4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "qemu/atomic.h"
24 #include "qemu/option.h"
25 #include "qemu/config-file.h"
26 #include "qemu/error-report.h"
28 #include "hw/pci/msi.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
44 #include <sys/eventfd.h>
47 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
48 * need to use the real host PAGE_SIZE, as that's what KVM will use.
50 #define PAGE_SIZE getpagesize()
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #define DPRINTF(fmt, ...) \
62 #define KVM_MSI_HASHTAB_SIZE 256
66 AccelState parent_obj
;
72 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
73 bool coalesced_flush_in_progress
;
74 int broken_set_mem_region
;
76 int robust_singlestep
;
78 #ifdef KVM_CAP_SET_GUEST_DEBUG
79 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
83 /* The man page (and posix) say ioctl numbers are signed int, but
84 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
85 * unsigned, and treating them as signed here can break things */
86 unsigned irq_set_ioctl
;
87 unsigned int sigmask_len
;
89 #ifdef KVM_CAP_IRQ_ROUTING
90 struct kvm_irq_routing
*irq_routes
;
91 int nr_allocated_irq_routes
;
92 unsigned long *used_gsi_bitmap
;
93 unsigned int gsi_count
;
94 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
96 KVMMemoryListener memory_listener
;
100 bool kvm_kernel_irqchip
;
101 bool kvm_split_irqchip
;
102 bool kvm_async_interrupts_allowed
;
103 bool kvm_halt_in_kernel_allowed
;
104 bool kvm_eventfds_allowed
;
105 bool kvm_irqfds_allowed
;
106 bool kvm_resamplefds_allowed
;
107 bool kvm_msi_via_irqfd_allowed
;
108 bool kvm_gsi_routing_allowed
;
109 bool kvm_gsi_direct_mapping
;
111 bool kvm_readonly_mem_allowed
;
112 bool kvm_vm_attributes_allowed
;
113 bool kvm_direct_msi_allowed
;
114 bool kvm_ioeventfd_any_length_allowed
;
116 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
117 KVM_CAP_INFO(USER_MEMORY
),
118 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
122 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
124 KVMState
*s
= kvm_state
;
127 for (i
= 0; i
< s
->nr_slots
; i
++) {
128 if (kml
->slots
[i
].memory_size
== 0) {
129 return &kml
->slots
[i
];
136 bool kvm_has_free_slot(MachineState
*ms
)
138 KVMState
*s
= KVM_STATE(ms
->accelerator
);
140 return kvm_get_free_slot(&s
->memory_listener
);
143 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
145 KVMSlot
*slot
= kvm_get_free_slot(kml
);
151 fprintf(stderr
, "%s: no free slot available\n", __func__
);
155 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
159 KVMState
*s
= kvm_state
;
162 for (i
= 0; i
< s
->nr_slots
; i
++) {
163 KVMSlot
*mem
= &kml
->slots
[i
];
165 if (start_addr
== mem
->start_addr
&&
166 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
175 * Find overlapping slot with lowest start address
177 static KVMSlot
*kvm_lookup_overlapping_slot(KVMMemoryListener
*kml
,
181 KVMState
*s
= kvm_state
;
182 KVMSlot
*found
= NULL
;
185 for (i
= 0; i
< s
->nr_slots
; i
++) {
186 KVMSlot
*mem
= &kml
->slots
[i
];
188 if (mem
->memory_size
== 0 ||
189 (found
&& found
->start_addr
< mem
->start_addr
)) {
193 if (end_addr
> mem
->start_addr
&&
194 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
202 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
205 KVMMemoryListener
*kml
= &s
->memory_listener
;
208 for (i
= 0; i
< s
->nr_slots
; i
++) {
209 KVMSlot
*mem
= &kml
->slots
[i
];
211 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
212 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
220 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
)
222 KVMState
*s
= kvm_state
;
223 struct kvm_userspace_memory_region mem
;
225 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
226 mem
.guest_phys_addr
= slot
->start_addr
;
227 mem
.userspace_addr
= (unsigned long)slot
->ram
;
228 mem
.flags
= slot
->flags
;
230 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
231 /* Set the slot size to 0 before setting the slot to the desired
232 * value. This is needed based on KVM commit 75d61fbc. */
234 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
236 mem
.memory_size
= slot
->memory_size
;
237 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
240 int kvm_init_vcpu(CPUState
*cpu
)
242 KVMState
*s
= kvm_state
;
246 DPRINTF("kvm_init_vcpu\n");
248 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
250 DPRINTF("kvm_create_vcpu failed\n");
256 cpu
->kvm_vcpu_dirty
= true;
258 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
261 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
265 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
267 if (cpu
->kvm_run
== MAP_FAILED
) {
269 DPRINTF("mmap'ing vcpu state failed\n");
273 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
274 s
->coalesced_mmio_ring
=
275 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
278 ret
= kvm_arch_init_vcpu(cpu
);
284 * dirty pages logging control
287 static int kvm_mem_flags(MemoryRegion
*mr
)
289 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
292 if (memory_region_get_dirty_log_mask(mr
) != 0) {
293 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
295 if (readonly
&& kvm_readonly_mem_allowed
) {
296 flags
|= KVM_MEM_READONLY
;
301 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
306 old_flags
= mem
->flags
;
307 mem
->flags
= kvm_mem_flags(mr
);
309 /* If nothing changed effectively, no need to issue ioctl */
310 if (mem
->flags
== old_flags
) {
314 return kvm_set_user_memory_region(kml
, mem
);
317 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
318 MemoryRegionSection
*section
)
320 hwaddr phys_addr
= section
->offset_within_address_space
;
321 ram_addr_t size
= int128_get64(section
->size
);
322 KVMSlot
*mem
= kvm_lookup_matching_slot(kml
, phys_addr
, phys_addr
+ size
);
327 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
331 static void kvm_log_start(MemoryListener
*listener
,
332 MemoryRegionSection
*section
,
335 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
342 r
= kvm_section_update_flags(kml
, section
);
348 static void kvm_log_stop(MemoryListener
*listener
,
349 MemoryRegionSection
*section
,
352 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
359 r
= kvm_section_update_flags(kml
, section
);
365 /* get kvm's dirty pages bitmap and update qemu's */
366 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
367 unsigned long *bitmap
)
369 ram_addr_t start
= section
->offset_within_region
+
370 memory_region_get_ram_addr(section
->mr
);
371 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
373 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
377 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
380 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
381 * This function updates qemu's dirty bitmap using
382 * memory_region_set_dirty(). This means all bits are set
385 * @start_add: start of logged region.
386 * @end_addr: end of logged region.
388 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
389 MemoryRegionSection
*section
)
391 KVMState
*s
= kvm_state
;
392 unsigned long size
, allocated_size
= 0;
393 struct kvm_dirty_log d
= {};
396 hwaddr start_addr
= section
->offset_within_address_space
;
397 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
399 d
.dirty_bitmap
= NULL
;
400 while (start_addr
< end_addr
) {
401 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, end_addr
);
406 /* XXX bad kernel interface alert
407 * For dirty bitmap, kernel allocates array of size aligned to
408 * bits-per-long. But for case when the kernel is 64bits and
409 * the userspace is 32bits, userspace can't align to the same
410 * bits-per-long, since sizeof(long) is different between kernel
411 * and user space. This way, userspace will provide buffer which
412 * may be 4 bytes less than the kernel will use, resulting in
413 * userspace memory corruption (which is not detectable by valgrind
414 * too, in most cases).
415 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
416 * a hope that sizeof(long) won't become >8 any time soon.
418 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
419 /*HOST_LONG_BITS*/ 64) / 8;
420 if (!d
.dirty_bitmap
) {
421 d
.dirty_bitmap
= g_malloc(size
);
422 } else if (size
> allocated_size
) {
423 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
425 allocated_size
= size
;
426 memset(d
.dirty_bitmap
, 0, allocated_size
);
428 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
429 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
430 DPRINTF("ioctl failed %d\n", errno
);
435 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
436 start_addr
= mem
->start_addr
+ mem
->memory_size
;
438 g_free(d
.dirty_bitmap
);
443 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
444 MemoryRegionSection
*secion
,
445 hwaddr start
, hwaddr size
)
447 KVMState
*s
= kvm_state
;
449 if (s
->coalesced_mmio
) {
450 struct kvm_coalesced_mmio_zone zone
;
456 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
460 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
461 MemoryRegionSection
*secion
,
462 hwaddr start
, hwaddr size
)
464 KVMState
*s
= kvm_state
;
466 if (s
->coalesced_mmio
) {
467 struct kvm_coalesced_mmio_zone zone
;
473 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
477 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
481 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
489 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
493 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
495 /* VM wide version not implemented, use global one instead */
496 ret
= kvm_check_extension(s
, extension
);
502 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
504 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
505 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
506 * endianness, but the memory core hands them in target endianness.
507 * For example, PPC is always treated as big-endian even if running
508 * on KVM and on PPC64LE. Correct here.
522 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
523 bool assign
, uint32_t size
, bool datamatch
)
526 struct kvm_ioeventfd iofd
= {
527 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
534 if (!kvm_enabled()) {
539 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
542 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
545 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
554 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
555 bool assign
, uint32_t size
, bool datamatch
)
557 struct kvm_ioeventfd kick
= {
558 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
560 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
565 if (!kvm_enabled()) {
569 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
572 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
574 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
582 static int kvm_check_many_ioeventfds(void)
584 /* Userspace can use ioeventfd for io notification. This requires a host
585 * that supports eventfd(2) and an I/O thread; since eventfd does not
586 * support SIGIO it cannot interrupt the vcpu.
588 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
589 * can avoid creating too many ioeventfds.
591 #if defined(CONFIG_EVENTFD)
594 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
595 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
596 if (ioeventfds
[i
] < 0) {
599 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
601 close(ioeventfds
[i
]);
606 /* Decide whether many devices are supported or not */
607 ret
= i
== ARRAY_SIZE(ioeventfds
);
610 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
611 close(ioeventfds
[i
]);
619 static const KVMCapabilityInfo
*
620 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
623 if (!kvm_check_extension(s
, list
->value
)) {
631 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
632 MemoryRegionSection
*section
, bool add
)
634 KVMState
*s
= kvm_state
;
637 MemoryRegion
*mr
= section
->mr
;
638 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
639 hwaddr start_addr
= section
->offset_within_address_space
;
640 ram_addr_t size
= int128_get64(section
->size
);
644 /* kvm works in page size chunks, but the function may be called
645 with sub-page size and unaligned start address. Pad the start
646 address to next and truncate size to previous page boundary. */
647 delta
= qemu_real_host_page_size
- (start_addr
& ~qemu_real_host_page_mask
);
648 delta
&= ~qemu_real_host_page_mask
;
654 size
&= qemu_real_host_page_mask
;
655 if (!size
|| (start_addr
& ~qemu_real_host_page_mask
)) {
659 if (!memory_region_is_ram(mr
)) {
660 if (writeable
|| !kvm_readonly_mem_allowed
) {
662 } else if (!mr
->romd_mode
) {
663 /* If the memory device is not in romd_mode, then we actually want
664 * to remove the kvm memory slot so all accesses will trap. */
669 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
672 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, start_addr
+ size
);
677 if (add
&& start_addr
>= mem
->start_addr
&&
678 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
679 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
680 /* The new slot fits into the existing one and comes with
681 * identical parameters - update flags and done. */
682 kvm_slot_update_flags(kml
, mem
, mr
);
688 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
689 kvm_physical_sync_dirty_bitmap(kml
, section
);
692 /* unregister the overlapping slot */
693 mem
->memory_size
= 0;
694 err
= kvm_set_user_memory_region(kml
, mem
);
696 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
697 __func__
, strerror(-err
));
701 /* Workaround for older KVM versions: we can't join slots, even not by
702 * unregistering the previous ones and then registering the larger
703 * slot. We have to maintain the existing fragmentation. Sigh.
705 * This workaround assumes that the new slot starts at the same
706 * address as the first existing one. If not or if some overlapping
707 * slot comes around later, we will fail (not seen in practice so far)
708 * - and actually require a recent KVM version. */
709 if (s
->broken_set_mem_region
&&
710 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
711 mem
= kvm_alloc_slot(kml
);
712 mem
->memory_size
= old
.memory_size
;
713 mem
->start_addr
= old
.start_addr
;
715 mem
->flags
= kvm_mem_flags(mr
);
717 err
= kvm_set_user_memory_region(kml
, mem
);
719 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
724 start_addr
+= old
.memory_size
;
725 ram
+= old
.memory_size
;
726 size
-= old
.memory_size
;
730 /* register prefix slot */
731 if (old
.start_addr
< start_addr
) {
732 mem
= kvm_alloc_slot(kml
);
733 mem
->memory_size
= start_addr
- old
.start_addr
;
734 mem
->start_addr
= old
.start_addr
;
736 mem
->flags
= kvm_mem_flags(mr
);
738 err
= kvm_set_user_memory_region(kml
, mem
);
740 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
741 __func__
, strerror(-err
));
743 fprintf(stderr
, "%s: This is probably because your kernel's " \
744 "PAGE_SIZE is too big. Please try to use 4k " \
745 "PAGE_SIZE!\n", __func__
);
751 /* register suffix slot */
752 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
753 ram_addr_t size_delta
;
755 mem
= kvm_alloc_slot(kml
);
756 mem
->start_addr
= start_addr
+ size
;
757 size_delta
= mem
->start_addr
- old
.start_addr
;
758 mem
->memory_size
= old
.memory_size
- size_delta
;
759 mem
->ram
= old
.ram
+ size_delta
;
760 mem
->flags
= kvm_mem_flags(mr
);
762 err
= kvm_set_user_memory_region(kml
, mem
);
764 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
765 __func__
, strerror(-err
));
771 /* in case the KVM bug workaround already "consumed" the new slot */
778 mem
= kvm_alloc_slot(kml
);
779 mem
->memory_size
= size
;
780 mem
->start_addr
= start_addr
;
782 mem
->flags
= kvm_mem_flags(mr
);
784 err
= kvm_set_user_memory_region(kml
, mem
);
786 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
792 static void kvm_region_add(MemoryListener
*listener
,
793 MemoryRegionSection
*section
)
795 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
797 memory_region_ref(section
->mr
);
798 kvm_set_phys_mem(kml
, section
, true);
801 static void kvm_region_del(MemoryListener
*listener
,
802 MemoryRegionSection
*section
)
804 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
806 kvm_set_phys_mem(kml
, section
, false);
807 memory_region_unref(section
->mr
);
810 static void kvm_log_sync(MemoryListener
*listener
,
811 MemoryRegionSection
*section
)
813 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
816 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
822 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
823 MemoryRegionSection
*section
,
824 bool match_data
, uint64_t data
,
827 int fd
= event_notifier_get_fd(e
);
830 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
831 data
, true, int128_get64(section
->size
),
834 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
835 __func__
, strerror(-r
));
840 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
841 MemoryRegionSection
*section
,
842 bool match_data
, uint64_t data
,
845 int fd
= event_notifier_get_fd(e
);
848 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
849 data
, false, int128_get64(section
->size
),
856 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
857 MemoryRegionSection
*section
,
858 bool match_data
, uint64_t data
,
861 int fd
= event_notifier_get_fd(e
);
864 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
865 data
, true, int128_get64(section
->size
),
868 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
869 __func__
, strerror(-r
));
874 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
875 MemoryRegionSection
*section
,
876 bool match_data
, uint64_t data
,
880 int fd
= event_notifier_get_fd(e
);
883 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
884 data
, false, int128_get64(section
->size
),
891 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
892 AddressSpace
*as
, int as_id
)
896 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
899 for (i
= 0; i
< s
->nr_slots
; i
++) {
900 kml
->slots
[i
].slot
= i
;
903 kml
->listener
.region_add
= kvm_region_add
;
904 kml
->listener
.region_del
= kvm_region_del
;
905 kml
->listener
.log_start
= kvm_log_start
;
906 kml
->listener
.log_stop
= kvm_log_stop
;
907 kml
->listener
.log_sync
= kvm_log_sync
;
908 kml
->listener
.priority
= 10;
910 memory_listener_register(&kml
->listener
, as
);
913 static MemoryListener kvm_io_listener
= {
914 .eventfd_add
= kvm_io_ioeventfd_add
,
915 .eventfd_del
= kvm_io_ioeventfd_del
,
919 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
921 cpu
->interrupt_request
|= mask
;
923 if (!qemu_cpu_is_self(cpu
)) {
928 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
930 struct kvm_irq_level event
;
933 assert(kvm_async_interrupts_enabled());
937 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
939 perror("kvm_set_irq");
943 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
946 #ifdef KVM_CAP_IRQ_ROUTING
947 typedef struct KVMMSIRoute
{
948 struct kvm_irq_routing_entry kroute
;
949 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
952 static void set_gsi(KVMState
*s
, unsigned int gsi
)
954 set_bit(gsi
, s
->used_gsi_bitmap
);
957 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
959 clear_bit(gsi
, s
->used_gsi_bitmap
);
962 void kvm_init_irq_routing(KVMState
*s
)
966 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
968 /* Round up so we can search ints using ffs */
969 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
970 s
->gsi_count
= gsi_count
;
973 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
974 s
->nr_allocated_irq_routes
= 0;
976 if (!kvm_direct_msi_allowed
) {
977 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
978 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
982 kvm_arch_init_irq_routing(s
);
985 void kvm_irqchip_commit_routes(KVMState
*s
)
989 s
->irq_routes
->flags
= 0;
990 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
994 static void kvm_add_routing_entry(KVMState
*s
,
995 struct kvm_irq_routing_entry
*entry
)
997 struct kvm_irq_routing_entry
*new;
1000 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1001 n
= s
->nr_allocated_irq_routes
* 2;
1005 size
= sizeof(struct kvm_irq_routing
);
1006 size
+= n
* sizeof(*new);
1007 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1008 s
->nr_allocated_irq_routes
= n
;
1010 n
= s
->irq_routes
->nr
++;
1011 new = &s
->irq_routes
->entries
[n
];
1015 set_gsi(s
, entry
->gsi
);
1018 static int kvm_update_routing_entry(KVMState
*s
,
1019 struct kvm_irq_routing_entry
*new_entry
)
1021 struct kvm_irq_routing_entry
*entry
;
1024 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1025 entry
= &s
->irq_routes
->entries
[n
];
1026 if (entry
->gsi
!= new_entry
->gsi
) {
1030 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1034 *entry
= *new_entry
;
1036 kvm_irqchip_commit_routes(s
);
1044 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1046 struct kvm_irq_routing_entry e
= {};
1048 assert(pin
< s
->gsi_count
);
1051 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1053 e
.u
.irqchip
.irqchip
= irqchip
;
1054 e
.u
.irqchip
.pin
= pin
;
1055 kvm_add_routing_entry(s
, &e
);
1058 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1060 struct kvm_irq_routing_entry
*e
;
1063 if (kvm_gsi_direct_mapping()) {
1067 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1068 e
= &s
->irq_routes
->entries
[i
];
1069 if (e
->gsi
== virq
) {
1070 s
->irq_routes
->nr
--;
1071 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1077 static unsigned int kvm_hash_msi(uint32_t data
)
1079 /* This is optimized for IA32 MSI layout. However, no other arch shall
1080 * repeat the mistake of not providing a direct MSI injection API. */
1084 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1086 KVMMSIRoute
*route
, *next
;
1089 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1090 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1091 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1092 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1098 static int kvm_irqchip_get_virq(KVMState
*s
)
1103 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1104 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1105 * number can succeed even though a new route entry cannot be added.
1106 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1108 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1109 kvm_flush_dynamic_msi_routes(s
);
1112 /* Return the lowest unused GSI in the bitmap */
1113 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1114 if (next_virq
>= s
->gsi_count
) {
1121 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1123 unsigned int hash
= kvm_hash_msi(msg
.data
);
1126 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1127 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1128 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1129 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1136 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1141 if (kvm_direct_msi_allowed
) {
1142 msi
.address_lo
= (uint32_t)msg
.address
;
1143 msi
.address_hi
= msg
.address
>> 32;
1144 msi
.data
= le32_to_cpu(msg
.data
);
1146 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1148 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1151 route
= kvm_lookup_msi_route(s
, msg
);
1155 virq
= kvm_irqchip_get_virq(s
);
1160 route
= g_malloc0(sizeof(KVMMSIRoute
));
1161 route
->kroute
.gsi
= virq
;
1162 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1163 route
->kroute
.flags
= 0;
1164 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1165 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1166 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1168 kvm_add_routing_entry(s
, &route
->kroute
);
1169 kvm_irqchip_commit_routes(s
);
1171 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1175 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1177 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1180 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
, PCIDevice
*dev
)
1182 struct kvm_irq_routing_entry kroute
= {};
1185 if (kvm_gsi_direct_mapping()) {
1186 return kvm_arch_msi_data_to_gsi(msg
.data
);
1189 if (!kvm_gsi_routing_enabled()) {
1193 virq
= kvm_irqchip_get_virq(s
);
1199 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1201 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1202 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1203 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1204 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1205 kvm_irqchip_release_virq(s
, virq
);
1209 kvm_add_routing_entry(s
, &kroute
);
1210 kvm_irqchip_commit_routes(s
);
1215 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1218 struct kvm_irq_routing_entry kroute
= {};
1220 if (kvm_gsi_direct_mapping()) {
1224 if (!kvm_irqchip_in_kernel()) {
1229 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1231 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1232 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1233 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1234 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1238 return kvm_update_routing_entry(s
, &kroute
);
1241 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1244 struct kvm_irqfd irqfd
= {
1247 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1251 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1252 irqfd
.resamplefd
= rfd
;
1255 if (!kvm_irqfds_enabled()) {
1259 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1262 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1264 struct kvm_irq_routing_entry kroute
= {};
1267 if (!kvm_gsi_routing_enabled()) {
1271 virq
= kvm_irqchip_get_virq(s
);
1277 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1279 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1280 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1281 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1282 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1283 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1285 kvm_add_routing_entry(s
, &kroute
);
1290 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1292 struct kvm_irq_routing_entry kroute
= {};
1295 if (!kvm_gsi_routing_enabled()) {
1298 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1301 virq
= kvm_irqchip_get_virq(s
);
1307 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1309 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1310 kroute
.u
.hv_sint
.sint
= sint
;
1312 kvm_add_routing_entry(s
, &kroute
);
1313 kvm_irqchip_commit_routes(s
);
1318 #else /* !KVM_CAP_IRQ_ROUTING */
1320 void kvm_init_irq_routing(KVMState
*s
)
1324 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1328 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1333 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1338 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1343 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1348 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1353 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1357 #endif /* !KVM_CAP_IRQ_ROUTING */
1359 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1360 EventNotifier
*rn
, int virq
)
1362 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1363 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1366 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1369 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1373 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1374 EventNotifier
*rn
, qemu_irq irq
)
1377 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1382 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1385 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1389 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1394 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1397 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1399 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1402 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1406 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1408 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1409 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1411 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1418 /* First probe and see if there's a arch-specific hook to create the
1419 * in-kernel irqchip for us */
1420 ret
= kvm_arch_irqchip_create(machine
, s
);
1422 if (machine_kernel_irqchip_split(machine
)) {
1423 perror("Split IRQ chip mode not supported.");
1426 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1430 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1434 kvm_kernel_irqchip
= true;
1435 /* If we have an in-kernel IRQ chip then we must have asynchronous
1436 * interrupt delivery (though the reverse is not necessarily true)
1438 kvm_async_interrupts_allowed
= true;
1439 kvm_halt_in_kernel_allowed
= true;
1441 kvm_init_irq_routing(s
);
1443 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1446 /* Find number of supported CPUs using the recommended
1447 * procedure from the kernel API documentation to cope with
1448 * older kernels that may be missing capabilities.
1450 static int kvm_recommended_vcpus(KVMState
*s
)
1452 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1453 return (ret
) ? ret
: 4;
1456 static int kvm_max_vcpus(KVMState
*s
)
1458 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1459 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1462 static int kvm_init(MachineState
*ms
)
1464 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1465 static const char upgrade_note
[] =
1466 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1467 "(see http://sourceforge.net/projects/kvm).\n";
1472 { "SMP", smp_cpus
},
1473 { "hotpluggable", max_cpus
},
1476 int soft_vcpus_limit
, hard_vcpus_limit
;
1478 const KVMCapabilityInfo
*missing_cap
;
1481 const char *kvm_type
;
1483 s
= KVM_STATE(ms
->accelerator
);
1486 * On systems where the kernel can support different base page
1487 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1488 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1489 * page size for the system though.
1491 assert(TARGET_PAGE_SIZE
<= getpagesize());
1495 #ifdef KVM_CAP_SET_GUEST_DEBUG
1496 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1499 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1501 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1506 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1507 if (ret
< KVM_API_VERSION
) {
1511 fprintf(stderr
, "kvm version too old\n");
1515 if (ret
> KVM_API_VERSION
) {
1517 fprintf(stderr
, "kvm version not supported\n");
1521 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1523 /* If unspecified, use the default value */
1528 /* check the vcpu limits */
1529 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1530 hard_vcpus_limit
= kvm_max_vcpus(s
);
1533 if (nc
->num
> soft_vcpus_limit
) {
1535 "Warning: Number of %s cpus requested (%d) exceeds "
1536 "the recommended cpus supported by KVM (%d)\n",
1537 nc
->name
, nc
->num
, soft_vcpus_limit
);
1539 if (nc
->num
> hard_vcpus_limit
) {
1540 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1541 "the maximum cpus supported by KVM (%d)\n",
1542 nc
->name
, nc
->num
, hard_vcpus_limit
);
1549 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1551 type
= mc
->kvm_type(kvm_type
);
1552 } else if (kvm_type
) {
1554 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1559 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1560 } while (ret
== -EINTR
);
1563 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1567 if (ret
== -EINVAL
) {
1569 "Host kernel setup problem detected. Please verify:\n");
1570 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1571 " user_mode parameters, whether\n");
1573 " user space is running in primary address space\n");
1575 "- for kernels supporting the vm.allocate_pgste sysctl, "
1576 "whether it is enabled\n");
1583 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1586 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1590 fprintf(stderr
, "kvm does not support %s\n%s",
1591 missing_cap
->name
, upgrade_note
);
1595 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1597 s
->broken_set_mem_region
= 1;
1598 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1600 s
->broken_set_mem_region
= 0;
1603 #ifdef KVM_CAP_VCPU_EVENTS
1604 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1607 s
->robust_singlestep
=
1608 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1610 #ifdef KVM_CAP_DEBUGREGS
1611 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1614 #ifdef KVM_CAP_IRQ_ROUTING
1615 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1618 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1620 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1621 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1622 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1625 #ifdef KVM_CAP_READONLY_MEM
1626 kvm_readonly_mem_allowed
=
1627 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1630 kvm_eventfds_allowed
=
1631 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1633 kvm_irqfds_allowed
=
1634 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1636 kvm_resamplefds_allowed
=
1637 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1639 kvm_vm_attributes_allowed
=
1640 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1642 kvm_ioeventfd_any_length_allowed
=
1643 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
1645 ret
= kvm_arch_init(ms
, s
);
1650 if (machine_kernel_irqchip_allowed(ms
)) {
1651 kvm_irqchip_create(ms
, s
);
1656 if (kvm_eventfds_allowed
) {
1657 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1658 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1660 s
->memory_listener
.listener
.coalesced_mmio_add
= kvm_coalesce_mmio_region
;
1661 s
->memory_listener
.listener
.coalesced_mmio_del
= kvm_uncoalesce_mmio_region
;
1663 kvm_memory_listener_register(s
, &s
->memory_listener
,
1664 &address_space_memory
, 0);
1665 memory_listener_register(&kvm_io_listener
,
1668 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1670 cpu_interrupt_handler
= kvm_handle_interrupt
;
1682 g_free(s
->memory_listener
.slots
);
1687 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1689 s
->sigmask_len
= sigmask_len
;
1692 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1693 int size
, uint32_t count
)
1696 uint8_t *ptr
= data
;
1698 for (i
= 0; i
< count
; i
++) {
1699 address_space_rw(&address_space_io
, port
, attrs
,
1701 direction
== KVM_EXIT_IO_OUT
);
1706 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1708 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1709 run
->internal
.suberror
);
1711 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1714 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1715 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1716 i
, (uint64_t)run
->internal
.data
[i
]);
1719 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1720 fprintf(stderr
, "emulation failure\n");
1721 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1722 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1723 return EXCP_INTERRUPT
;
1726 /* FIXME: Should trigger a qmp message to let management know
1727 * something went wrong.
1732 void kvm_flush_coalesced_mmio_buffer(void)
1734 KVMState
*s
= kvm_state
;
1736 if (s
->coalesced_flush_in_progress
) {
1740 s
->coalesced_flush_in_progress
= true;
1742 if (s
->coalesced_mmio_ring
) {
1743 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1744 while (ring
->first
!= ring
->last
) {
1745 struct kvm_coalesced_mmio
*ent
;
1747 ent
= &ring
->coalesced_mmio
[ring
->first
];
1749 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1751 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1755 s
->coalesced_flush_in_progress
= false;
1758 static void do_kvm_cpu_synchronize_state(void *arg
)
1760 CPUState
*cpu
= arg
;
1762 if (!cpu
->kvm_vcpu_dirty
) {
1763 kvm_arch_get_registers(cpu
);
1764 cpu
->kvm_vcpu_dirty
= true;
1768 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1770 if (!cpu
->kvm_vcpu_dirty
) {
1771 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1775 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1777 CPUState
*cpu
= arg
;
1779 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1780 cpu
->kvm_vcpu_dirty
= false;
1783 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1785 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1788 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1790 CPUState
*cpu
= arg
;
1792 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1793 cpu
->kvm_vcpu_dirty
= false;
1796 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1798 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1801 int kvm_cpu_exec(CPUState
*cpu
)
1803 struct kvm_run
*run
= cpu
->kvm_run
;
1806 DPRINTF("kvm_cpu_exec()\n");
1808 if (kvm_arch_process_async_events(cpu
)) {
1809 cpu
->exit_request
= 0;
1813 qemu_mutex_unlock_iothread();
1818 if (cpu
->kvm_vcpu_dirty
) {
1819 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1820 cpu
->kvm_vcpu_dirty
= false;
1823 kvm_arch_pre_run(cpu
, run
);
1824 if (cpu
->exit_request
) {
1825 DPRINTF("interrupt exit requested\n");
1827 * KVM requires us to reenter the kernel after IO exits to complete
1828 * instruction emulation. This self-signal will ensure that we
1831 qemu_cpu_kick_self();
1834 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1836 attrs
= kvm_arch_post_run(cpu
, run
);
1839 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1840 DPRINTF("io window exit\n");
1841 ret
= EXCP_INTERRUPT
;
1844 fprintf(stderr
, "error: kvm run failed %s\n",
1845 strerror(-run_ret
));
1847 if (run_ret
== -EBUSY
) {
1849 "This is probably because your SMT is enabled.\n"
1850 "VCPU can only run on primary threads with all "
1851 "secondary threads offline.\n");
1858 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1859 switch (run
->exit_reason
) {
1861 DPRINTF("handle_io\n");
1862 /* Called outside BQL */
1863 kvm_handle_io(run
->io
.port
, attrs
,
1864 (uint8_t *)run
+ run
->io
.data_offset
,
1871 DPRINTF("handle_mmio\n");
1872 /* Called outside BQL */
1873 address_space_rw(&address_space_memory
,
1874 run
->mmio
.phys_addr
, attrs
,
1877 run
->mmio
.is_write
);
1880 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1881 DPRINTF("irq_window_open\n");
1882 ret
= EXCP_INTERRUPT
;
1884 case KVM_EXIT_SHUTDOWN
:
1885 DPRINTF("shutdown\n");
1886 qemu_system_reset_request();
1887 ret
= EXCP_INTERRUPT
;
1889 case KVM_EXIT_UNKNOWN
:
1890 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1891 (uint64_t)run
->hw
.hardware_exit_reason
);
1894 case KVM_EXIT_INTERNAL_ERROR
:
1895 ret
= kvm_handle_internal_error(cpu
, run
);
1897 case KVM_EXIT_SYSTEM_EVENT
:
1898 switch (run
->system_event
.type
) {
1899 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1900 qemu_system_shutdown_request();
1901 ret
= EXCP_INTERRUPT
;
1903 case KVM_SYSTEM_EVENT_RESET
:
1904 qemu_system_reset_request();
1905 ret
= EXCP_INTERRUPT
;
1907 case KVM_SYSTEM_EVENT_CRASH
:
1908 qemu_mutex_lock_iothread();
1909 qemu_system_guest_panicked();
1910 qemu_mutex_unlock_iothread();
1914 DPRINTF("kvm_arch_handle_exit\n");
1915 ret
= kvm_arch_handle_exit(cpu
, run
);
1920 DPRINTF("kvm_arch_handle_exit\n");
1921 ret
= kvm_arch_handle_exit(cpu
, run
);
1926 qemu_mutex_lock_iothread();
1929 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1930 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1933 cpu
->exit_request
= 0;
1937 int kvm_ioctl(KVMState
*s
, int type
, ...)
1944 arg
= va_arg(ap
, void *);
1947 trace_kvm_ioctl(type
, arg
);
1948 ret
= ioctl(s
->fd
, type
, arg
);
1955 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1962 arg
= va_arg(ap
, void *);
1965 trace_kvm_vm_ioctl(type
, arg
);
1966 ret
= ioctl(s
->vmfd
, type
, arg
);
1973 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1980 arg
= va_arg(ap
, void *);
1983 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1984 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1991 int kvm_device_ioctl(int fd
, int type
, ...)
1998 arg
= va_arg(ap
, void *);
2001 trace_kvm_device_ioctl(fd
, type
, arg
);
2002 ret
= ioctl(fd
, type
, arg
);
2009 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2012 struct kvm_device_attr attribute
= {
2017 if (!kvm_vm_attributes_allowed
) {
2021 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2022 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2026 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2028 struct kvm_device_attr attribute
= {
2034 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2037 void kvm_device_access(int fd
, int group
, uint64_t attr
,
2038 void *val
, bool write
)
2040 struct kvm_device_attr kvmattr
;
2044 kvmattr
.group
= group
;
2045 kvmattr
.attr
= attr
;
2046 kvmattr
.addr
= (uintptr_t)val
;
2048 err
= kvm_device_ioctl(fd
,
2049 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2052 error_report("KVM_%s_DEVICE_ATTR failed: %s",
2053 write
? "SET" : "GET", strerror(-err
));
2054 error_printf("Group %d attr 0x%016" PRIx64
, group
, attr
);
2059 int kvm_has_sync_mmu(void)
2061 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2064 int kvm_has_vcpu_events(void)
2066 return kvm_state
->vcpu_events
;
2069 int kvm_has_robust_singlestep(void)
2071 return kvm_state
->robust_singlestep
;
2074 int kvm_has_debugregs(void)
2076 return kvm_state
->debugregs
;
2079 int kvm_has_many_ioeventfds(void)
2081 if (!kvm_enabled()) {
2084 return kvm_state
->many_ioeventfds
;
2087 int kvm_has_gsi_routing(void)
2089 #ifdef KVM_CAP_IRQ_ROUTING
2090 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2096 int kvm_has_intx_set_mask(void)
2098 return kvm_state
->intx_set_mask
;
2101 void kvm_setup_guest_memory(void *start
, size_t size
)
2103 if (!kvm_has_sync_mmu()) {
2104 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2107 perror("qemu_madvise");
2109 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2115 #ifdef KVM_CAP_SET_GUEST_DEBUG
2116 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2119 struct kvm_sw_breakpoint
*bp
;
2121 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2129 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2131 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2134 struct kvm_set_guest_debug_data
{
2135 struct kvm_guest_debug dbg
;
2140 static void kvm_invoke_set_guest_debug(void *data
)
2142 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2144 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2148 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2150 struct kvm_set_guest_debug_data data
;
2152 data
.dbg
.control
= reinject_trap
;
2154 if (cpu
->singlestep_enabled
) {
2155 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2157 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2160 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2164 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2165 target_ulong len
, int type
)
2167 struct kvm_sw_breakpoint
*bp
;
2170 if (type
== GDB_BREAKPOINT_SW
) {
2171 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2177 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2180 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2186 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2188 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2195 err
= kvm_update_guest_debug(cpu
, 0);
2203 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2204 target_ulong len
, int type
)
2206 struct kvm_sw_breakpoint
*bp
;
2209 if (type
== GDB_BREAKPOINT_SW
) {
2210 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2215 if (bp
->use_count
> 1) {
2220 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2225 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2228 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2235 err
= kvm_update_guest_debug(cpu
, 0);
2243 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2245 struct kvm_sw_breakpoint
*bp
, *next
;
2246 KVMState
*s
= cpu
->kvm_state
;
2249 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2250 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2251 /* Try harder to find a CPU that currently sees the breakpoint. */
2252 CPU_FOREACH(tmpcpu
) {
2253 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2258 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2261 kvm_arch_remove_all_hw_breakpoints();
2264 kvm_update_guest_debug(cpu
, 0);
2268 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2270 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2275 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2276 target_ulong len
, int type
)
2281 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2282 target_ulong len
, int type
)
2287 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2290 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2292 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2294 KVMState
*s
= kvm_state
;
2295 struct kvm_signal_mask
*sigmask
;
2299 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2302 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2304 sigmask
->len
= s
->sigmask_len
;
2305 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2306 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2311 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2313 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2316 int kvm_on_sigbus(int code
, void *addr
)
2318 return kvm_arch_on_sigbus(code
, addr
);
2321 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2324 struct kvm_create_device create_dev
;
2326 create_dev
.type
= type
;
2328 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2330 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2334 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2339 return test
? 0 : create_dev
.fd
;
2342 bool kvm_device_supported(int vmfd
, uint64_t type
)
2344 struct kvm_create_device create_dev
= {
2347 .flags
= KVM_CREATE_DEVICE_TEST
,
2350 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
2354 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
2357 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2359 struct kvm_one_reg reg
;
2363 reg
.addr
= (uintptr_t) source
;
2364 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2366 trace_kvm_failed_reg_set(id
, strerror(-r
));
2371 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2373 struct kvm_one_reg reg
;
2377 reg
.addr
= (uintptr_t) target
;
2378 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2380 trace_kvm_failed_reg_get(id
, strerror(-r
));
2385 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2387 AccelClass
*ac
= ACCEL_CLASS(oc
);
2389 ac
->init_machine
= kvm_init
;
2390 ac
->allowed
= &kvm_allowed
;
2393 static const TypeInfo kvm_accel_type
= {
2394 .name
= TYPE_KVM_ACCEL
,
2395 .parent
= TYPE_ACCEL
,
2396 .class_init
= kvm_accel_class_init
,
2397 .instance_size
= sizeof(KVMState
),
2400 static void kvm_type_init(void)
2402 type_register_static(&kvm_accel_type
);
2405 type_init(kvm_type_init
);