11 # Enable QMP capabilities.
15 # @enable: An optional list of QMPCapability values to enable. The
16 # client must not enable any capability that is not
17 # mentioned in the QMP greeting message. If the field is not
18 # provided, it means no QMP capabilities will be enabled.
23 # -> { "execute": "qmp_capabilities",
24 # "arguments": { "enable": [ "oob" ] } }
27 # Notes: This command is valid exactly when first connecting: it must be
28 # issued before any other command will be accepted, and will fail once the
29 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
31 # The QMP client needs to explicitly enable QMP capabilities, otherwise
32 # all the QMP capabilities will be turned off by default.
37 { 'command': 'qmp_capabilities',
38 'data': { '*enable': [ 'QMPCapability' ] } }
43 # Enumeration of capabilities to be advertised during initial client
44 # connection, used for agreeing on particular QMP extension behaviors.
46 # @oob: QMP ability to support Out-Of-Band requests.
47 # (Please refer to qmp-spec.txt for more information on OOB)
52 { 'enum': 'QMPCapability',
58 # A three-part version number.
60 # @major: The major version number.
62 # @minor: The minor version number.
64 # @micro: The micro version number.
68 { 'struct': 'VersionTriple',
69 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
75 # A description of QEMU's version.
77 # @qemu: The version of QEMU. By current convention, a micro
78 # version of 50 signifies a development branch. A micro version
79 # greater than or equal to 90 signifies a release candidate for
80 # the next minor version. A micro version of less than 50
81 # signifies a stable release.
83 # @package: QEMU will always set this field to an empty string. Downstream
84 # versions of QEMU should set this to a non-empty string. The
85 # exact format depends on the downstream however it highly
86 # recommended that a unique name is used.
90 { 'struct': 'VersionInfo',
91 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
96 # Returns the current version of QEMU.
98 # Returns: A @VersionInfo object describing the current version of QEMU.
104 # -> { "execute": "query-version" }
117 { 'command': 'query-version', 'returns': 'VersionInfo' }
122 # Information about a QMP command
124 # @name: The command name
128 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133 # Return a list of supported QMP commands by this server
135 # Returns: A list of @CommandInfo for all supported commands
141 # -> { "execute": "query-commands" }
145 # "name":"query-balloon"
148 # "name":"system_powerdown"
153 # Note: This example has been shortened as the real response is too long.
156 { 'command': 'query-commands', 'returns': ['CommandInfo'] }
161 # Policy for handling lost ticks in timer devices.
163 # @discard: throw away the missed tick(s) and continue with future injection
164 # normally. Guest time may be delayed, unless the OS has explicit
165 # handling of lost ticks
167 # @delay: continue to deliver ticks at the normal rate. Guest time will be
168 # delayed due to the late tick
170 # @merge: merge the missed tick(s) into one tick and inject. Guest time
171 # may be delayed, depending on how the OS reacts to the merging
174 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
175 # guest time should not be delayed once catchup is complete.
179 { 'enum': 'LostTickPolicy',
180 'data': ['discard', 'delay', 'merge', 'slew' ] }
185 # Allow client connections for VNC, Spice and socket based
186 # character devices to be passed in to QEMU via SCM_RIGHTS.
188 # @protocol: protocol name. Valid names are "vnc", "spice" or the
189 # name of a character device (eg. from -chardev id=XXXX)
191 # @fdname: file descriptor name previously passed via 'getfd' command
193 # @skipauth: whether to skip authentication. Only applies
194 # to "vnc" and "spice" protocols
196 # @tls: whether to perform TLS. Only applies to the "spice"
199 # Returns: nothing on success.
205 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
206 # "fdname": "myclient" } }
207 # <- { "return": {} }
210 { 'command': 'add_client',
211 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217 # Guest name information.
219 # @name: The name of the guest
223 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
228 # Return the name information of a guest.
230 # Returns: @NameInfo of the guest
236 # -> { "execute": "query-name" }
237 # <- { "return": { "name": "qemu-name" } }
240 { 'command': 'query-name', 'returns': 'NameInfo' }
245 # Information about support for KVM acceleration
247 # @enabled: true if KVM acceleration is active
249 # @present: true if KVM acceleration is built into this executable
253 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
258 # Returns information about KVM acceleration
266 # -> { "execute": "query-kvm" }
267 # <- { "return": { "enabled": true, "present": true } }
270 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
275 # Guest UUID information (Universally Unique Identifier).
277 # @UUID: the UUID of the guest
281 # Notes: If no UUID was specified for the guest, a null UUID is returned.
283 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
288 # Query the guest UUID information.
290 # Returns: The @UuidInfo for the guest
296 # -> { "execute": "query-uuid" }
297 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
300 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
305 # Information about a QMP event
307 # @name: The event name
311 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
316 # Return a list of supported QMP events by this server
318 # Returns: A list of @EventInfo for all supported events
324 # -> { "execute": "query-events" }
336 # Note: This example has been shortened as the real response is too long.
339 { 'command': 'query-events', 'returns': ['EventInfo'] }
344 # An enumeration of cpu types that enable additional information during
345 # @query-cpus and @query-cpus-fast.
353 { 'enum': 'CpuInfoArch',
354 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
359 # Information about a virtual CPU
361 # @CPU: the index of the virtual CPU
363 # @current: this only exists for backwards compatibility and should be ignored
365 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
366 # to a processor specific low power mode.
368 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
370 # @thread_id: ID of the underlying host thread
372 # @props: properties describing to which node/socket/core/thread
373 # virtual CPU belongs to, provided if supported by board (since 2.10)
375 # @arch: architecture of the cpu, which determines which additional fields
376 # will be listed (since 2.6)
380 # Notes: @halted is a transient state that changes frequently. By the time the
381 # data is sent to the client, the guest may no longer be halted.
383 { 'union': 'CpuInfo',
384 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
385 'qom_path': 'str', 'thread_id': 'int',
386 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
387 'discriminator': 'arch',
388 'data': { 'x86': 'CpuInfoX86',
389 'sparc': 'CpuInfoSPARC',
391 'mips': 'CpuInfoMIPS',
392 'tricore': 'CpuInfoTricore',
393 's390': 'CpuInfoS390',
394 'riscv': 'CpuInfoRISCV',
395 'other': 'CpuInfoOther' } }
400 # Additional information about a virtual i386 or x86_64 CPU
402 # @pc: the 64-bit instruction pointer
406 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411 # Additional information about a virtual SPARC CPU
413 # @pc: the PC component of the instruction pointer
415 # @npc: the NPC component of the instruction pointer
419 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424 # Additional information about a virtual PPC CPU
426 # @nip: the instruction pointer
430 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435 # Additional information about a virtual MIPS CPU
437 # @PC: the instruction pointer
441 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446 # Additional information about a virtual Tricore CPU
448 # @PC: the instruction pointer
452 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457 # Additional information about a virtual RISCV CPU
459 # @pc: the instruction pointer
463 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468 # No additional information is available about the virtual CPU
473 { 'struct': 'CpuInfoOther', 'data': { } }
478 # An enumeration of cpu states that can be assumed by a virtual
483 { 'enum': 'CpuS390State',
484 'prefix': 'S390_CPU_STATE',
485 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
490 # Additional information about a virtual S390 CPU
492 # @cpu-state: the virtual CPU's state
496 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
501 # Returns a list of information about each virtual CPU.
503 # This command causes vCPU threads to exit to userspace, which causes
504 # a small interruption to guest CPU execution. This will have a negative
505 # impact on realtime guests and other latency sensitive guest workloads.
506 # It is recommended to use @query-cpus-fast instead of this command to
507 # avoid the vCPU interruption.
509 # Returns: a list of @CpuInfo for each virtual CPU
515 # -> { "execute": "query-cpus" }
521 # "qom_path":"/machine/unattached/device[0]",
530 # "qom_path":"/machine/unattached/device[2]",
538 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
539 # recommended that you avoid using it. Use @query-cpus-fast to
540 # obtain information about virtual CPUs.
543 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
548 # Information about a virtual CPU
550 # @cpu-index: index of the virtual CPU
552 # @qom-path: path to the CPU object in the QOM tree
554 # @thread-id: ID of the underlying host thread
556 # @props: properties describing to which node/socket/core/thread
557 # virtual CPU belongs to, provided if supported by board
559 # @arch: architecture of the cpu, which determines which additional fields
565 { 'union': 'CpuInfoFast',
566 'base': {'cpu-index': 'int', 'qom-path': 'str',
567 'thread-id': 'int', '*props': 'CpuInstanceProperties',
568 'arch': 'CpuInfoArch' },
569 'discriminator': 'arch',
570 'data': { 'x86': 'CpuInfoOther',
571 'sparc': 'CpuInfoOther',
572 'ppc': 'CpuInfoOther',
573 'mips': 'CpuInfoOther',
574 'tricore': 'CpuInfoOther',
575 's390': 'CpuInfoS390',
576 'riscv': 'CpuInfoRISCV',
577 'other': 'CpuInfoOther' } }
582 # Returns information about all virtual CPUs. This command does not
583 # incur a performance penalty and should be used in production
584 # instead of query-cpus.
586 # Returns: list of @CpuInfoFast
592 # -> { "execute": "query-cpus-fast" }
595 # "thread-id": 25627,
601 # "qom-path": "/machine/unattached/device[0]",
606 # "thread-id": 25628,
612 # "qom-path": "/machine/unattached/device[2]",
619 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
624 # Information about an iothread
626 # @id: the identifier of the iothread
628 # @thread-id: ID of the underlying host thread
630 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
633 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
634 # configured (since 2.9)
636 # @poll-shrink: how many ns will be removed from polling time, 0 means that
637 # it's not configured (since 2.9)
641 { 'struct': 'IOThreadInfo',
642 'data': {'id': 'str',
644 'poll-max-ns': 'int',
646 'poll-shrink': 'int' } }
651 # Returns a list of information about each iothread.
653 # Note: this list excludes the QEMU main loop thread, which is not declared
654 # using the -object iothread command-line option. It is always the main thread
657 # Returns: a list of @IOThreadInfo for each iothread
663 # -> { "execute": "query-iothreads" }
677 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
682 # Information about the guest balloon device.
684 # @actual: the number of bytes the balloon currently contains
689 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
694 # Return information about the balloon device.
696 # Returns: @BalloonInfo on success
698 # If the balloon driver is enabled but not functional because the KVM
699 # kernel module cannot support it, KvmMissingCap
701 # If no balloon device is present, DeviceNotActive
707 # -> { "execute": "query-balloon" }
709 # "actual": 1073741824,
714 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
719 # Emitted when the guest changes the actual BALLOON level. This value is
720 # equivalent to the @actual field return by the 'query-balloon' command
722 # @actual: actual level of the guest memory balloon in bytes
724 # Note: this event is rate-limited.
730 # <- { "event": "BALLOON_CHANGE",
731 # "data": { "actual": 944766976 },
732 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
735 { 'event': 'BALLOON_CHANGE',
736 'data': { 'actual': 'int' } }
741 # A PCI device memory region
743 # @base: the starting address (guest physical)
745 # @limit: the ending address (guest physical)
749 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
754 # Information about a PCI device I/O region.
756 # @bar: the index of the Base Address Register for this region
758 # @type: 'io' if the region is a PIO region
759 # 'memory' if the region is a MMIO region
763 # @prefetch: if @type is 'memory', true if the memory is prefetchable
765 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
769 { 'struct': 'PciMemoryRegion',
770 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
771 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
776 # Information about a bus of a PCI Bridge device
778 # @number: primary bus interface number. This should be the number of the
779 # bus the device resides on.
781 # @secondary: secondary bus interface number. This is the number of the
782 # main bus for the bridge
784 # @subordinate: This is the highest number bus that resides below the
787 # @io_range: The PIO range for all devices on this bridge
789 # @memory_range: The MMIO range for all devices on this bridge
791 # @prefetchable_range: The range of prefetchable MMIO for all devices on
796 { 'struct': 'PciBusInfo',
797 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
798 'io_range': 'PciMemoryRange',
799 'memory_range': 'PciMemoryRange',
800 'prefetchable_range': 'PciMemoryRange' } }
805 # Information about a PCI Bridge device
807 # @bus: information about the bus the device resides on
809 # @devices: a list of @PciDeviceInfo for each device on this bridge
813 { 'struct': 'PciBridgeInfo',
814 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
819 # Information about the Class of a PCI device
821 # @desc: a string description of the device's class
823 # @class: the class code of the device
827 { 'struct': 'PciDeviceClass',
828 'data': {'*desc': 'str', 'class': 'int'} }
833 # Information about the Id of a PCI device
835 # @device: the PCI device id
837 # @vendor: the PCI vendor id
841 { 'struct': 'PciDeviceId',
842 'data': {'device': 'int', 'vendor': 'int'} }
847 # Information about a PCI device
849 # @bus: the bus number of the device
851 # @slot: the slot the device is located in
853 # @function: the function of the slot used by the device
855 # @class_info: the class of the device
857 # @id: the PCI device id
859 # @irq: if an IRQ is assigned to the device, the IRQ number
861 # @qdev_id: the device name of the PCI device
863 # @pci_bridge: if the device is a PCI bridge, the bridge information
865 # @regions: a list of the PCI I/O regions associated with the device
867 # Notes: the contents of @class_info.desc are not stable and should only be
868 # treated as informational.
872 { 'struct': 'PciDeviceInfo',
873 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
874 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
875 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
876 'regions': ['PciMemoryRegion']} }
881 # Information about a PCI bus
883 # @bus: the bus index
885 # @devices: a list of devices on this bus
889 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
894 # Return information about the PCI bus topology of the guest.
896 # Returns: a list of @PciInfo for each PCI bus. Each bus is
897 # represented by a json-object, which has a key with a json-array of
898 # all PCI devices attached to it. Each device is represented by a
905 # -> { "execute": "query-pci" }
916 # "desc": "Host bridge"
932 # "desc": "ISA bridge"
948 # "desc": "IDE controller"
970 # "desc": "VGA controller"
980 # "mem_type_64": false,
983 # "address": 4026531840,
988 # "mem_type_64": false,
991 # "address": 4060086272,
996 # "mem_type_64": false,
1011 # "desc": "RAM controller"
1032 # Note: This example has been shortened as the real response is too long.
1035 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1040 # This command will cause the QEMU process to exit gracefully. While every
1041 # attempt is made to send the QMP response before terminating, this is not
1042 # guaranteed. When using this interface, a premature EOF would not be
1049 # -> { "execute": "quit" }
1050 # <- { "return": {} }
1052 { 'command': 'quit' }
1057 # Stop all guest VCPU execution.
1061 # Notes: This function will succeed even if the guest is already in the stopped
1062 # state. In "inmigrate" state, it will ensure that the guest
1063 # remains paused once migration finishes, as if the -S option was
1064 # passed on the command line.
1068 # -> { "execute": "stop" }
1069 # <- { "return": {} }
1072 { 'command': 'stop' }
1077 # Performs a hard reset of a guest.
1083 # -> { "execute": "system_reset" }
1084 # <- { "return": {} }
1087 { 'command': 'system_reset' }
1090 # @system_powerdown:
1092 # Requests that a guest perform a powerdown operation.
1096 # Notes: A guest may or may not respond to this command. This command
1097 # returning does not indicate that a guest has accepted the request or
1098 # that it has shut down. Many guests will respond to this command by
1099 # prompting the user in some way.
1102 # -> { "execute": "system_powerdown" }
1103 # <- { "return": {} }
1106 { 'command': 'system_powerdown' }
1111 # Adds CPU with specified ID
1113 # @id: ID of CPU to be created, valid values [0..max_cpus)
1115 # Returns: Nothing on success
1121 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1122 # <- { "return": {} }
1125 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1130 # Save a portion of guest memory to a file.
1132 # @val: the virtual address of the guest to start from
1134 # @size: the size of memory region to save
1136 # @filename: the file to save the memory to as binary data
1138 # @cpu-index: the index of the virtual CPU to use for translating the
1139 # virtual address (defaults to CPU 0)
1141 # Returns: Nothing on success
1145 # Notes: Errors were not reliably returned until 1.1
1149 # -> { "execute": "memsave",
1150 # "arguments": { "val": 10,
1152 # "filename": "/tmp/virtual-mem-dump" } }
1153 # <- { "return": {} }
1156 { 'command': 'memsave',
1157 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1162 # Save a portion of guest physical memory to a file.
1164 # @val: the physical address of the guest to start from
1166 # @size: the size of memory region to save
1168 # @filename: the file to save the memory to as binary data
1170 # Returns: Nothing on success
1174 # Notes: Errors were not reliably returned until 1.1
1178 # -> { "execute": "pmemsave",
1179 # "arguments": { "val": 10,
1181 # "filename": "/tmp/physical-mem-dump" } }
1182 # <- { "return": {} }
1185 { 'command': 'pmemsave',
1186 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1191 # Resume guest VCPU execution.
1195 # Returns: If successful, nothing
1197 # Notes: This command will succeed if the guest is currently running. It
1198 # will also succeed if the guest is in the "inmigrate" state; in
1199 # this case, the effect of the command is to make sure the guest
1200 # starts once migration finishes, removing the effect of the -S
1201 # command line option if it was passed.
1205 # -> { "execute": "cont" }
1206 # <- { "return": {} }
1209 { 'command': 'cont' }
1214 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1222 # -> { "execute": "system_wakeup" }
1223 # <- { "return": {} }
1226 { 'command': 'system_wakeup' }
1231 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1232 # The command fails when the guest doesn't support injecting.
1234 # Returns: If successful, nothing
1238 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1242 # -> { "execute": "inject-nmi" }
1243 # <- { "return": {} }
1246 { 'command': 'inject-nmi' }
1251 # Request the balloon driver to change its balloon size.
1253 # @value: the target size of the balloon in bytes
1255 # Returns: Nothing on success
1256 # If the balloon driver is enabled but not functional because the KVM
1257 # kernel module cannot support it, KvmMissingCap
1258 # If no balloon device is present, DeviceNotActive
1260 # Notes: This command just issues a request to the guest. When it returns,
1261 # the balloon size may not have changed. A guest can change the balloon
1262 # size independent of this command.
1268 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1269 # <- { "return": {} }
1272 { 'command': 'balloon', 'data': {'value': 'int'} }
1275 # @human-monitor-command:
1277 # Execute a command on the human monitor and return the output.
1279 # @command-line: the command to execute in the human monitor
1281 # @cpu-index: The CPU to use for commands that require an implicit CPU
1283 # Returns: the output of the command as a string
1287 # Notes: This command only exists as a stop-gap. Its use is highly
1288 # discouraged. The semantics of this command are not
1289 # guaranteed: this means that command names, arguments and
1290 # responses can change or be removed at ANY time. Applications
1291 # that rely on long term stability guarantees should NOT
1294 # Known limitations:
1296 # * This command is stateless, this means that commands that depend
1297 # on state information (such as getfd) might not work
1299 # * Commands that prompt the user for data don't currently work
1303 # -> { "execute": "human-monitor-command",
1304 # "arguments": { "command-line": "info kvm" } }
1305 # <- { "return": "kvm support: enabled\r\n" }
1308 { 'command': 'human-monitor-command',
1309 'data': {'command-line': 'str', '*cpu-index': 'int'},
1313 # @ObjectPropertyInfo:
1315 # @name: the name of the property
1317 # @type: the type of the property. This will typically come in one of four
1320 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1321 # These types are mapped to the appropriate JSON type.
1323 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1324 # device type name. Child properties create the composition tree.
1326 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1327 # device type name. Link properties form the device model graph.
1329 # @description: if specified, the description of the property.
1333 { 'struct': 'ObjectPropertyInfo',
1334 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1339 # This command will list any properties of a object given a path in the object
1342 # @path: the path within the object model. See @qom-get for a description of
1345 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1350 { 'command': 'qom-list',
1351 'data': { 'path': 'str' },
1352 'returns': [ 'ObjectPropertyInfo' ] }
1357 # This command will get a property from a object model path and return the
1360 # @path: The path within the object model. There are two forms of supported
1361 # paths--absolute and partial paths.
1363 # Absolute paths are derived from the root object and can follow child<>
1364 # or link<> properties. Since they can follow link<> properties, they
1365 # can be arbitrarily long. Absolute paths look like absolute filenames
1366 # and are prefixed with a leading slash.
1368 # Partial paths look like relative filenames. They do not begin
1369 # with a prefix. The matching rules for partial paths are subtle but
1370 # designed to make specifying objects easy. At each level of the
1371 # composition tree, the partial path is matched as an absolute path.
1372 # The first match is not returned. At least two matches are searched
1373 # for. A successful result is only returned if only one match is
1374 # found. If more than one match is found, a flag is return to
1375 # indicate that the match was ambiguous.
1377 # @property: The property name to read
1379 # Returns: The property value. The type depends on the property
1380 # type. child<> and link<> properties are returned as #str
1381 # pathnames. All integer property types (u8, u16, etc) are
1386 { 'command': 'qom-get',
1387 'data': { 'path': 'str', 'property': 'str' },
1393 # This command will set a property from a object model path.
1395 # @path: see @qom-get for a description of this parameter
1397 # @property: the property name to set
1399 # @value: a value who's type is appropriate for the property type. See @qom-get
1400 # for a description of type mapping.
1404 { 'command': 'qom-set',
1405 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1410 # This command is multiple commands multiplexed together.
1412 # @device: This is normally the name of a block device but it may also be 'vnc'.
1413 # when it's 'vnc', then sub command depends on @target
1415 # @target: If @device is a block device, then this is the new filename.
1416 # If @device is 'vnc', then if the value 'password' selects the vnc
1417 # change password command. Otherwise, this specifies a new server URI
1418 # address to listen to for VNC connections.
1420 # @arg: If @device is a block device, then this is an optional format to open
1422 # If @device is 'vnc' and @target is 'password', this is the new VNC
1423 # password to set. See change-vnc-password for additional notes.
1425 # Returns: Nothing on success.
1426 # If @device is not a valid block device, DeviceNotFound
1428 # Notes: This interface is deprecated, and it is strongly recommended that you
1429 # avoid using it. For changing block devices, use
1430 # blockdev-change-medium; for changing VNC parameters, use
1431 # change-vnc-password.
1437 # 1. Change a removable medium
1439 # -> { "execute": "change",
1440 # "arguments": { "device": "ide1-cd0",
1441 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1442 # <- { "return": {} }
1444 # 2. Change VNC password
1446 # -> { "execute": "change",
1447 # "arguments": { "device": "vnc", "target": "password",
1448 # "arg": "foobar1" } }
1449 # <- { "return": {} }
1452 { 'command': 'change',
1453 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1458 # This structure describes a search result from @qom-list-types
1460 # @name: the type name found in the search
1462 # @abstract: the type is abstract and can't be directly instantiated.
1463 # Omitted if false. (since 2.10)
1465 # @parent: Name of parent type, if any (since 2.10)
1469 { 'struct': 'ObjectTypeInfo',
1470 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1475 # This command will return a list of types given search parameters
1477 # @implements: if specified, only return types that implement this type name
1479 # @abstract: if true, include abstract types in the results
1481 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1485 { 'command': 'qom-list-types',
1486 'data': { '*implements': 'str', '*abstract': 'bool' },
1487 'returns': [ 'ObjectTypeInfo' ] }
1490 # @device-list-properties:
1492 # List properties associated with a device.
1494 # @typename: the type name of a device
1496 # Returns: a list of ObjectPropertyInfo describing a devices properties
1500 { 'command': 'device-list-properties',
1501 'data': { 'typename': 'str'},
1502 'returns': [ 'ObjectPropertyInfo' ] }
1505 # @qom-list-properties:
1507 # List properties associated with a QOM object.
1509 # @typename: the type name of an object
1511 # Returns: a list of ObjectPropertyInfo describing object properties
1515 { 'command': 'qom-list-properties',
1516 'data': { 'typename': 'str'},
1517 'returns': [ 'ObjectPropertyInfo' ] }
1520 # @xen-set-global-dirty-log:
1522 # Enable or disable the global dirty log mode.
1524 # @enable: true to enable, false to disable.
1532 # -> { "execute": "xen-set-global-dirty-log",
1533 # "arguments": { "enable": true } }
1534 # <- { "return": {} }
1537 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1542 # @driver: the name of the new device's driver
1544 # @bus: the device's parent bus (device tree path)
1546 # @id: the device's ID, must be unique
1548 # Additional arguments depend on the type.
1553 # 1. For detailed information about this command, please refer to the
1554 # 'docs/qdev-device-use.txt' file.
1556 # 2. It's possible to list device properties by running QEMU with the
1557 # "-device DEVICE,help" command-line argument, where DEVICE is the
1562 # -> { "execute": "device_add",
1563 # "arguments": { "driver": "e1000", "id": "net1",
1565 # "mac": "52:54:00:12:34:56" } }
1566 # <- { "return": {} }
1568 # TODO: This command effectively bypasses QAPI completely due to its
1569 # "additional arguments" business. It shouldn't have been added to
1570 # the schema in this form. It should be qapified properly, or
1571 # replaced by a properly qapified command.
1575 { 'command': 'device_add',
1576 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1577 'gen': false } # so we can get the additional arguments
1582 # Remove a device from a guest
1584 # @id: the device's ID or QOM path
1586 # Returns: Nothing on success
1587 # If @id is not a valid device, DeviceNotFound
1589 # Notes: When this command completes, the device may not be removed from the
1590 # guest. Hot removal is an operation that requires guest cooperation.
1591 # This command merely requests that the guest begin the hot removal
1592 # process. Completion of the device removal process is signaled with a
1593 # DEVICE_DELETED event. Guest reset will automatically complete removal
1600 # -> { "execute": "device_del",
1601 # "arguments": { "id": "net1" } }
1602 # <- { "return": {} }
1604 # -> { "execute": "device_del",
1605 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1606 # <- { "return": {} }
1609 { 'command': 'device_del', 'data': {'id': 'str'} }
1614 # Emitted whenever the device removal completion is acknowledged by the guest.
1615 # At this point, it's safe to reuse the specified device ID. Device removal can
1616 # be initiated by the guest or by HMP/QMP commands.
1618 # @device: device name
1620 # @path: device path
1626 # <- { "event": "DEVICE_DELETED",
1627 # "data": { "device": "virtio-net-pci-0",
1628 # "path": "/machine/peripheral/virtio-net-pci-0" },
1629 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1632 { 'event': 'DEVICE_DELETED',
1633 'data': { '*device': 'str', 'path': 'str' } }
1636 # @DumpGuestMemoryFormat:
1638 # An enumeration of guest-memory-dump's format.
1642 # @kdump-zlib: kdump-compressed format with zlib-compressed
1644 # @kdump-lzo: kdump-compressed format with lzo-compressed
1646 # @kdump-snappy: kdump-compressed format with snappy-compressed
1650 { 'enum': 'DumpGuestMemoryFormat',
1651 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1654 # @dump-guest-memory:
1656 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1657 # very long depending on the amount of guest memory.
1659 # @paging: if true, do paging to get guest's memory mapping. This allows
1660 # using gdb to process the core file.
1662 # IMPORTANT: this option can make QEMU allocate several gigabytes
1663 # of RAM. This can happen for a large guest, or a
1664 # malicious guest pretending to be large.
1666 # Also, paging=true has the following limitations:
1668 # 1. The guest may be in a catastrophic state or can have corrupted
1669 # memory, which cannot be trusted
1670 # 2. The guest can be in real-mode even if paging is enabled. For
1671 # example, the guest uses ACPI to sleep, and ACPI sleep state
1673 # 3. Currently only supported on i386 and x86_64.
1675 # @protocol: the filename or file descriptor of the vmcore. The supported
1678 # 1. file: the protocol starts with "file:", and the following
1679 # string is the file's path.
1680 # 2. fd: the protocol starts with "fd:", and the following string
1683 # @detach: if true, QMP will return immediately rather than
1684 # waiting for the dump to finish. The user can track progress
1685 # using "query-dump". (since 2.6).
1687 # @begin: if specified, the starting physical address.
1689 # @length: if specified, the memory size, in bytes. If you don't
1690 # want to dump all guest's memory, please specify the start @begin
1693 # @format: if specified, the format of guest memory dump. But non-elf
1694 # format is conflict with paging and filter, ie. @paging, @begin and
1695 # @length is not allowed to be specified with non-elf @format at the
1696 # same time (since 2.0)
1698 # Note: All boolean arguments default to false
1700 # Returns: nothing on success
1706 # -> { "execute": "dump-guest-memory",
1707 # "arguments": { "protocol": "fd:dump" } }
1708 # <- { "return": {} }
1711 { 'command': 'dump-guest-memory',
1712 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1713 '*begin': 'int', '*length': 'int',
1714 '*format': 'DumpGuestMemoryFormat'} }
1719 # Describe the status of a long-running background guest memory dump.
1721 # @none: no dump-guest-memory has started yet.
1723 # @active: there is one dump running in background.
1725 # @completed: the last dump has finished successfully.
1727 # @failed: the last dump has failed.
1731 { 'enum': 'DumpStatus',
1732 'data': [ 'none', 'active', 'completed', 'failed' ] }
1737 # The result format for 'query-dump'.
1739 # @status: enum of @DumpStatus, which shows current dump status
1741 # @completed: bytes written in latest dump (uncompressed)
1743 # @total: total bytes to be written in latest dump (uncompressed)
1747 { 'struct': 'DumpQueryResult',
1748 'data': { 'status': 'DumpStatus',
1755 # Query latest dump status.
1757 # Returns: A @DumpStatus object showing the dump status.
1763 # -> { "execute": "query-dump" }
1764 # <- { "return": { "status": "active", "completed": 1024000,
1765 # "total": 2048000 } }
1768 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1773 # Emitted when background dump has completed
1775 # @result: final dump status
1777 # @error: human-readable error string that provides
1778 # hint on why dump failed. Only presents on failure. The
1779 # user should not try to interpret the error string.
1785 # { "event": "DUMP_COMPLETED",
1786 # "data": {"result": {"total": 1090650112, "status": "completed",
1787 # "completed": 1090650112} } }
1790 { 'event': 'DUMP_COMPLETED' ,
1791 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1794 # @DumpGuestMemoryCapability:
1796 # A list of the available formats for dump-guest-memory
1800 { 'struct': 'DumpGuestMemoryCapability',
1802 'formats': ['DumpGuestMemoryFormat'] } }
1805 # @query-dump-guest-memory-capability:
1807 # Returns the available formats for dump-guest-memory
1809 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1816 # -> { "execute": "query-dump-guest-memory-capability" }
1817 # <- { "return": { "formats":
1818 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1821 { 'command': 'query-dump-guest-memory-capability',
1822 'returns': 'DumpGuestMemoryCapability' }
1827 # Dump guest's storage keys
1829 # @filename: the path to the file to dump to
1831 # This command is only supported on s390 architecture.
1837 # -> { "execute": "dump-skeys",
1838 # "arguments": { "filename": "/tmp/skeys" } }
1839 # <- { "return": {} }
1842 { 'command': 'dump-skeys',
1843 'data': { 'filename': 'str' } }
1848 # Create a QOM object.
1850 # @qom-type: the class name for the object to be created
1852 # @id: the name of the new object
1854 # @props: a dictionary of properties to be passed to the backend
1856 # Returns: Nothing on success
1857 # Error if @qom-type is not a valid class name
1863 # -> { "execute": "object-add",
1864 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1865 # "props": { "filename": "/dev/hwrng" } } }
1866 # <- { "return": {} }
1869 { 'command': 'object-add',
1870 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1875 # Remove a QOM object.
1877 # @id: the name of the QOM object to remove
1879 # Returns: Nothing on success
1880 # Error if @id is not a valid id for a QOM object
1886 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1887 # <- { "return": {} }
1890 { 'command': 'object-del', 'data': {'id': 'str'} }
1895 # Receive a file descriptor via SCM rights and assign it a name
1897 # @fdname: file descriptor name
1899 # Returns: Nothing on success
1903 # Notes: If @fdname already exists, the file descriptor assigned to
1904 # it will be closed and replaced by the received file
1907 # The 'closefd' command can be used to explicitly close the
1908 # file descriptor when it is no longer needed.
1912 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1913 # <- { "return": {} }
1916 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1921 # Close a file descriptor previously passed via SCM rights
1923 # @fdname: file descriptor name
1925 # Returns: Nothing on success
1931 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1932 # <- { "return": {} }
1935 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1940 # Information describing a machine.
1942 # @name: the name of the machine
1944 # @alias: an alias for the machine name
1946 # @is-default: whether the machine is default
1948 # @cpu-max: maximum number of CPUs supported by the machine type
1951 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1955 { 'struct': 'MachineInfo',
1956 'data': { 'name': 'str', '*alias': 'str',
1957 '*is-default': 'bool', 'cpu-max': 'int',
1958 'hotpluggable-cpus': 'bool'} }
1963 # Return a list of supported machines
1965 # Returns: a list of MachineInfo
1969 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
1972 # @CpuDefinitionInfo:
1974 # Virtual CPU definition.
1976 # @name: the name of the CPU definition
1978 # @migration-safe: whether a CPU definition can be safely used for
1979 # migration in combination with a QEMU compatibility machine
1980 # when migrating between different QMU versions and between
1981 # hosts with different sets of (hardware or software)
1982 # capabilities. If not provided, information is not available
1983 # and callers should not assume the CPU definition to be
1984 # migration-safe. (since 2.8)
1986 # @static: whether a CPU definition is static and will not change depending on
1987 # QEMU version, machine type, machine options and accelerator options.
1988 # A static model is always migration-safe. (since 2.8)
1990 # @unavailable-features: List of properties that prevent
1991 # the CPU model from running in the current
1993 # @typename: Type name that can be used as argument to @device-list-properties,
1994 # to introspect properties configurable using -cpu or -global.
1997 # @unavailable-features is a list of QOM property names that
1998 # represent CPU model attributes that prevent the CPU from running.
1999 # If the QOM property is read-only, that means there's no known
2000 # way to make the CPU model run in the current host. Implementations
2001 # that choose not to provide specific information return the
2002 # property name "type".
2003 # If the property is read-write, it means that it MAY be possible
2004 # to run the CPU model in the current host if that property is
2005 # changed. Management software can use it as hints to suggest or
2006 # choose an alternative for the user, or just to generate meaningful
2007 # error messages explaining why the CPU model can't be used.
2008 # If @unavailable-features is an empty list, the CPU model is
2009 # runnable using the current host and machine-type.
2010 # If @unavailable-features is not present, runnability
2011 # information for the CPU is not available.
2015 { 'struct': 'CpuDefinitionInfo',
2016 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2017 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2022 # Actual memory information in bytes.
2024 # @base-memory: size of "base" memory specified with command line
2027 # @plugged-memory: size of memory that can be hot-unplugged. This field
2028 # is omitted if target doesn't support memory hotplug
2029 # (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2033 { 'struct': 'MemoryInfo',
2034 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2037 # @query-memory-size-summary:
2039 # Return the amount of initially allocated and present hotpluggable (if
2040 # enabled) memory in bytes.
2044 # -> { "execute": "query-memory-size-summary" }
2045 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2049 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2052 # @query-cpu-definitions:
2054 # Return a list of supported virtual CPU definitions
2056 # Returns: a list of CpuDefInfo
2060 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2065 # Virtual CPU model.
2067 # A CPU model consists of the name of a CPU definition, to which
2068 # delta changes are applied (e.g. features added/removed). Most magic values
2069 # that an architecture might require should be hidden behind the name.
2070 # However, if required, architectures can expose relevant properties.
2072 # @name: the name of the CPU definition the model is based on
2073 # @props: a dictionary of QOM properties to be applied
2077 { 'struct': 'CpuModelInfo',
2078 'data': { 'name': 'str',
2082 # @CpuModelExpansionType:
2084 # An enumeration of CPU model expansion types.
2086 # @static: Expand to a static CPU model, a combination of a static base
2087 # model name and property delta changes. As the static base model will
2088 # never change, the expanded CPU model will be the same, independent of
2089 # independent of QEMU version, machine type, machine options, and
2090 # accelerator options. Therefore, the resulting model can be used by
2091 # tooling without having to specify a compatibility machine - e.g. when
2092 # displaying the "host" model. static CPU models are migration-safe.
2094 # @full: Expand all properties. The produced model is not guaranteed to be
2095 # migration-safe, but allows tooling to get an insight and work with
2098 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2099 # features enabled by the CPU model may be omitted, because they can't be
2100 # implemented by a static CPU model definition (e.g. cache info passthrough and
2101 # PMU passthrough in x86). If you need an accurate representation of the
2102 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2103 # static representation that will keep ABI compatibility even when changing QEMU
2104 # version or machine-type, use @static (but keep in mind that some features may
2109 { 'enum': 'CpuModelExpansionType',
2110 'data': [ 'static', 'full' ] }
2114 # @CpuModelExpansionInfo:
2116 # The result of a cpu model expansion.
2118 # @model: the expanded CpuModelInfo.
2122 { 'struct': 'CpuModelExpansionInfo',
2123 'data': { 'model': 'CpuModelInfo' } }
2127 # @query-cpu-model-expansion:
2129 # Expands a given CPU model (or a combination of CPU model + additional options)
2130 # to different granularities, allowing tooling to get an understanding what a
2131 # specific CPU model looks like in QEMU under a certain configuration.
2133 # This interface can be used to query the "host" CPU model.
2135 # The data returned by this command may be affected by:
2137 # * QEMU version: CPU models may look different depending on the QEMU version.
2138 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2139 # * machine-type: CPU model may look different depending on the machine-type.
2140 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2141 # * machine options (including accelerator): in some architectures, CPU models
2142 # may look different depending on machine and accelerator options. (Except for
2143 # CPU models reported as "static" in query-cpu-definitions.)
2144 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2145 # global properties may affect expansion of CPU models. Using
2146 # query-cpu-model-expansion while using these is not advised.
2148 # Some architectures may not support all expansion types. s390x supports
2149 # "full" and "static".
2151 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2152 # not supported, if the model cannot be expanded, if the model contains
2153 # an unknown CPU definition name, unknown properties or properties
2154 # with a wrong type. Also returns an error if an expansion type is
2159 { 'command': 'query-cpu-model-expansion',
2160 'data': { 'type': 'CpuModelExpansionType',
2161 'model': 'CpuModelInfo' },
2162 'returns': 'CpuModelExpansionInfo' }
2165 # @CpuModelCompareResult:
2167 # An enumeration of CPU model comparison results. The result is usually
2168 # calculated using e.g. CPU features or CPU generations.
2170 # @incompatible: If model A is incompatible to model B, model A is not
2171 # guaranteed to run where model B runs and the other way around.
2173 # @identical: If model A is identical to model B, model A is guaranteed to run
2174 # where model B runs and the other way around.
2176 # @superset: If model A is a superset of model B, model B is guaranteed to run
2177 # where model A runs. There are no guarantees about the other way.
2179 # @subset: If model A is a subset of model B, model A is guaranteed to run
2180 # where model B runs. There are no guarantees about the other way.
2184 { 'enum': 'CpuModelCompareResult',
2185 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2188 # @CpuModelCompareInfo:
2190 # The result of a CPU model comparison.
2192 # @result: The result of the compare operation.
2193 # @responsible-properties: List of properties that led to the comparison result
2194 # not being identical.
2196 # @responsible-properties is a list of QOM property names that led to
2197 # both CPUs not being detected as identical. For identical models, this
2199 # If a QOM property is read-only, that means there's no known way to make the
2200 # CPU models identical. If the special property name "type" is included, the
2201 # models are by definition not identical and cannot be made identical.
2205 { 'struct': 'CpuModelCompareInfo',
2206 'data': {'result': 'CpuModelCompareResult',
2207 'responsible-properties': ['str']
2212 # @query-cpu-model-comparison:
2214 # Compares two CPU models, returning how they compare in a specific
2215 # configuration. The results indicates how both models compare regarding
2216 # runnability. This result can be used by tooling to make decisions if a
2217 # certain CPU model will run in a certain configuration or if a compatible
2218 # CPU model has to be created by baselining.
2220 # Usually, a CPU model is compared against the maximum possible CPU model
2221 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2222 # model is identical or a subset, it will run in that configuration.
2224 # The result returned by this command may be affected by:
2226 # * QEMU version: CPU models may look different depending on the QEMU version.
2227 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2228 # * machine-type: CPU model may look different depending on the machine-type.
2229 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2230 # * machine options (including accelerator): in some architectures, CPU models
2231 # may look different depending on machine and accelerator options. (Except for
2232 # CPU models reported as "static" in query-cpu-definitions.)
2233 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2234 # global properties may affect expansion of CPU models. Using
2235 # query-cpu-model-expansion while using these is not advised.
2237 # Some architectures may not support comparing CPU models. s390x supports
2238 # comparing CPU models.
2240 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2241 # not supported, if a model cannot be used, if a model contains
2242 # an unknown cpu definition name, unknown properties or properties
2247 { 'command': 'query-cpu-model-comparison',
2248 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2249 'returns': 'CpuModelCompareInfo' }
2252 # @CpuModelBaselineInfo:
2254 # The result of a CPU model baseline.
2256 # @model: the baselined CpuModelInfo.
2260 { 'struct': 'CpuModelBaselineInfo',
2261 'data': { 'model': 'CpuModelInfo' } }
2264 # @query-cpu-model-baseline:
2266 # Baseline two CPU models, creating a compatible third model. The created
2267 # model will always be a static, migration-safe CPU model (see "static"
2268 # CPU model expansion for details).
2270 # This interface can be used by tooling to create a compatible CPU model out
2271 # two CPU models. The created CPU model will be identical to or a subset of
2272 # both CPU models when comparing them. Therefore, the created CPU model is
2273 # guaranteed to run where the given CPU models run.
2275 # The result returned by this command may be affected by:
2277 # * QEMU version: CPU models may look different depending on the QEMU version.
2278 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2279 # * machine-type: CPU model may look different depending on the machine-type.
2280 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2281 # * machine options (including accelerator): in some architectures, CPU models
2282 # may look different depending on machine and accelerator options. (Except for
2283 # CPU models reported as "static" in query-cpu-definitions.)
2284 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2285 # global properties may affect expansion of CPU models. Using
2286 # query-cpu-model-expansion while using these is not advised.
2288 # Some architectures may not support baselining CPU models. s390x supports
2289 # baselining CPU models.
2291 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2292 # not supported, if a model cannot be used, if a model contains
2293 # an unknown cpu definition name, unknown properties or properties
2298 { 'command': 'query-cpu-model-baseline',
2299 'data': { 'modela': 'CpuModelInfo',
2300 'modelb': 'CpuModelInfo' },
2301 'returns': 'CpuModelBaselineInfo' }
2306 # Information about a file descriptor that was added to an fd set.
2308 # @fdset-id: The ID of the fd set that @fd was added to.
2310 # @fd: The file descriptor that was received via SCM rights and
2311 # added to the fd set.
2315 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2320 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2322 # @fdset-id: The ID of the fd set to add the file descriptor to.
2324 # @opaque: A free-form string that can be used to describe the fd.
2326 # Returns: @AddfdInfo on success
2328 # If file descriptor was not received, FdNotSupplied
2330 # If @fdset-id is a negative value, InvalidParameterValue
2332 # Notes: The list of fd sets is shared by all monitor connections.
2334 # If @fdset-id is not specified, a new fd set will be created.
2340 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2341 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2344 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2345 'returns': 'AddfdInfo' }
2350 # Remove a file descriptor from an fd set.
2352 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2354 # @fd: The file descriptor that is to be removed.
2356 # Returns: Nothing on success
2357 # If @fdset-id or @fd is not found, FdNotFound
2361 # Notes: The list of fd sets is shared by all monitor connections.
2363 # If @fd is not specified, all file descriptors in @fdset-id
2368 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2369 # <- { "return": {} }
2372 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2377 # Information about a file descriptor that belongs to an fd set.
2379 # @fd: The file descriptor value.
2381 # @opaque: A free-form string that can be used to describe the fd.
2385 { 'struct': 'FdsetFdInfo',
2386 'data': {'fd': 'int', '*opaque': 'str'} }
2391 # Information about an fd set.
2393 # @fdset-id: The ID of the fd set.
2395 # @fds: A list of file descriptors that belong to this fd set.
2399 { 'struct': 'FdsetInfo',
2400 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2405 # Return information describing all fd sets.
2407 # Returns: A list of @FdsetInfo
2411 # Note: The list of fd sets is shared by all monitor connections.
2415 # -> { "execute": "query-fdsets" }
2421 # "opaque": "rdonly:/path/to/file"
2425 # "opaque": "rdwr:/path/to/file"
2445 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2450 # Information describing the QEMU target.
2452 # @arch: the target architecture (eg "x86_64", "i386", etc)
2456 { 'struct': 'TargetInfo',
2457 'data': { 'arch': 'str' } }
2462 # Return information about the target for this QEMU
2464 # Returns: TargetInfo
2468 { 'command': 'query-target', 'returns': 'TargetInfo' }
2471 # @AcpiTableOptions:
2473 # Specify an ACPI table on the command line to load.
2475 # At most one of @file and @data can be specified. The list of files specified
2476 # by any one of them is loaded and concatenated in order. If both are omitted,
2479 # Other fields / optargs can be used to override fields of the generic ACPI
2480 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2481 # Description Table Header. If a header field is not overridden, then the
2482 # corresponding value from the concatenated blob is used (in case of @file), or
2483 # it is filled in with a hard-coded value (in case of @data).
2485 # String fields are copied into the matching ACPI member from lowest address
2486 # upwards, and silently truncated / NUL-padded to length.
2488 # @sig: table signature / identifier (4 bytes)
2490 # @rev: table revision number (dependent on signature, 1 byte)
2492 # @oem_id: OEM identifier (6 bytes)
2494 # @oem_table_id: OEM table identifier (8 bytes)
2496 # @oem_rev: OEM-supplied revision number (4 bytes)
2498 # @asl_compiler_id: identifier of the utility that created the table
2501 # @asl_compiler_rev: revision number of the utility that created the
2504 # @file: colon (:) separated list of pathnames to load and
2505 # concatenate as table data. The resultant binary blob is expected to
2506 # have an ACPI table header. At least one file is required. This field
2509 # @data: colon (:) separated list of pathnames to load and
2510 # concatenate as table data. The resultant binary blob must not have an
2511 # ACPI table header. At least one file is required. This field excludes
2516 { 'struct': 'AcpiTableOptions',
2521 '*oem_table_id': 'str',
2522 '*oem_rev': 'uint32',
2523 '*asl_compiler_id': 'str',
2524 '*asl_compiler_rev': 'uint32',
2529 # @CommandLineParameterType:
2531 # Possible types for an option parameter.
2533 # @string: accepts a character string
2535 # @boolean: accepts "on" or "off"
2537 # @number: accepts a number
2539 # @size: accepts a number followed by an optional suffix (K)ilo,
2540 # (M)ega, (G)iga, (T)era
2544 { 'enum': 'CommandLineParameterType',
2545 'data': ['string', 'boolean', 'number', 'size'] }
2548 # @CommandLineParameterInfo:
2550 # Details about a single parameter of a command line option.
2552 # @name: parameter name
2554 # @type: parameter @CommandLineParameterType
2556 # @help: human readable text string, not suitable for parsing.
2558 # @default: default value string (since 2.1)
2562 { 'struct': 'CommandLineParameterInfo',
2563 'data': { 'name': 'str',
2564 'type': 'CommandLineParameterType',
2566 '*default': 'str' } }
2569 # @CommandLineOptionInfo:
2571 # Details about a command line option, including its list of parameter details
2573 # @option: option name
2575 # @parameters: an array of @CommandLineParameterInfo
2579 { 'struct': 'CommandLineOptionInfo',
2580 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2583 # @query-command-line-options:
2585 # Query command line option schema.
2587 # @option: option name
2589 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2590 # @option). Returns an error if the given @option doesn't exist.
2596 # -> { "execute": "query-command-line-options",
2597 # "arguments": { "option": "option-rom" } }
2602 # "name": "romfile",
2606 # "name": "bootindex",
2610 # "option": "option-rom"
2616 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2617 'returns': ['CommandLineOptionInfo'] }
2620 # @X86CPURegister32:
2622 # A X86 32-bit register
2626 { 'enum': 'X86CPURegister32',
2627 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2630 # @X86CPUFeatureWordInfo:
2632 # Information about a X86 CPU feature word
2634 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2636 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2639 # @cpuid-register: Output register containing the feature bits
2641 # @features: value of output register, containing the feature bits
2645 { 'struct': 'X86CPUFeatureWordInfo',
2646 'data': { 'cpuid-input-eax': 'int',
2647 '*cpuid-input-ecx': 'int',
2648 'cpuid-register': 'X86CPURegister32',
2649 'features': 'int' } }
2652 # @DummyForceArrays:
2654 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2658 { 'struct': 'DummyForceArrays',
2659 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2665 # @node: NUMA nodes configuration
2667 # @dist: NUMA distance configuration (since 2.10)
2669 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2673 { 'enum': 'NumaOptionsType',
2674 'data': [ 'node', 'dist', 'cpu' ] }
2679 # A discriminated record of NUMA options. (for OptsVisitor)
2683 { 'union': 'NumaOptions',
2684 'base': { 'type': 'NumaOptionsType' },
2685 'discriminator': 'type',
2687 'node': 'NumaNodeOptions',
2688 'dist': 'NumaDistOptions',
2689 'cpu': 'NumaCpuOptions' }}
2694 # Create a guest NUMA node. (for OptsVisitor)
2696 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2698 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2701 # @mem: memory size of this node; mutually exclusive with @memdev.
2702 # Equally divide total memory among nodes if both @mem and @memdev are
2705 # @memdev: memory backend object. If specified for one node,
2706 # it must be specified for all nodes.
2710 { 'struct': 'NumaNodeOptions',
2712 '*nodeid': 'uint16',
2713 '*cpus': ['uint16'],
2720 # Set the distance between 2 NUMA nodes.
2722 # @src: source NUMA node.
2724 # @dst: destination NUMA node.
2726 # @val: NUMA distance from source node to destination node.
2727 # When a node is unreachable from another node, set the distance
2728 # between them to 255.
2732 { 'struct': 'NumaDistOptions',
2741 # Option "-numa cpu" overrides default cpu to node mapping.
2742 # It accepts the same set of cpu properties as returned by
2743 # query-hotpluggable-cpus[].props, where node-id could be used to
2744 # override default node mapping.
2748 { 'struct': 'NumaCpuOptions',
2749 'base': 'CpuInstanceProperties',
2755 # Host memory policy types
2757 # @default: restore default policy, remove any nondefault policy
2759 # @preferred: set the preferred host nodes for allocation
2761 # @bind: a strict policy that restricts memory allocation to the
2762 # host nodes specified
2764 # @interleave: memory allocations are interleaved across the set
2765 # of host nodes specified
2769 { 'enum': 'HostMemPolicy',
2770 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2775 # Information about memory backend
2777 # @id: backend's ID if backend has 'id' property (since 2.9)
2779 # @size: memory backend size
2781 # @merge: enables or disables memory merge support
2783 # @dump: includes memory backend's memory in a core dump or not
2785 # @prealloc: enables or disables memory preallocation
2787 # @host-nodes: host nodes for its memory policy
2789 # @policy: memory policy of memory backend
2793 { 'struct': 'Memdev',
2800 'host-nodes': ['uint16'],
2801 'policy': 'HostMemPolicy' }}
2806 # Returns information for all memory backends.
2808 # Returns: a list of @Memdev.
2814 # -> { "execute": "query-memdev" }
2818 # "size": 536870912,
2821 # "prealloc": false,
2822 # "host-nodes": [0, 1],
2826 # "size": 536870912,
2830 # "host-nodes": [2, 3],
2831 # "policy": "preferred"
2837 { 'command': 'query-memdev', 'returns': ['Memdev'] }
2840 # @PCDIMMDeviceInfo:
2842 # PCDIMMDevice state information
2846 # @addr: physical address, where device is mapped
2848 # @size: size of memory that the device provides
2850 # @slot: slot number at which device is plugged in
2852 # @node: NUMA node number where device is plugged in
2854 # @memdev: memory backend linked with device
2856 # @hotplugged: true if device was hotplugged
2858 # @hotpluggable: true if device if could be added/removed while machine is running
2862 { 'struct': 'PCDIMMDeviceInfo',
2863 'data': { '*id': 'str',
2869 'hotplugged': 'bool',
2870 'hotpluggable': 'bool'
2875 # @MemoryDeviceInfo:
2877 # Union containing information about a memory device
2881 { 'union': 'MemoryDeviceInfo',
2882 'data': { 'dimm': 'PCDIMMDeviceInfo',
2883 'nvdimm': 'PCDIMMDeviceInfo'
2888 # @query-memory-devices:
2890 # Lists available memory devices and their state
2896 # -> { "execute": "query-memory-devices" }
2897 # <- { "return": [ { "data":
2898 # { "addr": 5368709120,
2899 # "hotpluggable": true,
2900 # "hotplugged": true,
2902 # "memdev": "/objects/memX",
2904 # "size": 1073741824,
2910 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2913 # @MEM_UNPLUG_ERROR:
2915 # Emitted when memory hot unplug error occurs.
2917 # @device: device name
2919 # @msg: Informative message
2925 # <- { "event": "MEM_UNPLUG_ERROR"
2926 # "data": { "device": "dimm1",
2927 # "msg": "acpi: device unplug for unsupported device"
2929 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2932 { 'event': 'MEM_UNPLUG_ERROR',
2933 'data': { 'device': 'str', 'msg': 'str' } }
2938 # @DIMM: memory slot
2939 # @CPU: logical CPU slot (since 2.7)
2941 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2946 # OSPM Status Indication for a device
2947 # For description of possible values of @source and @status fields
2948 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2950 # @device: device ID associated with slot
2952 # @slot: slot ID, unique per slot of a given @slot-type
2954 # @slot-type: type of the slot
2956 # @source: an integer containing the source event
2958 # @status: an integer containing the status code
2962 { 'struct': 'ACPIOSTInfo',
2963 'data' : { '*device': 'str',
2965 'slot-type': 'ACPISlotType',
2970 # @query-acpi-ospm-status:
2972 # Return a list of ACPIOSTInfo for devices that support status
2973 # reporting via ACPI _OST method.
2979 # -> { "execute": "query-acpi-ospm-status" }
2980 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2981 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2982 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2983 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2987 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2992 # Emitted when guest executes ACPI _OST method.
2994 # @info: OSPM Status Indication
3000 # <- { "event": "ACPI_DEVICE_OST",
3001 # "data": { "device": "d1", "slot": "0",
3002 # "slot-type": "DIMM", "source": 1, "status": 0 } }
3005 { 'event': 'ACPI_DEVICE_OST',
3006 'data': { 'info': 'ACPIOSTInfo' } }
3009 # @rtc-reset-reinjection:
3011 # This command will reset the RTC interrupt reinjection backlog.
3012 # Can be used if another mechanism to synchronize guest time
3013 # is in effect, for example QEMU guest agent's guest-set-time
3020 # -> { "execute": "rtc-reset-reinjection" }
3021 # <- { "return": {} }
3024 { 'command': 'rtc-reset-reinjection' }
3029 # Emitted when the guest changes the RTC time.
3031 # @offset: offset between base RTC clock (as specified by -rtc base), and
3032 # new RTC clock value
3034 # Note: This event is rate-limited.
3040 # <- { "event": "RTC_CHANGE",
3041 # "data": { "offset": 78 },
3042 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3045 { 'event': 'RTC_CHANGE',
3046 'data': { 'offset': 'int' } }
3051 # Mode of the replay subsystem.
3053 # @none: normal execution mode. Replay or record are not enabled.
3055 # @record: record mode. All non-deterministic data is written into the
3058 # @play: replay mode. Non-deterministic data required for system execution
3059 # is read from the log.
3063 { 'enum': 'ReplayMode',
3064 'data': [ 'none', 'record', 'play' ] }
3067 # @xen-load-devices-state:
3069 # Load the state of all devices from file. The RAM and the block devices
3070 # of the VM are not loaded by this command.
3072 # @filename: the file to load the state of the devices from as binary
3073 # data. See xen-save-devices-state.txt for a description of the binary
3080 # -> { "execute": "xen-load-devices-state",
3081 # "arguments": { "filename": "/tmp/resume" } }
3082 # <- { "return": {} }
3085 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3090 # The struct describes capability for a specific GIC (Generic
3091 # Interrupt Controller) version. These bits are not only decided by
3092 # QEMU/KVM software version, but also decided by the hardware that
3093 # the program is running upon.
3095 # @version: version of GIC to be described. Currently, only 2 and 3
3098 # @emulated: whether current QEMU/hardware supports emulated GIC
3099 # device in user space.
3101 # @kernel: whether current QEMU/hardware supports hardware
3102 # accelerated GIC device in kernel.
3106 { 'struct': 'GICCapability',
3107 'data': { 'version': 'int',
3109 'kernel': 'bool' } }
3112 # @query-gic-capabilities:
3114 # This command is ARM-only. It will return a list of GICCapability
3115 # objects that describe its capability bits.
3117 # Returns: a list of GICCapability objects.
3123 # -> { "execute": "query-gic-capabilities" }
3124 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3125 # { "version": 3, "emulated": false, "kernel": true } ] }
3128 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3131 # @CpuInstanceProperties:
3133 # List of properties to be used for hotplugging a CPU instance,
3134 # it should be passed by management with device_add command when
3135 # a CPU is being hotplugged.
3137 # @node-id: NUMA node ID the CPU belongs to
3138 # @socket-id: socket number within node/board the CPU belongs to
3139 # @core-id: core number within socket the CPU belongs to
3140 # @thread-id: thread number within core the CPU belongs to
3142 # Note: currently there are 4 properties that could be present
3143 # but management should be prepared to pass through other
3144 # properties with device_add command to allow for future
3145 # interface extension. This also requires the filed names to be kept in
3146 # sync with the properties passed to -device/device_add.
3150 { 'struct': 'CpuInstanceProperties',
3151 'data': { '*node-id': 'int',
3152 '*socket-id': 'int',
3161 # @type: CPU object type for usage with device_add command
3162 # @props: list of properties to be used for hotplugging CPU
3163 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3164 # @qom-path: link to existing CPU object if CPU is present or
3165 # omitted if CPU is not present.
3169 { 'struct': 'HotpluggableCPU',
3170 'data': { 'type': 'str',
3171 'vcpus-count': 'int',
3172 'props': 'CpuInstanceProperties',
3178 # @query-hotpluggable-cpus:
3180 # Returns: a list of HotpluggableCPU objects.
3186 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3188 # -> { "execute": "query-hotpluggable-cpus" }
3190 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3191 # "vcpus-count": 1 },
3192 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3193 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3196 # For pc machine type started with -smp 1,maxcpus=2:
3198 # -> { "execute": "query-hotpluggable-cpus" }
3201 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3202 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3205 # "qom-path": "/machine/unattached/device[0]",
3206 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3207 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3211 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3214 # -> { "execute": "query-hotpluggable-cpus" }
3217 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3218 # "props": { "core-id": 1 }
3221 # "qom-path": "/machine/unattached/device[0]",
3222 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3223 # "props": { "core-id": 0 }
3228 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3235 # @guid: the globally unique identifier
3239 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3242 # @query-vm-generation-id:
3244 # Show Virtual Machine Generation ID
3248 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3254 # An enumeration of SEV state information used during @query-sev.
3256 # @uninit: The guest is uninitialized.
3258 # @launch-update: The guest is currently being launched; plaintext data and
3259 # register state is being imported.
3261 # @launch-secret: The guest is currently being launched; ciphertext data
3262 # is being imported.
3264 # @running: The guest is fully launched or migrated in.
3266 # @send-update: The guest is currently being migrated out to another machine.
3268 # @receive-update: The guest is currently being migrated from another machine.
3272 { 'enum': 'SevState',
3273 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3274 'send-update', 'receive-update' ] }
3279 # Information about Secure Encrypted Virtualization (SEV) support
3281 # @enabled: true if SEV is active
3283 # @api-major: SEV API major version
3285 # @api-minor: SEV API minor version
3287 # @build-id: SEV FW build id
3289 # @policy: SEV policy value
3291 # @state: SEV guest state
3293 # @handle: SEV firmware handle
3297 { 'struct': 'SevInfo',
3298 'data': { 'enabled': 'bool',
3299 'api-major': 'uint8',
3300 'api-minor' : 'uint8',
3301 'build-id' : 'uint8',
3302 'policy' : 'uint32',
3303 'state' : 'SevState',
3311 # Returns information about SEV
3319 # -> { "execute": "query-sev" }
3320 # <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3321 # "build-id" : 0, "policy" : 0, "state" : "running",
3325 { 'command': 'query-sev', 'returns': 'SevInfo' }
3328 # @SevLaunchMeasureInfo:
3330 # SEV Guest Launch measurement information
3332 # @data: the measurement value encoded in base64
3337 { 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3340 # @query-sev-launch-measure:
3342 # Query the SEV guest launch information.
3344 # Returns: The @SevLaunchMeasureInfo for the guest
3350 # -> { "execute": "query-sev-launch-measure" }
3351 # <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3354 { 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3359 # The struct describes capability for a Secure Encrypted Virtualization
3362 # @pdh: Platform Diffie-Hellman key (base64 encoded)
3364 # @cert-chain: PDH certificate chain (base64 encoded)
3366 # @cbitpos: C-bit location in page table entry
3368 # @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3373 { 'struct': 'SevCapability',
3374 'data': { 'pdh': 'str',
3375 'cert-chain': 'str',
3377 'reduced-phys-bits': 'int'} }
3380 # @query-sev-capabilities:
3382 # This command is used to get the SEV capabilities, and is supported on AMD
3383 # X86 platforms only.
3385 # Returns: SevCapability objects.
3391 # -> { "execute": "query-sev-capabilities" }
3392 # <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3393 # "cbitpos": 47, "reduced-phys-bits": 5}}
3396 { 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3399 # @CommandDropReason:
3401 # Reasons that caused one command to be dropped.
3403 # @queue-full: the command queue is full. This can only occur when
3404 # the client sends a new non-oob command before the
3405 # response to the previous non-oob command has been
3410 { 'enum': 'CommandDropReason',
3411 'data': [ 'queue-full' ] }
3416 # Emitted when a command is dropped due to some reason. Commands can
3417 # only be dropped when the oob capability is enabled.
3419 # @id: The dropped command's "id" field.
3421 # @reason: The reason why the command is dropped.
3427 # { "event": "COMMAND_DROPPED",
3428 # "data": {"result": {"id": "libvirt-102",
3429 # "reason": "queue-full" } } }
3432 { 'event': 'COMMAND_DROPPED' ,
3433 'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3438 # Test OOB functionality. When sending this command with lock=true,
3439 # it'll try to hang the dispatcher. When sending it with lock=false,
3440 # it'll try to notify the locked thread to continue. Note: it should
3441 # only be used by QMP test program rather than anything else.
3447 # { "execute": "x-oob-test",
3448 # "arguments": { "lock": true } }
3450 { 'command': 'x-oob-test', 'data' : { 'lock': 'bool' },