
2464 break;
2466 nvme_inc_sq_head(sq);
2468 req = QTAILQ_FIRST(&sq->req_list);
2469 QTAILQ_REMOVE(&sq->req_list, req, entry);
2470 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
2471 nvme_req_clear(req);
2472 req->cqe.cid = cmd.cid;
2473 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
2475 status = sq->sqid ? nvme_io_cmd(n, req) :
2476 nvme_admin_cmd(n, req);
2477 if (status != NVME_NO_COMPLETE) {
2478 req->status = status;
2479 nvme_enqueue_req_completion(cq, req);
2484 static void nvme_clear_ctrl(NvmeCtrl *n)
2486 NvmeNamespace *ns;
2487 int i;
2489 for (i = 1; i <= n->num_namespaces; i++) {
2490 ns = nvme_ns(n, i);
2491 if (!ns) {
2492 continue;
2495 nvme_ns_drain(ns);
2498 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
2499 if (n->sq[i] != NULL) {
2500 nvme_free_sq(n->sq[i], n);
2503 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
2504 if (n->cq[i] != NULL) {
2505 nvme_free_cq(n->cq[i], n);
2509 while (!QTAILQ_EMPTY(&n->aer_queue)) {
2510 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
2511 QTAILQ_REMOVE(&n->aer_queue, event, entry);
2512 g_free(event);
2515 n->aer_queued = 0;
2516 n->outstanding_aers = 0;
2517 n->qs_created = false;
2520 static void nvme_ctrl_reset(NvmeCtrl *n)
2522 nvme_clear_ctrl(n);
2523 n->bar.cc = 0;
2526 static void nvme_ctrl_shutdown(NvmeCtrl *n)
2528 NvmeNamespace *ns;
2529 int i;
2531 nvme_clear_ctrl(n);
2533 for (i = 1; i <= n->num_namespaces; i++) {
2534 ns = nvme_ns(n, i);
2535 if (!ns) {
2536 continue;
2539 nvme_ns_shutdown(ns);
2543 static void nvme_select_ns_iocs(NvmeCtrl *n)
2545 NvmeNamespace *ns;
2546 int i;
2548 for (i = 1; i <= n->num_namespaces; i++) {
2549 ns = nvme_ns(n, i);
2550 if (!ns) {
2551 continue;
2553 ns->iocs = nvme_cse_iocs_none;
2554 switch (ns->csi) {
2555 case NVME_CSI_NVM:
2556 if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) {
2557 ns->iocs = nvme_cse_iocs_nvm;
2559 break;
2564 static int nvme_start_ctrl(NvmeCtrl *n)
2566 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
2567 uint32_t page_size = 1 << page_bits;
2569 if (unlikely(n->cq[0])) {
2570 trace_pci_nvme_err_startfail_cq();
2571 return -1;
2573 if (unlikely(n->sq[0])) {
2574 trace_pci_nvme_err_startfail_sq();
2575 return -1;
2577 if (unlikely(!n->bar.asq)) {
2578 trace_pci_nvme_err_startfail_nbarasq();
2579 return -1;
2581 if (unlikely(!n->bar.acq)) {
2582 trace_pci_nvme_err_startfail_nbaracq();
2583 return -1;
2585 if (unlikely(n->bar.asq & (page_size - 1))) {
2586 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
2587 return -1;
2589 if (unlikely(n->bar.acq & (page_size - 1))) {
2590 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
2591 return -1;
2593 if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
2594 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
2595 return -1;
2597 if (unlikely(NVME_CC_MPS(n->bar.cc) <
2598 NVME_CAP_MPSMIN(n->bar.cap))) {
2599 trace_pci_nvme_err_startfail_page_too_small(
2600 NVME_CC_MPS(n->bar.cc),
2601 NVME_CAP_MPSMIN(n->bar.cap));
2602 return -1;
2604 if (unlikely(NVME_CC_MPS(n->bar.cc) >
2605 NVME_CAP_MPSMAX(n->bar.cap))) {
2606 trace_pci_nvme_err_startfail_page_too_large(
2607 NVME_CC_MPS(n->bar.cc),
2608 NVME_CAP_MPSMAX(n->bar.cap));
2609 return -1;
2611 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
2612 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
2613 trace_pci_nvme_err_startfail_cqent_too_small(
2614 NVME_CC_IOCQES(n->bar.cc),
2615 NVME_CTRL_CQES_MIN(n->bar.cap));
2616 return -1;
2618 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
2619 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
2620 trace_pci_nvme_err_startfail_cqent_too_large(
2621 NVME_CC_IOCQES(n->bar.cc),
2622 NVME_CTRL_CQES_MAX(n->bar.cap));
2623 return -1;
2625 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
2626 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
2627 trace_pci_nvme_err_startfail_sqent_too_small(
2628 NVME_CC_IOSQES(n->bar.cc),
2629 NVME_CTRL_SQES_MIN(n->bar.cap));
2630 return -1;
2632 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
2633 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
2634 trace_pci_nvme_err_startfail_sqent_too_large(
2635 NVME_CC_IOSQES(n->bar.cc),
2636 NVME_CTRL_SQES_MAX(n->bar.cap));
2637 return -1;
2639 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
2640 trace_pci_nvme_err_startfail_asqent_sz_zero();
2641 return -1;
2643 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
2644 trace_pci_nvme_err_startfail_acqent_sz_zero();
2645 return -1;
2648 n->page_bits = page_bits;
2649 n->page_size = page_size;
2650 n->max_prp_ents = n->page_size / sizeof(uint64_t);
2651 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
2652 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
2653 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
2654 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
2655 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
2656 NVME_AQA_ASQS(n->bar.aqa) + 1);
2658 nvme_set_timestamp(n, 0ULL);
2660 QTAILQ_INIT(&n->aer_queue);
2662 nvme_select_ns_iocs(n);
2664 return 0;
2667 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
2668 unsigned size)
2670 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
2671 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
2672 "MMIO write not 32-bit aligned,"
2673 " offset=0x%"PRIx64"", offset);
2674 /* should be ignored, fall through for now */
2677 if (unlikely(size < sizeof(uint32_t))) {
2678 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
2679 "MMIO write smaller than 32-bits,"
2680 " offset=0x%"PRIx64", size=%u",
2681 offset, size);
2682 /* should be ignored, fall through for now */
2685 switch (offset) {
2686 case 0xc: /* INTMS */
2687 if (unlikely(msix_enabled(&(n->parent_obj)))) {
2688 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
2689 "undefined access to interrupt mask set"
2690 " when MSI-X is enabled");
2691 /* should be ignored, fall through for now */
2693 n->bar.intms |= data & 0xffffffff;
2694 n->bar.intmc = n->bar.intms;
2695 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
2696 nvme_irq_check(n);
2697 break;
2698 case 0x10: /* INTMC */
2699 if (unlikely(msix_enabled(&(n->parent_obj)))) {
2700 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
2701 "undefined access to interrupt mask clr"
2702 " when MSI-X is enabled");
2703 /* should be ignored, fall through for now */
2705 n->bar.intms &= ~(data & 0xffffffff);
2706 n->bar.intmc = n->bar.intms;
2707 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
2708 nvme_irq_check(n);
2709 break;
2710 case 0x14: /* CC */
2711 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
2712 /* Windows first sends data, then sends enable bit */
2713 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
2714 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
2716 n->bar.cc = data;
2719 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
2720 n->bar.cc = data;
2721 if (unlikely(nvme_start_ctrl(n))) {
2722 trace_pci_nvme_err_startfail();
2723 n->bar.csts = NVME_CSTS_FAILED;
2724 } else {
2725 trace_pci_nvme_mmio_start_success();
2726 n->bar.csts = NVME_CSTS_READY;
2728 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
2729 trace_pci_nvme_mmio_stopped();
2730 nvme_ctrl_reset(n);
2731 n->bar.csts &= ~NVME_CSTS_READY;
2733 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
2734 trace_pci_nvme_mmio_shutdown_set();
2735 nvme_ctrl_shutdown(n);
2736 n->bar.cc = data;
2737 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
2738 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
2739 trace_pci_nvme_mmio_shutdown_cleared();
2740 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
2741 n->bar.cc = data;
2743 break;
2744 case 0x1C: /* CSTS */
2745 if (data & (1 << 4)) {
2746 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
2747 "attempted to W1C CSTS.NSSRO"
2748 " but CAP.NSSRS is zero (not supported)");
2749 } else if (data != 0) {
2750 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
2751 "attempted to set a read only bit"
2752 " of controller status");
2754 break;
2755 case 0x20: /* NSSR */
2756 if (data == 0x4E564D65) {
2757 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
2758 } else {
2759 /* The spec says that writes of other values have no effect */
2760 return;
2762 break;
2763 case 0x24: /* AQA */
2764 n->bar.aqa = data & 0xffffffff;
2765 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
2766 break;
2767 case 0x28: /* ASQ */
2768 n->bar.asq = data;
2769 trace_pci_nvme_mmio_asqaddr(data);
2770 break;
2771 case 0x2c: /* ASQ hi */
2772 n->bar.asq |= data << 32;
2773 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
2774 break;
2775 case 0x30: /* ACQ */
2776 trace_pci_nvme_mmio_acqaddr(data);
2777 n->bar.acq = data;
2778 break;
2779 case 0x34: /* ACQ hi */
2780 n->bar.acq |= data << 32;
2781 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
2782 break;
2783 case 0x38: /* CMBLOC */
2784 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
2785 "invalid write to reserved CMBLOC"
2786 " when CMBSZ is zero, ignored");
2787 return;
2788 case 0x3C: /* CMBSZ */
2789 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
2790 "invalid write to read only CMBSZ, ignored");
2791 return;
2792 case 0xE00: /* PMRCAP */
2793 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
2794 "invalid write to PMRCAP register, ignored");
2795 return;
2796 case 0xE04: /* TODO PMRCTL */
2797 break;
2798 case 0xE08: /* PMRSTS */
2799 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
2800 "invalid write to PMRSTS register, ignored");
2801 return;
2802 case 0xE0C: /* PMREBS */
2803 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
2804 "invalid write to PMREBS register, ignored");
2805 return;
2806 case 0xE10: /* PMRSWTP */
2807 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
2808 "invalid write to PMRSWTP register, ignored");
2809 return;
2810 case 0xE14: /* TODO PMRMSC */
2811 break;
2812 default:
2813 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
2814 "invalid MMIO write,"
2815 " offset=0x%"PRIx64", data=%"PRIx64"",
2816 offset, data);
2817 break;
2821 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
2823 NvmeCtrl *n = (NvmeCtrl *)opaque;
2824 uint8_t *ptr = (uint8_t *)&n->bar;
2825 uint64_t val = 0;
2827 trace_pci_nvme_mmio_read(addr);
2829 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
2830 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
2831 "MMIO read not 32-bit aligned,"
2832 " offset=0x%"PRIx64"", addr);
2833 /* should RAZ, fall through for now */
2834 } else if (unlikely(size < sizeof(uint32_t))) {
2835 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
2836 "MMIO read smaller than 32-bits,"
2837 " offset=0x%"PRIx64"", addr);
2838 /* should RAZ, fall through for now */
2841 if (addr < sizeof(n->bar)) {
2843 * When PMRWBM bit 1 is set then read from
2844 * from PMRSTS should ensure prior writes
2845 * made it to persistent media
2847 if (addr == 0xE08 &&
2848 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
2849 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
2851 memcpy(&val, ptr + addr, size);
2852 } else {
2853 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
2854 "MMIO read beyond last register,"
2855 " offset=0x%"PRIx64", returning 0", addr);
2858 return val;
2861 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
2863 uint32_t qid;
2865 if (unlikely(addr & ((1 << 2) - 1))) {
2866 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
2867 "doorbell write not 32-bit aligned,"
2868 " offset=0x%"PRIx64", ignoring", addr);
2869 return;
2872 if (((addr - 0x1000) >> 2) & 1) {
2873 /* Completion queue doorbell write */
2875 uint16_t new_head = val & 0xffff;
2876 int start_sqs;
2877 NvmeCQueue *cq;
2879 qid = (addr - (0x1000 + (1 << 2))) >> 3;
2880 if (unlikely(nvme_check_cqid(n, qid))) {
2881 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
2882 "completion queue doorbell write"
2883 " for nonexistent queue,"
2884 " sqid=%"PRIu32", ignoring", qid);
2887 * NVM Express v1.3d, Section 4.1 state: "If host software writes
2888 * an invalid value to the Submission Queue Tail Doorbell or
2889 * Completion Queue Head Doorbell regiter and an Asynchronous Event
2890 * Request command is outstanding, then an asynchronous event is
2891 * posted to the Admin Completion Queue with a status code of
2892 * Invalid Doorbell Write Value."
2894 * Also note that the spec includes the "Invalid Doorbell Register"
2895 * status code, but nowhere does it specify when to use it.
2896 * However, it seems reasonable to use it here in a similar
2897 * fashion.
2899 if (n->outstanding_aers) {
2900 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2901 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2902 NVME_LOG_ERROR_INFO);
2905 return;
2908 cq = n->cq[qid];
2909 if (unlikely(new_head >= cq->size)) {
2910 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
2911 "completion queue doorbell write value"
2912 " beyond queue size, sqid=%"PRIu32","
2913 " new_head=%"PRIu16", ignoring",
2914 qid, new_head);
2916 if (n->outstanding_aers) {
2917 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2918 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2919 NVME_LOG_ERROR_INFO);
2922 return;
2925 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
2927 start_sqs = nvme_cq_full(cq) ? 1 : 0;
2928 cq->head = new_head;
2929 if (start_sqs) {
2930 NvmeSQueue *sq;
2931 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
2932 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2934 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2937 if (cq->tail == cq->head) {
2938 nvme_irq_deassert(n, cq);
2940 } else {
2941 /* Submission queue doorbell write */
2943 uint16_t new_tail = val & 0xffff;
2944 NvmeSQueue *sq;
2946 qid = (addr - 0x1000) >> 3;
2947 if (unlikely(nvme_check_sqid(n, qid))) {
2948 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
2949 "submission queue doorbell write"
2950 " for nonexistent queue,"
2951 " sqid=%"PRIu32", ignoring", qid);
2953 if (n->outstanding_aers) {
2954 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2955 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2956 NVME_LOG_ERROR_INFO);
2959 return;
2962 sq = n->sq[qid];
2963 if (unlikely(new_tail >= sq->size)) {
2964 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
2965 "submission queue doorbell write value"
2966 " beyond queue size, sqid=%"PRIu32","
2967 " new_tail=%"PRIu16", ignoring",
2968 qid, new_tail);
2970 if (n->outstanding_aers) {
2971 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2972 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2973 NVME_LOG_ERROR_INFO);
2976 return;
2979 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
2981 sq->tail = new_tail;
2982 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2986 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
2987 unsigned size)
2989 NvmeCtrl *n = (NvmeCtrl *)opaque;
2991 trace_pci_nvme_mmio_write(addr, data);
2993 if (addr < sizeof(n->bar)) {
2994 nvme_write_bar(n, addr, data, size);
2995 } else {
2996 nvme_process_db(n, addr, data);
3000 static const MemoryRegionOps nvme_mmio_ops = {
3001 .read = nvme_mmio_read,
3002 .write = nvme_mmio_write,
3003 .endianness = DEVICE_LITTLE_ENDIAN,
3004 .impl = {
3005 .min_access_size = 2,
3006 .max_access_size = 8,
3010 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
3011 unsigned size)
3013 NvmeCtrl *n = (NvmeCtrl *)opaque;
3014 stn_le_p(&n->cmbuf[addr], size, data);
3017 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
3019 NvmeCtrl *n = (NvmeCtrl *)opaque;
3020 return ldn_le_p(&n->cmbuf[addr], size);
3023 static const MemoryRegionOps nvme_cmb_ops = {
3024 .read = nvme_cmb_read,
3025 .write = nvme_cmb_write,
3026 .endianness = DEVICE_LITTLE_ENDIAN,
3027 .impl = {
3028 .min_access_size = 1,
3029 .max_access_size = 8,
3033 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
3035 NvmeParams *params = &n->params;
3037 if (params->num_queues) {
3038 warn_report("num_queues is deprecated; please use max_ioqpairs "
3039 "instead");
3041 params->max_ioqpairs = params->num_queues - 1;
3044 if (n->conf.blk) {
3045 warn_report("drive property is deprecated; "
3046 "please use an nvme-ns device instead");
3049 if (params->max_ioqpairs < 1 ||
3050 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
3051 error_setg(errp, "max_ioqpairs must be between 1 and %d",
3052 NVME_MAX_IOQPAIRS);
3053 return;
3056 if (params->msix_qsize < 1 ||
3057 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
3058 error_setg(errp, "msix_qsize must be between 1 and %d",
3059 PCI_MSIX_FLAGS_QSIZE + 1);
3060 return;
3063 if (!params->serial) {
3064 error_setg(errp, "serial property not set");
3065 return;
3068 if (!n->params.cmb_size_mb && n->pmrdev) {
3069 if (host_memory_backend_is_mapped(n->pmrdev)) {
3070 error_setg(errp, "can't use already busy memdev: %s",
3071 object_get_canonical_path_component(OBJECT(n->pmrdev)));
3072 return;
3075 if (!is_power_of_2(n->pmrdev->size)) {
3076 error_setg(errp, "pmr backend size needs to be power of 2 in size");
3077 return;
3080 host_memory_backend_set_mapped(n->pmrdev, true);
3084 static void nvme_init_state(NvmeCtrl *n)
3086 n->num_namespaces = NVME_MAX_NAMESPACES;
3087 /* add one to max_ioqpairs to account for the admin queue pair */
3088 n->reg_size = pow2ceil(sizeof(NvmeBar) +
3089 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
3090 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
3091 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
3092 n->temperature = NVME_TEMPERATURE;
3093 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
3094 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
3095 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
3098 int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
3100 uint32_t nsid = nvme_nsid(ns);
3102 if (nsid > NVME_MAX_NAMESPACES) {
3103 error_setg(errp, "invalid namespace id (must be between 0 and %d)",
3104 NVME_MAX_NAMESPACES);
3105 return -1;
3108 if (!nsid) {
3109 for (int i = 1; i <= n->num_namespaces; i++) {
3110 if (!nvme_ns(n, i)) {
3111 nsid = ns->params.nsid = i;
3112 break;
3116 if (!nsid) {
3117 error_setg(errp, "no free namespace id");
3118 return -1;
3120 } else {
3121 if (n->namespaces[nsid - 1]) {
3122 error_setg(errp, "namespace id '%d' is already in use", nsid);
3123 return -1;
3127 trace_pci_nvme_register_namespace(nsid);
3129 n->namespaces[nsid - 1] = ns;
3131 return 0;
3134 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
3136 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
3137 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
3139 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
3140 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
3141 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
3142 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
3143 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
3144 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
3145 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
3147 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
3148 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
3149 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
3150 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
3151 PCI_BASE_ADDRESS_SPACE_MEMORY |
3152 PCI_BASE_ADDRESS_MEM_TYPE_64 |
3153 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
3156 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
3158 /* Controller Capabilities register */
3159 NVME_CAP_SET_PMRS(n->bar.cap, 1);
3161 /* PMR Capabities register */
3162 n->bar.pmrcap = 0;
3163 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
3164 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
3165 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
3166 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
3167 /* Turn on bit 1 support */
3168 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
3169 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
3170 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
3172 /* PMR Control register */
3173 n->bar.pmrctl = 0;
3174 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
3176 /* PMR Status register */
3177 n->bar.pmrsts = 0;
3178 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
3179 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
3180 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
3181 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
3183 /* PMR Elasticity Buffer Size register */
3184 n->bar.pmrebs = 0;
3185 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
3186 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
3187 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
3189 /* PMR Sustained Write Throughput register */
3190 n->bar.pmrswtp = 0;
3191 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
3192 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
3194 /* PMR Memory Space Control register */
3195 n->bar.pmrmsc = 0;
3196 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
3197 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
3199 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
3200 PCI_BASE_ADDRESS_SPACE_MEMORY |
3201 PCI_BASE_ADDRESS_MEM_TYPE_64 |
3202 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
3205 static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
3207 uint8_t *pci_conf = pci_dev->config;
3209 pci_conf[PCI_INTERRUPT_PIN] = 1;
3210 pci_config_set_prog_interface(pci_conf, 0x2);
3212 if (n->params.use_intel_id) {
3213 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
3214 pci_config_set_device_id(pci_conf, 0x5845);
3215 } else {
3216 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
3217 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
3220 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
3221 pcie_endpoint_cap_init(pci_dev, 0x80);
3223 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
3224 n->reg_size);
3225 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
3226 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
3227 if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
3228 return;
3231 if (n->params.cmb_size_mb) {
3232 nvme_init_cmb(n, pci_dev);
3233 } else if (n->pmrdev) {
3234 nvme_init_pmr(n, pci_dev);
3238 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
3240 NvmeIdCtrl *id = &n->id_ctrl;
3241 uint8_t *pci_conf = pci_dev->config;
3242 char *subnqn;
3244 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
3245 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
3246 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
3247 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
3248 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
3249 id->rab = 6;
3250 id->ieee[0] = 0x00;
3251 id->ieee[1] = 0x02;
3252 id->ieee[2] = 0xb3;
3253 id->mdts = n->params.mdts;
3254 id->ver = cpu_to_le32(NVME_SPEC_VER);
3255 id->oacs = cpu_to_le16(0);
3258 * Because the controller always completes the Abort command immediately,
3259 * there can never be more than one concurrently executing Abort command,
3260 * so this value is never used for anything. Note that there can easily be
3261 * many Abort commands in the queues, but they are not considered
3262 * "executing" until processed by nvme_abort.
3264 * The specification recommends a value of 3 for Abort Command Limit (four
3265 * concurrently outstanding Abort commands), so lets use that though it is
3266 * inconsequential.
3268 id->acl = 3;
3269 id->aerl = n->params.aerl;
3270 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
3271 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
3273 /* recommended default value (~70 C) */
3274 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
3275 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
3277 id->sqes = (0x6 << 4) | 0x6;
3278 id->cqes = (0x4 << 4) | 0x4;
3279 id->nn = cpu_to_le32(n->num_namespaces);
3280 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
3281 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
3282 NVME_ONCS_COMPARE);
3284 id->vwc = 0x1;
3285 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
3286 NVME_CTRL_SGLS_BITBUCKET);
3288 subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial);
3289 strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0');
3290 g_free(subnqn);
3292 id->psd[0].mp = cpu_to_le16(0x9c4);
3293 id->psd[0].enlat = cpu_to_le32(0x10);
3294 id->psd[0].exlat = cpu_to_le32(0x4);
3296 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
3297 NVME_CAP_SET_CQR(n->bar.cap, 1);
3298 NVME_CAP_SET_TO(n->bar.cap, 0xf);
3299 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
3300 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP);
3301 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
3302 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
3304 n->bar.vs = NVME_SPEC_VER;
3305 n->bar.intmc = n->bar.intms = 0;
3308 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
3310 NvmeCtrl *n = NVME(pci_dev);
3311 NvmeNamespace *ns;
3312 Error *local_err = NULL;
3314 nvme_check_constraints(n, &local_err);
3315 if (local_err) {
3316 error_propagate(errp, local_err);
3317 return;
3320 qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
3321 &pci_dev->qdev, n->parent_obj.qdev.id);
3323 nvme_init_state(n);
3324 nvme_init_pci(n, pci_dev, &local_err);
3325 if (local_err) {
3326 error_propagate(errp, local_err);
3327 return;
3330 nvme_init_ctrl(n, pci_dev);
3332 /* setup a namespace if the controller drive property was given */
3333 if (n->namespace.blkconf.blk) {
3334 ns = &n->namespace;
3335 ns->params.nsid = 1;
3337 if (nvme_ns_setup(n, ns, errp)) {
3338 return;
3343 static void nvme_exit(PCIDevice *pci_dev)
3345 NvmeCtrl *n = NVME(pci_dev);
3347 nvme_ctrl_shutdown(n);
3348 g_free(n->cq);
3349 g_free(n->sq);
3350 g_free(n->aer_reqs);
3352 if (n->params.cmb_size_mb) {
3353 g_free(n->cmbuf);
3356 if (n->pmrdev) {
3357 host_memory_backend_set_mapped(n->pmrdev, false);
3359 msix_uninit_exclusive_bar(pci_dev);
3362 static Property nvme_props[] = {
3363 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
3364 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
3365 HostMemoryBackend *),
3366 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
3367 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
3368 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
3369 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
3370 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
3371 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
3372 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
3373 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
3374 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
3375 DEFINE_PROP_END_OF_LIST(),
3378 static const VMStateDescription nvme_vmstate = {
3379 .name = "nvme",
3380 .unmigratable = 1,
3383 static void nvme_class_init(ObjectClass *oc, void *data)
3385 DeviceClass *dc = DEVICE_CLASS(oc);
3386 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
3388 pc->realize = nvme_realize;
3389 pc->exit = nvme_exit;
3390 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
3391 pc->revision = 2;
3393 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
3394 dc->desc = "Non-Volatile Memory Express";
3395 device_class_set_props(dc, nvme_props);
3396 dc->vmsd = &nvme_vmstate;
3399 static void nvme_instance_init(Object *obj)
3401 NvmeCtrl *s = NVME(obj);
3403 if (s->namespace.blkconf.blk) {
3404 device_add_bootindex_property(obj, &s->namespace.blkconf.bootindex,
3405 "bootindex", "/namespace@1,0",
3406 DEVICE(obj));
3410 static const TypeInfo nvme_info = {
3411 .name = TYPE_NVME,
3412 .parent = TYPE_PCI_DEVICE,
3413 .instance_size = sizeof(NvmeCtrl),
3414 .instance_init = nvme_instance_init,
3415 .class_init = nvme_class_init,
3416 .interfaces = (InterfaceInfo[]) {
3417 { INTERFACE_PCIE_DEVICE },
3422 static const TypeInfo nvme_bus_info = {
3423 .name = TYPE_NVME_BUS,
3424 .parent = TYPE_BUS,
3425 .instance_size = sizeof(NvmeBus),
3428 static void nvme_register_types(void)
3430 type_register_static(&nvme_info);
3431 type_register_static(&nvme_bus_info);
3434 type_init(nvme_register_types)