net: store guest timestamp in dump file instead of time since guest startup
[qemu/rayw.git] / hw / pl022.c
blobd43e4a29dabfb3160db215cbfdd3aba0428e1938
1 /*
2 * Arm PrimeCell PL022 Synchronous Serial Port
4 * Copyright (c) 2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "sysbus.h"
11 #include "ssi.h"
12 #include "primecell.h"
14 //#define DEBUG_PL022 1
16 #ifdef DEBUG_PL022
17 #define DPRINTF(fmt, ...) \
18 do { printf("pl022: " fmt , ## __VA_ARGS__); } while (0)
19 #define BADF(fmt, ...) \
20 do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
21 #else
22 #define DPRINTF(fmt, ...) do {} while(0)
23 #define BADF(fmt, ...) \
24 do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__);} while (0)
25 #endif
27 #define PL022_CR1_LBM 0x01
28 #define PL022_CR1_SSE 0x02
29 #define PL022_CR1_MS 0x04
30 #define PL022_CR1_SDO 0x08
32 #define PL022_SR_TFE 0x01
33 #define PL022_SR_TNF 0x02
34 #define PL022_SR_RNE 0x04
35 #define PL022_SR_RFF 0x08
36 #define PL022_SR_BSY 0x10
38 #define PL022_INT_ROR 0x01
39 #define PL022_INT_RT 0x04
40 #define PL022_INT_RX 0x04
41 #define PL022_INT_TX 0x08
43 typedef struct {
44 SysBusDevice busdev;
45 MemoryRegion iomem;
46 uint32_t cr0;
47 uint32_t cr1;
48 uint32_t bitmask;
49 uint32_t sr;
50 uint32_t cpsr;
51 uint32_t is;
52 uint32_t im;
53 /* The FIFO head points to the next empty entry. */
54 int tx_fifo_head;
55 int rx_fifo_head;
56 int tx_fifo_len;
57 int rx_fifo_len;
58 uint16_t tx_fifo[8];
59 uint16_t rx_fifo[8];
60 qemu_irq irq;
61 SSIBus *ssi;
62 } pl022_state;
64 static const unsigned char pl022_id[8] =
65 { 0x22, 0x10, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
67 static void pl022_update(pl022_state *s)
69 s->sr = 0;
70 if (s->tx_fifo_len == 0)
71 s->sr |= PL022_SR_TFE;
72 if (s->tx_fifo_len != 8)
73 s->sr |= PL022_SR_TNF;
74 if (s->rx_fifo_len != 0)
75 s->sr |= PL022_SR_RNE;
76 if (s->rx_fifo_len == 8)
77 s->sr |= PL022_SR_RFF;
78 if (s->tx_fifo_len)
79 s->sr |= PL022_SR_BSY;
80 s->is = 0;
81 if (s->rx_fifo_len >= 4)
82 s->is |= PL022_INT_RX;
83 if (s->tx_fifo_len <= 4)
84 s->is |= PL022_INT_TX;
86 qemu_set_irq(s->irq, (s->is & s->im) != 0);
89 static void pl022_xfer(pl022_state *s)
91 int i;
92 int o;
93 int val;
95 if ((s->cr1 & PL022_CR1_SSE) == 0) {
96 pl022_update(s);
97 DPRINTF("Disabled\n");
98 return;
101 DPRINTF("Maybe xfer %d/%d\n", s->tx_fifo_len, s->rx_fifo_len);
102 i = (s->tx_fifo_head - s->tx_fifo_len) & 7;
103 o = s->rx_fifo_head;
104 /* ??? We do not emulate the line speed.
105 This may break some applications. The are two problematic cases:
106 (a) A driver feeds data into the TX FIFO until it is full,
107 and only then drains the RX FIFO. On real hardware the CPU can
108 feed data fast enough that the RX fifo never gets chance to overflow.
109 (b) A driver transmits data, deliberately allowing the RX FIFO to
110 overflow because it ignores the RX data anyway.
112 We choose to support (a) by stalling the transmit engine if it would
113 cause the RX FIFO to overflow. In practice much transmit-only code
114 falls into (a) because it flushes the RX FIFO to determine when
115 the transfer has completed. */
116 while (s->tx_fifo_len && s->rx_fifo_len < 8) {
117 DPRINTF("xfer\n");
118 val = s->tx_fifo[i];
119 if (s->cr1 & PL022_CR1_LBM) {
120 /* Loopback mode. */
121 } else {
122 val = ssi_transfer(s->ssi, val);
124 s->rx_fifo[o] = val & s->bitmask;
125 i = (i + 1) & 7;
126 o = (o + 1) & 7;
127 s->tx_fifo_len--;
128 s->rx_fifo_len++;
130 s->rx_fifo_head = o;
131 pl022_update(s);
134 static uint64_t pl022_read(void *opaque, target_phys_addr_t offset,
135 unsigned size)
137 pl022_state *s = (pl022_state *)opaque;
138 int val;
140 if (offset >= 0xfe0 && offset < 0x1000) {
141 return pl022_id[(offset - 0xfe0) >> 2];
143 switch (offset) {
144 case 0x00: /* CR0 */
145 return s->cr0;
146 case 0x04: /* CR1 */
147 return s->cr1;
148 case 0x08: /* DR */
149 if (s->rx_fifo_len) {
150 val = s->rx_fifo[(s->rx_fifo_head - s->rx_fifo_len) & 7];
151 DPRINTF("RX %02x\n", val);
152 s->rx_fifo_len--;
153 pl022_xfer(s);
154 } else {
155 val = 0;
157 return val;
158 case 0x0c: /* SR */
159 return s->sr;
160 case 0x10: /* CPSR */
161 return s->cpsr;
162 case 0x14: /* IMSC */
163 return s->im;
164 case 0x18: /* RIS */
165 return s->is;
166 case 0x1c: /* MIS */
167 return s->im & s->is;
168 case 0x20: /* DMACR */
169 /* Not implemented. */
170 return 0;
171 default:
172 hw_error("pl022_read: Bad offset %x\n", (int)offset);
173 return 0;
177 static void pl022_write(void *opaque, target_phys_addr_t offset,
178 uint64_t value, unsigned size)
180 pl022_state *s = (pl022_state *)opaque;
182 switch (offset) {
183 case 0x00: /* CR0 */
184 s->cr0 = value;
185 /* Clock rate and format are ignored. */
186 s->bitmask = (1 << ((value & 15) + 1)) - 1;
187 break;
188 case 0x04: /* CR1 */
189 s->cr1 = value;
190 if ((s->cr1 & (PL022_CR1_MS | PL022_CR1_SSE))
191 == (PL022_CR1_MS | PL022_CR1_SSE)) {
192 BADF("SPI slave mode not implemented\n");
194 pl022_xfer(s);
195 break;
196 case 0x08: /* DR */
197 if (s->tx_fifo_len < 8) {
198 DPRINTF("TX %02x\n", (unsigned)value);
199 s->tx_fifo[s->tx_fifo_head] = value & s->bitmask;
200 s->tx_fifo_head = (s->tx_fifo_head + 1) & 7;
201 s->tx_fifo_len++;
202 pl022_xfer(s);
204 break;
205 case 0x10: /* CPSR */
206 /* Prescaler. Ignored. */
207 s->cpsr = value & 0xff;
208 break;
209 case 0x14: /* IMSC */
210 s->im = value;
211 pl022_update(s);
212 break;
213 case 0x20: /* DMACR */
214 if (value) {
215 hw_error("pl022: DMA not implemented\n");
217 break;
218 default:
219 hw_error("pl022_write: Bad offset %x\n", (int)offset);
223 static void pl022_reset(pl022_state *s)
225 s->rx_fifo_len = 0;
226 s->tx_fifo_len = 0;
227 s->im = 0;
228 s->is = PL022_INT_TX;
229 s->sr = PL022_SR_TFE | PL022_SR_TNF;
232 static const MemoryRegionOps pl022_ops = {
233 .read = pl022_read,
234 .write = pl022_write,
235 .endianness = DEVICE_NATIVE_ENDIAN,
238 static const VMStateDescription vmstate_pl022 = {
239 .name = "pl022_ssp",
240 .version_id = 1,
241 .minimum_version_id = 1,
242 .minimum_version_id_old = 1,
243 .fields = (VMStateField[]) {
244 VMSTATE_UINT32(cr0, pl022_state),
245 VMSTATE_UINT32(cr1, pl022_state),
246 VMSTATE_UINT32(bitmask, pl022_state),
247 VMSTATE_UINT32(sr, pl022_state),
248 VMSTATE_UINT32(cpsr, pl022_state),
249 VMSTATE_UINT32(is, pl022_state),
250 VMSTATE_UINT32(im, pl022_state),
251 VMSTATE_INT32(tx_fifo_head, pl022_state),
252 VMSTATE_INT32(rx_fifo_head, pl022_state),
253 VMSTATE_INT32(tx_fifo_len, pl022_state),
254 VMSTATE_INT32(rx_fifo_len, pl022_state),
255 VMSTATE_UINT16(tx_fifo[0], pl022_state),
256 VMSTATE_UINT16(rx_fifo[0], pl022_state),
257 VMSTATE_UINT16(tx_fifo[1], pl022_state),
258 VMSTATE_UINT16(rx_fifo[1], pl022_state),
259 VMSTATE_UINT16(tx_fifo[2], pl022_state),
260 VMSTATE_UINT16(rx_fifo[2], pl022_state),
261 VMSTATE_UINT16(tx_fifo[3], pl022_state),
262 VMSTATE_UINT16(rx_fifo[3], pl022_state),
263 VMSTATE_UINT16(tx_fifo[4], pl022_state),
264 VMSTATE_UINT16(rx_fifo[4], pl022_state),
265 VMSTATE_UINT16(tx_fifo[5], pl022_state),
266 VMSTATE_UINT16(rx_fifo[5], pl022_state),
267 VMSTATE_UINT16(tx_fifo[6], pl022_state),
268 VMSTATE_UINT16(rx_fifo[6], pl022_state),
269 VMSTATE_UINT16(tx_fifo[7], pl022_state),
270 VMSTATE_UINT16(rx_fifo[7], pl022_state),
271 VMSTATE_END_OF_LIST()
275 static int pl022_init(SysBusDevice *dev)
277 pl022_state *s = FROM_SYSBUS(pl022_state, dev);
279 memory_region_init_io(&s->iomem, &pl022_ops, s, "pl022", 0x1000);
280 sysbus_init_mmio(dev, &s->iomem);
281 sysbus_init_irq(dev, &s->irq);
282 s->ssi = ssi_create_bus(&dev->qdev, "ssi");
283 pl022_reset(s);
284 vmstate_register(&dev->qdev, -1, &vmstate_pl022, s);
285 return 0;
288 static void pl022_register_devices(void)
290 sysbus_register_dev("pl022", sizeof(pl022_state), pl022_init);
293 device_init(pl022_register_devices)