2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "qemu/error-report.h"
24 #include "sysemu/kvm.h"
25 #include "qemu/error-report.h"
27 #include "mmu-hash64.h"
33 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
35 # define LOG_SLB(...) do { } while (0)
39 * Used to indicate that a CPU has its hash page table (HPT) managed
40 * within the host kernel
42 #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
48 static ppc_slb_t
*slb_lookup(PowerPCCPU
*cpu
, target_ulong eaddr
)
50 CPUPPCState
*env
= &cpu
->env
;
51 uint64_t esid_256M
, esid_1T
;
54 LOG_SLB("%s: eaddr " TARGET_FMT_lx
"\n", __func__
, eaddr
);
56 esid_256M
= (eaddr
& SEGMENT_MASK_256M
) | SLB_ESID_V
;
57 esid_1T
= (eaddr
& SEGMENT_MASK_1T
) | SLB_ESID_V
;
59 for (n
= 0; n
< env
->slb_nr
; n
++) {
60 ppc_slb_t
*slb
= &env
->slb
[n
];
62 LOG_SLB("%s: slot %d %016" PRIx64
" %016"
63 PRIx64
"\n", __func__
, n
, slb
->esid
, slb
->vsid
);
64 /* We check for 1T matches on all MMUs here - if the MMU
65 * doesn't have 1T segment support, we will have prevented 1T
66 * entries from being inserted in the slbmte code. */
67 if (((slb
->esid
== esid_256M
) &&
68 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_256M
))
69 || ((slb
->esid
== esid_1T
) &&
70 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_1T
))) {
78 void dump_slb(FILE *f
, fprintf_function cpu_fprintf
, PowerPCCPU
*cpu
)
80 CPUPPCState
*env
= &cpu
->env
;
84 cpu_synchronize_state(CPU(cpu
));
86 cpu_fprintf(f
, "SLB\tESID\t\t\tVSID\n");
87 for (i
= 0; i
< env
->slb_nr
; i
++) {
88 slbe
= env
->slb
[i
].esid
;
89 slbv
= env
->slb
[i
].vsid
;
90 if (slbe
== 0 && slbv
== 0) {
93 cpu_fprintf(f
, "%d\t0x%016" PRIx64
"\t0x%016" PRIx64
"\n",
98 void helper_slbia(CPUPPCState
*env
)
100 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
101 int n
, do_invalidate
;
104 /* XXX: Warning: slbia never invalidates the first segment */
105 for (n
= 1; n
< env
->slb_nr
; n
++) {
106 ppc_slb_t
*slb
= &env
->slb
[n
];
108 if (slb
->esid
& SLB_ESID_V
) {
109 slb
->esid
&= ~SLB_ESID_V
;
110 /* XXX: given the fact that segment size is 256 MB or 1TB,
111 * and we still don't have a tlb_flush_mask(env, n, mask)
112 * in QEMU, we just invalidate all TLBs
118 tlb_flush(CPU(cpu
), 1);
122 void helper_slbie(CPUPPCState
*env
, target_ulong addr
)
124 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
127 slb
= slb_lookup(cpu
, addr
);
132 if (slb
->esid
& SLB_ESID_V
) {
133 slb
->esid
&= ~SLB_ESID_V
;
135 /* XXX: given the fact that segment size is 256 MB or 1TB,
136 * and we still don't have a tlb_flush_mask(env, n, mask)
137 * in QEMU, we just invalidate all TLBs
139 tlb_flush(CPU(cpu
), 1);
143 int ppc_store_slb(PowerPCCPU
*cpu
, target_ulong slot
,
144 target_ulong esid
, target_ulong vsid
)
146 CPUPPCState
*env
= &cpu
->env
;
147 ppc_slb_t
*slb
= &env
->slb
[slot
];
148 const struct ppc_one_seg_page_size
*sps
= NULL
;
151 if (slot
>= env
->slb_nr
) {
152 return -1; /* Bad slot number */
154 if (esid
& ~(SLB_ESID_ESID
| SLB_ESID_V
)) {
155 return -1; /* Reserved bits set */
157 if (vsid
& (SLB_VSID_B
& ~SLB_VSID_B_1T
)) {
158 return -1; /* Bad segment size */
160 if ((vsid
& SLB_VSID_B
) && !(env
->mmu_model
& POWERPC_MMU_1TSEG
)) {
161 return -1; /* 1T segment on MMU that doesn't support it */
164 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
165 const struct ppc_one_seg_page_size
*sps1
= &env
->sps
.sps
[i
];
167 if (!sps1
->page_shift
) {
171 if ((vsid
& SLB_VSID_LLP_MASK
) == sps1
->slb_enc
) {
178 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
179 " esid 0x"TARGET_FMT_lx
" vsid 0x"TARGET_FMT_lx
,
188 LOG_SLB("%s: %d " TARGET_FMT_lx
" - " TARGET_FMT_lx
" => %016" PRIx64
189 " %016" PRIx64
"\n", __func__
, slot
, esid
, vsid
,
190 slb
->esid
, slb
->vsid
);
195 static int ppc_load_slb_esid(PowerPCCPU
*cpu
, target_ulong rb
,
198 CPUPPCState
*env
= &cpu
->env
;
199 int slot
= rb
& 0xfff;
200 ppc_slb_t
*slb
= &env
->slb
[slot
];
202 if (slot
>= env
->slb_nr
) {
210 static int ppc_load_slb_vsid(PowerPCCPU
*cpu
, target_ulong rb
,
213 CPUPPCState
*env
= &cpu
->env
;
214 int slot
= rb
& 0xfff;
215 ppc_slb_t
*slb
= &env
->slb
[slot
];
217 if (slot
>= env
->slb_nr
) {
225 void helper_store_slb(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
227 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
229 if (ppc_store_slb(cpu
, rb
& 0xfff, rb
& ~0xfffULL
, rs
) < 0) {
230 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
235 target_ulong
helper_load_slb_esid(CPUPPCState
*env
, target_ulong rb
)
237 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
240 if (ppc_load_slb_esid(cpu
, rb
, &rt
) < 0) {
241 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
247 target_ulong
helper_load_slb_vsid(CPUPPCState
*env
, target_ulong rb
)
249 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
252 if (ppc_load_slb_vsid(cpu
, rb
, &rt
) < 0) {
253 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
260 * 64-bit hash table MMU handling
262 void ppc_hash64_set_sdr1(PowerPCCPU
*cpu
, target_ulong value
,
265 CPUPPCState
*env
= &cpu
->env
;
266 target_ulong htabsize
= value
& SDR_64_HTABSIZE
;
268 env
->spr
[SPR_SDR1
] = value
;
271 "Invalid HTABSIZE 0x" TARGET_FMT_lx
" stored in SDR1",
275 env
->htab_mask
= (1ULL << (htabsize
+ 18 - 7)) - 1;
276 env
->htab_base
= value
& SDR_64_HTABORG
;
279 void ppc_hash64_set_external_hpt(PowerPCCPU
*cpu
, void *hpt
, int shift
,
282 CPUPPCState
*env
= &cpu
->env
;
283 Error
*local_err
= NULL
;
285 cpu_synchronize_state(CPU(cpu
));
288 env
->external_htab
= hpt
;
290 env
->external_htab
= MMU_HASH64_KVM_MANAGED_HPT
;
292 ppc_hash64_set_sdr1(cpu
, (target_ulong
)(uintptr_t)hpt
| (shift
- 18),
295 error_propagate(errp
, local_err
);
299 /* Not strictly necessary, but makes it clearer that an external
300 * htab is in use when debugging */
304 if (kvmppc_put_books_sregs(cpu
) < 0) {
305 error_setg(errp
, "Unable to update SDR1 in KVM");
310 static int ppc_hash64_pte_prot(PowerPCCPU
*cpu
,
311 ppc_slb_t
*slb
, ppc_hash_pte64_t pte
)
313 CPUPPCState
*env
= &cpu
->env
;
315 /* Some pp bit combinations have undefined behaviour, so default
316 * to no access in those cases */
319 key
= !!(msr_pr
? (slb
->vsid
& SLB_VSID_KP
)
320 : (slb
->vsid
& SLB_VSID_KS
));
321 pp
= (pte
.pte1
& HPTE64_R_PP
) | ((pte
.pte1
& HPTE64_R_PP0
) >> 61);
328 prot
= PAGE_READ
| PAGE_WRITE
;
349 prot
= PAGE_READ
| PAGE_WRITE
;
354 /* No execute if either noexec or guarded bits set */
355 if (!(pte
.pte1
& HPTE64_R_N
) || (pte
.pte1
& HPTE64_R_G
)
356 || (slb
->vsid
& SLB_VSID_N
)) {
363 static int ppc_hash64_amr_prot(PowerPCCPU
*cpu
, ppc_hash_pte64_t pte
)
365 CPUPPCState
*env
= &cpu
->env
;
367 int prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
369 /* Only recent MMUs implement Virtual Page Class Key Protection */
370 if (!(env
->mmu_model
& POWERPC_MMU_AMR
)) {
374 key
= HPTE64_R_KEY(pte
.pte1
);
375 amrbits
= (env
->spr
[SPR_AMR
] >> 2*(31 - key
)) & 0x3;
377 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
378 /* env->spr[SPR_AMR]); */
381 * A store is permitted if the AMR bit is 0. Remove write
382 * protection if it is set.
388 * A load is permitted if the AMR bit is 0. Remove read
389 * protection if it is set.
398 uint64_t ppc_hash64_start_access(PowerPCCPU
*cpu
, target_ulong pte_index
)
403 pte_offset
= pte_index
* HASH_PTE_SIZE_64
;
404 if (cpu
->env
.external_htab
== MMU_HASH64_KVM_MANAGED_HPT
) {
406 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
408 token
= kvmppc_hash64_read_pteg(cpu
, pte_index
);
409 } else if (cpu
->env
.external_htab
) {
411 * HTAB is controlled by QEMU. Just point to the internally
414 token
= (uint64_t)(uintptr_t) cpu
->env
.external_htab
+ pte_offset
;
415 } else if (cpu
->env
.htab_base
) {
416 token
= cpu
->env
.htab_base
+ pte_offset
;
421 void ppc_hash64_stop_access(PowerPCCPU
*cpu
, uint64_t token
)
423 if (cpu
->env
.external_htab
== MMU_HASH64_KVM_MANAGED_HPT
) {
424 kvmppc_hash64_free_pteg(token
);
428 static hwaddr
ppc_hash64_pteg_search(PowerPCCPU
*cpu
, hwaddr hash
,
429 bool secondary
, target_ulong ptem
,
430 ppc_hash_pte64_t
*pte
)
432 CPUPPCState
*env
= &cpu
->env
;
435 target_ulong pte0
, pte1
;
436 target_ulong pte_index
;
438 pte_index
= (hash
& env
->htab_mask
) * HPTES_PER_GROUP
;
439 token
= ppc_hash64_start_access(cpu
, pte_index
);
443 for (i
= 0; i
< HPTES_PER_GROUP
; i
++) {
444 pte0
= ppc_hash64_load_hpte0(cpu
, token
, i
);
445 pte1
= ppc_hash64_load_hpte1(cpu
, token
, i
);
447 if ((pte0
& HPTE64_V_VALID
)
448 && (secondary
== !!(pte0
& HPTE64_V_SECONDARY
))
449 && HPTE64_V_COMPARE(pte0
, ptem
)) {
452 ppc_hash64_stop_access(cpu
, token
);
453 return (pte_index
+ i
) * HASH_PTE_SIZE_64
;
456 ppc_hash64_stop_access(cpu
, token
);
458 * We didn't find a valid entry.
463 static hwaddr
ppc_hash64_htab_lookup(PowerPCCPU
*cpu
,
464 ppc_slb_t
*slb
, target_ulong eaddr
,
465 ppc_hash_pte64_t
*pte
)
467 CPUPPCState
*env
= &cpu
->env
;
470 uint64_t vsid
, epnmask
, epn
, ptem
;
472 /* The SLB store path should prevent any bad page size encodings
473 * getting in there, so: */
476 epnmask
= ~((1ULL << slb
->sps
->page_shift
) - 1);
478 if (slb
->vsid
& SLB_VSID_B
) {
480 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT_1T
;
481 epn
= (eaddr
& ~SEGMENT_MASK_1T
) & epnmask
;
482 hash
= vsid
^ (vsid
<< 25) ^ (epn
>> slb
->sps
->page_shift
);
485 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT
;
486 epn
= (eaddr
& ~SEGMENT_MASK_256M
) & epnmask
;
487 hash
= vsid
^ (epn
>> slb
->sps
->page_shift
);
489 ptem
= (slb
->vsid
& SLB_VSID_PTEM
) | ((epn
>> 16) & HPTE64_V_AVPN
);
491 /* Page address translation */
492 qemu_log_mask(CPU_LOG_MMU
,
493 "htab_base " TARGET_FMT_plx
" htab_mask " TARGET_FMT_plx
494 " hash " TARGET_FMT_plx
"\n",
495 env
->htab_base
, env
->htab_mask
, hash
);
497 /* Primary PTEG lookup */
498 qemu_log_mask(CPU_LOG_MMU
,
499 "0 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
500 " vsid=" TARGET_FMT_lx
" ptem=" TARGET_FMT_lx
501 " hash=" TARGET_FMT_plx
"\n",
502 env
->htab_base
, env
->htab_mask
, vsid
, ptem
, hash
);
503 pte_offset
= ppc_hash64_pteg_search(cpu
, hash
, 0, ptem
, pte
);
505 if (pte_offset
== -1) {
506 /* Secondary PTEG lookup */
507 qemu_log_mask(CPU_LOG_MMU
,
508 "1 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
509 " vsid=" TARGET_FMT_lx
" api=" TARGET_FMT_lx
510 " hash=" TARGET_FMT_plx
"\n", env
->htab_base
,
511 env
->htab_mask
, vsid
, ptem
, ~hash
);
513 pte_offset
= ppc_hash64_pteg_search(cpu
, ~hash
, 1, ptem
, pte
);
519 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size
*sps
,
520 uint64_t pte0
, uint64_t pte1
)
524 if (!(pte0
& HPTE64_V_LARGE
)) {
525 if (sps
->page_shift
!= 12) {
526 /* 4kiB page in a non 4kiB segment */
529 /* Normal 4kiB page */
533 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
534 const struct ppc_one_page_size
*ps
= &sps
->enc
[i
];
537 if (!ps
->page_shift
) {
541 if (ps
->page_shift
== 12) {
542 /* L bit is set so this can't be a 4kiB page */
546 mask
= ((1ULL << ps
->page_shift
) - 1) & HPTE64_R_RPN
;
548 if ((pte1
& mask
) == (ps
->pte_enc
<< HPTE64_R_RPN_SHIFT
)) {
549 return ps
->page_shift
;
553 return 0; /* Bad page size encoding */
556 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU
*cpu
,
557 uint64_t pte0
, uint64_t pte1
,
558 unsigned *seg_page_shift
)
560 CPUPPCState
*env
= &cpu
->env
;
563 if (!(pte0
& HPTE64_V_LARGE
)) {
564 *seg_page_shift
= 12;
569 * The encodings in env->sps need to be carefully chosen so that
570 * this gives an unambiguous result.
572 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
573 const struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
576 if (!sps
->page_shift
) {
580 shift
= hpte_page_shift(sps
, pte0
, pte1
);
582 *seg_page_shift
= sps
->page_shift
;
591 int ppc_hash64_handle_mmu_fault(PowerPCCPU
*cpu
, target_ulong eaddr
,
592 int rwx
, int mmu_idx
)
594 CPUState
*cs
= CPU(cpu
);
595 CPUPPCState
*env
= &cpu
->env
;
599 ppc_hash_pte64_t pte
;
600 int pp_prot
, amr_prot
, prot
;
602 const int need_prot
[] = {PAGE_READ
, PAGE_WRITE
, PAGE_EXEC
};
605 assert((rwx
== 0) || (rwx
== 1) || (rwx
== 2));
607 /* 1. Handle real mode accesses */
608 if (((rwx
== 2) && (msr_ir
== 0)) || ((rwx
!= 2) && (msr_dr
== 0))) {
609 /* Translation is off */
610 /* In real mode the top 4 effective address bits are ignored */
611 raddr
= eaddr
& 0x0FFFFFFFFFFFFFFFULL
;
612 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
613 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
, mmu_idx
,
618 /* 2. Translation is on, so look up the SLB */
619 slb
= slb_lookup(cpu
, eaddr
);
623 cs
->exception_index
= POWERPC_EXCP_ISEG
;
626 cs
->exception_index
= POWERPC_EXCP_DSEG
;
628 env
->spr
[SPR_DAR
] = eaddr
;
633 /* 3. Check for segment level no-execute violation */
634 if ((rwx
== 2) && (slb
->vsid
& SLB_VSID_N
)) {
635 cs
->exception_index
= POWERPC_EXCP_ISI
;
636 env
->error_code
= 0x10000000;
640 /* 4. Locate the PTE in the hash table */
641 pte_offset
= ppc_hash64_htab_lookup(cpu
, slb
, eaddr
, &pte
);
642 if (pte_offset
== -1) {
644 cs
->exception_index
= POWERPC_EXCP_ISI
;
645 env
->error_code
= 0x40000000;
647 cs
->exception_index
= POWERPC_EXCP_DSI
;
649 env
->spr
[SPR_DAR
] = eaddr
;
651 env
->spr
[SPR_DSISR
] = 0x42000000;
653 env
->spr
[SPR_DSISR
] = 0x40000000;
658 qemu_log_mask(CPU_LOG_MMU
,
659 "found PTE at offset %08" HWADDR_PRIx
"\n", pte_offset
);
661 /* Validate page size encoding */
662 apshift
= hpte_page_shift(slb
->sps
, pte
.pte0
, pte
.pte1
);
664 error_report("Bad page size encoding in HPTE 0x%"PRIx64
" - 0x%"PRIx64
665 " @ 0x%"HWADDR_PRIx
, pte
.pte0
, pte
.pte1
, pte_offset
);
666 /* Not entirely sure what the right action here, but machine
667 * check seems reasonable */
668 cs
->exception_index
= POWERPC_EXCP_MCHECK
;
673 /* 5. Check access permissions */
675 pp_prot
= ppc_hash64_pte_prot(cpu
, slb
, pte
);
676 amr_prot
= ppc_hash64_amr_prot(cpu
, pte
);
677 prot
= pp_prot
& amr_prot
;
679 if ((need_prot
[rwx
] & ~prot
) != 0) {
680 /* Access right violation */
681 qemu_log_mask(CPU_LOG_MMU
, "PTE access rejected\n");
683 cs
->exception_index
= POWERPC_EXCP_ISI
;
684 env
->error_code
= 0x08000000;
686 target_ulong dsisr
= 0;
688 cs
->exception_index
= POWERPC_EXCP_DSI
;
690 env
->spr
[SPR_DAR
] = eaddr
;
691 if (need_prot
[rwx
] & ~pp_prot
) {
697 if (need_prot
[rwx
] & ~amr_prot
) {
700 env
->spr
[SPR_DSISR
] = dsisr
;
705 qemu_log_mask(CPU_LOG_MMU
, "PTE access granted !\n");
707 /* 6. Update PTE referenced and changed bits if necessary */
709 new_pte1
= pte
.pte1
| HPTE64_R_R
; /* set referenced bit */
711 new_pte1
|= HPTE64_R_C
; /* set changed (dirty) bit */
713 /* Treat the page as read-only for now, so that a later write
714 * will pass through this function again to set the C bit */
718 if (new_pte1
!= pte
.pte1
) {
719 ppc_hash64_store_hpte(cpu
, pte_offset
/ HASH_PTE_SIZE_64
,
723 /* 7. Determine the real address from the PTE */
725 raddr
= deposit64(pte
.pte1
& HPTE64_R_RPN
, 0, apshift
, eaddr
);
727 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
728 prot
, mmu_idx
, 1ULL << apshift
);
733 hwaddr
ppc_hash64_get_phys_page_debug(PowerPCCPU
*cpu
, target_ulong addr
)
735 CPUPPCState
*env
= &cpu
->env
;
738 ppc_hash_pte64_t pte
;
742 /* In real mode the top 4 effective address bits are ignored */
743 return addr
& 0x0FFFFFFFFFFFFFFFULL
;
746 slb
= slb_lookup(cpu
, addr
);
751 pte_offset
= ppc_hash64_htab_lookup(cpu
, slb
, addr
, &pte
);
752 if (pte_offset
== -1) {
756 apshift
= hpte_page_shift(slb
->sps
, pte
.pte0
, pte
.pte1
);
761 return deposit64(pte
.pte1
& HPTE64_R_RPN
, 0, apshift
, addr
)
765 void ppc_hash64_store_hpte(PowerPCCPU
*cpu
,
766 target_ulong pte_index
,
767 target_ulong pte0
, target_ulong pte1
)
769 CPUPPCState
*env
= &cpu
->env
;
771 if (env
->external_htab
== MMU_HASH64_KVM_MANAGED_HPT
) {
772 kvmppc_hash64_write_pte(env
, pte_index
, pte0
, pte1
);
776 pte_index
*= HASH_PTE_SIZE_64
;
777 if (env
->external_htab
) {
778 stq_p(env
->external_htab
+ pte_index
, pte0
);
779 stq_p(env
->external_htab
+ pte_index
+ HASH_PTE_SIZE_64
/ 2, pte1
);
781 stq_phys(CPU(cpu
)->as
, env
->htab_base
+ pte_index
, pte0
);
782 stq_phys(CPU(cpu
)->as
,
783 env
->htab_base
+ pte_index
+ HASH_PTE_SIZE_64
/ 2, pte1
);
787 void ppc_hash64_tlb_flush_hpte(PowerPCCPU
*cpu
,
788 target_ulong pte_index
,
789 target_ulong pte0
, target_ulong pte1
)
792 * XXX: given the fact that there are too many segments to
793 * invalidate, and we still don't have a tlb_flush_mask(env, n,
794 * mask) in QEMU, we just invalidate all TLBs
796 tlb_flush(CPU(cpu
), 1);