target/ppc: do not call hreg_compute_hflags() in helper_store_mmcr0()
[qemu/rayw.git] / target / ppc / power8-pmu.c
blob236e8e66e966951bd44800abbfa8be202754e82e
1 /*
2 * PMU emulation helpers for TCG IBM POWER chips
4 * Copyright IBM Corp. 2021
6 * Authors:
7 * Daniel Henrique Barboza <danielhb413@gmail.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "cpu.h"
15 #include "helper_regs.h"
16 #include "exec/exec-all.h"
17 #include "exec/helper-proto.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "hw/ppc/ppc.h"
21 #include "power8-pmu.h"
23 #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
25 #define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL
27 static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
29 if (sprn == SPR_POWER_PMC1) {
30 return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
33 return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
36 void pmu_update_summaries(CPUPPCState *env)
38 target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
39 target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
40 int ins_cnt = 0;
41 int cyc_cnt = 0;
43 if (mmcr0 & MMCR0_FC) {
44 goto hflags_calc;
47 if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) {
48 target_ulong sel;
50 sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE);
51 switch (sel) {
52 case 0x02:
53 case 0xfe:
54 ins_cnt |= 1 << 1;
55 break;
56 case 0x1e:
57 case 0xf0:
58 cyc_cnt |= 1 << 1;
59 break;
62 sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE);
63 ins_cnt |= (sel == 0x02) << 2;
64 cyc_cnt |= (sel == 0x1e) << 2;
66 sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE);
67 ins_cnt |= (sel == 0x02) << 3;
68 cyc_cnt |= (sel == 0x1e) << 3;
70 sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
71 ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4;
72 cyc_cnt |= (sel == 0x1e) << 4;
75 ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5;
76 cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6;
78 hflags_calc:
79 env->pmc_ins_cnt = ins_cnt;
80 env->pmc_cyc_cnt = cyc_cnt;
81 env->hflags = deposit32(env->hflags, HFLAGS_INSN_CNT, 1, ins_cnt != 0);
84 static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
86 target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
87 unsigned ins_cnt = env->pmc_ins_cnt;
88 bool overflow_triggered = false;
89 target_ulong tmp;
91 if (unlikely(ins_cnt & 0x1e)) {
92 if (ins_cnt & (1 << 1)) {
93 tmp = env->spr[SPR_POWER_PMC1];
94 tmp += num_insns;
95 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) {
96 tmp = PMC_COUNTER_NEGATIVE_VAL;
97 overflow_triggered = true;
99 env->spr[SPR_POWER_PMC1] = tmp;
102 if (ins_cnt & (1 << 2)) {
103 tmp = env->spr[SPR_POWER_PMC2];
104 tmp += num_insns;
105 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
106 tmp = PMC_COUNTER_NEGATIVE_VAL;
107 overflow_triggered = true;
109 env->spr[SPR_POWER_PMC2] = tmp;
112 if (ins_cnt & (1 << 3)) {
113 tmp = env->spr[SPR_POWER_PMC3];
114 tmp += num_insns;
115 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
116 tmp = PMC_COUNTER_NEGATIVE_VAL;
117 overflow_triggered = true;
119 env->spr[SPR_POWER_PMC3] = tmp;
122 if (ins_cnt & (1 << 4)) {
123 target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
124 int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
125 if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) {
126 tmp = env->spr[SPR_POWER_PMC4];
127 tmp += num_insns;
128 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
129 tmp = PMC_COUNTER_NEGATIVE_VAL;
130 overflow_triggered = true;
132 env->spr[SPR_POWER_PMC4] = tmp;
137 if (ins_cnt & (1 << 5)) {
138 tmp = env->spr[SPR_POWER_PMC5];
139 tmp += num_insns;
140 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
141 tmp = PMC_COUNTER_NEGATIVE_VAL;
142 overflow_triggered = true;
144 env->spr[SPR_POWER_PMC5] = tmp;
147 return overflow_triggered;
150 static void pmu_update_cycles(CPUPPCState *env)
152 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
153 uint64_t time_delta = now - env->pmu_base_time;
154 int sprn, cyc_cnt = env->pmc_cyc_cnt;
156 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
157 if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
159 * The pseries and powernv clock runs at 1Ghz, meaning
160 * that 1 nanosec equals 1 cycle.
162 env->spr[sprn] += time_delta;
166 /* Update base_time for future calculations */
167 env->pmu_base_time = now;
171 * Helper function to retrieve the cycle overflow timer of the
172 * 'sprn' counter.
174 static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
176 return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
179 static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
181 QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
182 int64_t timeout;
185 * PMC5 does not have an overflow timer and this pointer
186 * will be NULL.
188 if (!pmc_overflow_timer) {
189 return;
192 if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
193 !pmc_has_overflow_enabled(env, sprn)) {
194 /* Overflow timer is not needed for this counter */
195 timer_del(pmc_overflow_timer);
196 return;
199 if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
200 timeout = 0;
201 } else {
202 timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
206 * Use timer_mod_anticipate() because an overflow timer might
207 * be already running for this PMC.
209 timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
212 static void pmu_update_overflow_timers(CPUPPCState *env)
214 int sprn;
217 * Scroll through all PMCs and start counter overflow timers for
218 * PM_CYC events, if needed.
220 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
221 pmc_update_overflow_timer(env, sprn);
225 void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
227 bool hflags_pmcc0 = (value & MMCR0_PMCC0) != 0;
228 bool hflags_pmcc1 = (value & MMCR0_PMCC1) != 0;
230 pmu_update_cycles(env);
232 env->spr[SPR_POWER_MMCR0] = value;
234 /* MMCR0 writes can change HFLAGS_PMCC[01] and HFLAGS_INSN_CNT */
235 env->hflags = deposit32(env->hflags, HFLAGS_PMCC0, 1, hflags_pmcc0);
236 env->hflags = deposit32(env->hflags, HFLAGS_PMCC1, 1, hflags_pmcc1);
238 pmu_update_summaries(env);
240 /* Update cycle overflow timers with the current MMCR0 state */
241 pmu_update_overflow_timers(env);
244 void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
246 pmu_update_cycles(env);
248 env->spr[SPR_POWER_MMCR1] = value;
250 /* MMCR1 writes can change HFLAGS_INSN_CNT */
251 pmu_update_summaries(env);
254 target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
256 pmu_update_cycles(env);
258 return env->spr[sprn];
261 void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
263 pmu_update_cycles(env);
265 env->spr[sprn] = value;
267 pmc_update_overflow_timer(env, sprn);
270 static void fire_PMC_interrupt(PowerPCCPU *cpu)
272 CPUPPCState *env = &cpu->env;
274 if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_EBE)) {
275 return;
278 /* PMC interrupt not implemented yet */
279 return;
282 /* This helper assumes that the PMC is running. */
283 void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
285 bool overflow_triggered;
286 PowerPCCPU *cpu;
288 overflow_triggered = pmu_increment_insns(env, num_insns);
290 if (overflow_triggered) {
291 cpu = env_archcpu(env);
292 fire_PMC_interrupt(cpu);
296 static void cpu_ppc_pmu_timer_cb(void *opaque)
298 PowerPCCPU *cpu = opaque;
300 fire_PMC_interrupt(cpu);
303 void cpu_ppc_pmu_init(CPUPPCState *env)
305 PowerPCCPU *cpu = env_archcpu(env);
306 int i, sprn;
308 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
309 if (sprn == SPR_POWER_PMC5) {
310 continue;
313 i = sprn - SPR_POWER_PMC1;
315 env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
316 &cpu_ppc_pmu_timer_cb,
317 cpu);
320 #endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */