2 * QTest testcase for the MC146818 real-time clock
4 * Copyright IBM, Corp. 2012
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
17 #include "hw/timer/mc146818rtc_regs.h"
19 static uint8_t base
= 0x70;
21 static int bcd2dec(int value
)
23 return (((value
>> 4) & 0x0F) * 10) + (value
& 0x0F);
26 static uint8_t cmos_read(uint8_t reg
)
32 static void cmos_write(uint8_t reg
, uint8_t val
)
38 static int tm_cmp(struct tm
*lhs
, struct tm
*rhs
)
43 memcpy(&d1
, lhs
, sizeof(d1
));
44 memcpy(&d2
, rhs
, sizeof(d2
));
59 static void print_tm(struct tm
*tm
)
61 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
62 tm
->tm_year
+ 1900, tm
->tm_mon
+ 1, tm
->tm_mday
,
63 tm
->tm_hour
, tm
->tm_min
, tm
->tm_sec
, tm
->tm_gmtoff
);
67 static void cmos_get_date_time(struct tm
*date
)
69 int base_year
= 2000, hour_offset
;
70 int sec
, min
, hour
, mday
, mon
, year
;
74 sec
= cmos_read(RTC_SECONDS
);
75 min
= cmos_read(RTC_MINUTES
);
76 hour
= cmos_read(RTC_HOURS
);
77 mday
= cmos_read(RTC_DAY_OF_MONTH
);
78 mon
= cmos_read(RTC_MONTH
);
79 year
= cmos_read(RTC_YEAR
);
81 if ((cmos_read(RTC_REG_B
) & REG_B_DM
) == 0) {
93 if ((cmos_read(0x0B) & REG_B_24H
) == 0) {
94 if (hour
>= hour_offset
) {
101 localtime_r(&ts
, &dummy
);
103 date
->tm_isdst
= dummy
.tm_isdst
;
106 date
->tm_hour
= hour
;
107 date
->tm_mday
= mday
;
108 date
->tm_mon
= mon
- 1;
109 date
->tm_year
= base_year
+ year
- 1900;
117 static void check_time(int wiggle
)
119 struct tm start
, date
[4], end
;
124 * This check assumes a few things. First, we cannot guarantee that we get
125 * a consistent reading from the wall clock because we may hit an edge of
126 * the clock while reading. To work around this, we read four clock readings
127 * such that at least two of them should match. We need to assume that one
128 * reading is corrupt so we need four readings to ensure that we have at
129 * least two consecutive identical readings
131 * It's also possible that we'll cross an edge reading the host clock so
132 * simply check to make sure that the clock reading is within the period of
133 * when we expect it to be.
137 gmtime_r(&ts
, &start
);
139 cmos_get_date_time(&date
[0]);
140 cmos_get_date_time(&date
[1]);
141 cmos_get_date_time(&date
[2]);
142 cmos_get_date_time(&date
[3]);
147 if (tm_cmp(&date
[0], &date
[1]) == 0) {
149 } else if (tm_cmp(&date
[1], &date
[2]) == 0) {
151 } else if (tm_cmp(&date
[2], &date
[3]) == 0) {
154 g_assert_not_reached();
157 if (!(tm_cmp(&start
, datep
) <= 0 && tm_cmp(datep
, &end
) <= 0)) {
160 start
.tm_isdst
= datep
->tm_isdst
;
162 t
= (long)mktime(datep
);
163 s
= (long)mktime(&start
);
165 g_test_message("RTC is %ld second(s) behind wall-clock\n", (s
- t
));
167 g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t
- s
));
170 g_assert_cmpint(ABS(t
- s
), <=, wiggle
);
174 static int wiggle
= 2;
176 static void set_year_20xx(void)
179 cmos_write(RTC_REG_B
, REG_B_24H
);
180 cmos_write(RTC_REG_A
, 0x76);
181 cmos_write(RTC_YEAR
, 0x11);
182 cmos_write(RTC_CENTURY
, 0x20);
183 cmos_write(RTC_MONTH
, 0x02);
184 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
185 cmos_write(RTC_HOURS
, 0x02);
186 cmos_write(RTC_MINUTES
, 0x04);
187 cmos_write(RTC_SECONDS
, 0x58);
188 cmos_write(RTC_REG_A
, 0x26);
190 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
191 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
192 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
193 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
194 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
195 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
196 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
198 if (sizeof(time_t) == 4) {
202 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
203 cmos_write(RTC_REG_A
, 0x76);
204 cmos_write(RTC_YEAR
, 0x80);
205 cmos_write(RTC_REG_A
, 0x26);
207 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
208 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
209 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
210 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
211 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
212 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
213 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
215 cmos_write(RTC_REG_A
, 0x76);
216 cmos_write(RTC_YEAR
, 0x11);
217 cmos_write(RTC_REG_A
, 0x26);
219 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
220 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
221 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
222 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
223 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
224 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
225 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
228 static void set_year_1980(void)
231 cmos_write(RTC_REG_B
, REG_B_24H
);
232 cmos_write(RTC_REG_A
, 0x76);
233 cmos_write(RTC_YEAR
, 0x80);
234 cmos_write(RTC_CENTURY
, 0x19);
235 cmos_write(RTC_MONTH
, 0x02);
236 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
237 cmos_write(RTC_HOURS
, 0x02);
238 cmos_write(RTC_MINUTES
, 0x04);
239 cmos_write(RTC_SECONDS
, 0x58);
240 cmos_write(RTC_REG_A
, 0x26);
242 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
243 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
244 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
245 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
246 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
247 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
248 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x19);
251 static void bcd_check_time(void)
254 cmos_write(RTC_REG_B
, REG_B_24H
);
258 static void dec_check_time(void)
261 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
265 static void alarm_time(void)
275 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
277 g_assert(!get_irq(RTC_ISA_IRQ
));
278 cmos_read(RTC_REG_C
);
280 now
.tm_sec
= (now
.tm_sec
+ 2) % 60;
281 cmos_write(RTC_SECONDS_ALARM
, now
.tm_sec
);
282 cmos_write(RTC_MINUTES_ALARM
, RTC_ALARM_DONT_CARE
);
283 cmos_write(RTC_HOURS_ALARM
, RTC_ALARM_DONT_CARE
);
284 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) | REG_B_AIE
);
286 for (i
= 0; i
< 2 + wiggle
; i
++) {
287 if (get_irq(RTC_ISA_IRQ
)) {
291 clock_step(1000000000);
294 g_assert(get_irq(RTC_ISA_IRQ
));
295 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
296 g_assert(cmos_read(RTC_REG_C
) == 0);
299 static void set_time(int mode
, int h
, int m
, int s
)
301 /* set BCD 12 hour mode */
302 cmos_write(RTC_REG_B
, mode
);
304 cmos_write(RTC_REG_A
, 0x76);
305 cmos_write(RTC_HOURS
, h
);
306 cmos_write(RTC_MINUTES
, m
);
307 cmos_write(RTC_SECONDS
, s
);
308 cmos_write(RTC_REG_A
, 0x26);
311 #define assert_time(h, m, s) \
313 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
314 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
315 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
318 static void basic_12h_bcd(void)
320 /* set BCD 12 hour mode */
321 set_time(0, 0x81, 0x59, 0x00);
322 clock_step(1000000000LL);
323 assert_time(0x81, 0x59, 0x01);
324 clock_step(59000000000LL);
325 assert_time(0x82, 0x00, 0x00);
327 /* test BCD wraparound */
328 set_time(0, 0x09, 0x59, 0x59);
329 clock_step(60000000000LL);
330 assert_time(0x10, 0x00, 0x59);
333 set_time(0, 0x12, 0x59, 0x59);
334 clock_step(1000000000LL);
335 assert_time(0x01, 0x00, 0x00);
338 set_time(0, 0x92, 0x59, 0x59);
339 clock_step(1000000000LL);
340 assert_time(0x81, 0x00, 0x00);
343 set_time(0, 0x11, 0x59, 0x59);
344 clock_step(1000000000LL);
345 assert_time(0x92, 0x00, 0x00);
346 /* TODO: test day wraparound */
349 set_time(0, 0x91, 0x59, 0x59);
350 clock_step(1000000000LL);
351 assert_time(0x12, 0x00, 0x00);
352 /* TODO: test day wraparound */
355 static void basic_12h_dec(void)
357 /* set decimal 12 hour mode */
358 set_time(REG_B_DM
, 0x81, 59, 0);
359 clock_step(1000000000LL);
360 assert_time(0x81, 59, 1);
361 clock_step(59000000000LL);
362 assert_time(0x82, 0, 0);
365 set_time(REG_B_DM
, 0x8c, 59, 59);
366 clock_step(1000000000LL);
367 assert_time(0x81, 0, 0);
370 set_time(REG_B_DM
, 0x0c, 59, 59);
371 clock_step(1000000000LL);
372 assert_time(0x01, 0, 0);
375 set_time(REG_B_DM
, 0x0b, 59, 59);
376 clock_step(1000000000LL);
377 assert_time(0x8c, 0, 0);
380 set_time(REG_B_DM
, 0x8b, 59, 59);
381 clock_step(1000000000LL);
382 assert_time(0x0c, 0, 0);
383 /* TODO: test day wraparound */
386 static void basic_24h_bcd(void)
388 /* set BCD 24 hour mode */
389 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
390 clock_step(1000000000LL);
391 assert_time(0x09, 0x59, 0x01);
392 clock_step(59000000000LL);
393 assert_time(0x10, 0x00, 0x00);
395 /* test BCD wraparound */
396 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
397 clock_step(60000000000LL);
398 assert_time(0x10, 0x00, 0x00);
400 /* TODO: test day wraparound */
401 set_time(REG_B_24H
, 0x23, 0x59, 0x00);
402 clock_step(60000000000LL);
403 assert_time(0x00, 0x00, 0x00);
406 static void basic_24h_dec(void)
408 /* set decimal 24 hour mode */
409 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
410 clock_step(1000000000LL);
411 assert_time(9, 59, 1);
412 clock_step(59000000000LL);
413 assert_time(10, 0, 0);
415 /* test BCD wraparound */
416 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
417 clock_step(60000000000LL);
418 assert_time(10, 0, 0);
420 /* TODO: test day wraparound */
421 set_time(REG_B_24H
| REG_B_DM
, 23, 59, 0);
422 clock_step(60000000000LL);
423 assert_time(0, 0, 0);
426 static void am_pm_alarm(void)
428 cmos_write(RTC_MINUTES_ALARM
, 0xC0);
429 cmos_write(RTC_SECONDS_ALARM
, 0xC0);
431 /* set BCD 12 hour mode */
432 cmos_write(RTC_REG_B
, 0);
434 /* Set time and alarm hour. */
435 cmos_write(RTC_REG_A
, 0x76);
436 cmos_write(RTC_HOURS_ALARM
, 0x82);
437 cmos_write(RTC_HOURS
, 0x81);
438 cmos_write(RTC_MINUTES
, 0x59);
439 cmos_write(RTC_SECONDS
, 0x00);
440 cmos_read(RTC_REG_C
);
441 cmos_write(RTC_REG_A
, 0x26);
443 /* Check that alarm triggers when AM/PM is set. */
444 clock_step(60000000000LL);
445 g_assert(cmos_read(RTC_HOURS
) == 0x82);
446 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
449 * Each of the following two tests takes over 60 seconds due to the time
450 * needed to report the PIT interrupts. Unfortunately, our PIT device
451 * model keeps counting even when GATE=0, so we cannot simply disable
454 if (g_test_quick()) {
458 /* set DEC 12 hour mode */
459 cmos_write(RTC_REG_B
, REG_B_DM
);
461 /* Set time and alarm hour. */
462 cmos_write(RTC_REG_A
, 0x76);
463 cmos_write(RTC_HOURS_ALARM
, 0x82);
464 cmos_write(RTC_HOURS
, 3);
465 cmos_write(RTC_MINUTES
, 0);
466 cmos_write(RTC_SECONDS
, 0);
467 cmos_read(RTC_REG_C
);
468 cmos_write(RTC_REG_A
, 0x26);
470 /* Check that alarm triggers. */
471 clock_step(3600 * 11 * 1000000000LL);
472 g_assert(cmos_read(RTC_HOURS
) == 0x82);
473 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
475 /* Same as above, with inverted HOURS and HOURS_ALARM. */
476 cmos_write(RTC_REG_A
, 0x76);
477 cmos_write(RTC_HOURS_ALARM
, 2);
478 cmos_write(RTC_HOURS
, 3);
479 cmos_write(RTC_MINUTES
, 0);
480 cmos_write(RTC_SECONDS
, 0);
481 cmos_read(RTC_REG_C
);
482 cmos_write(RTC_REG_A
, 0x26);
484 /* Check that alarm does not trigger if hours differ only by AM/PM. */
485 clock_step(3600 * 11 * 1000000000LL);
486 g_assert(cmos_read(RTC_HOURS
) == 0x82);
487 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) == 0);
490 /* success if no crash or abort */
491 static void fuzz_registers(void)
495 for (i
= 0; i
< 1000; i
++) {
498 reg
= (uint8_t)g_test_rand_int_range(0, 16);
499 val
= (uint8_t)g_test_rand_int_range(0, 256);
501 cmos_write(reg
, val
);
506 static void register_b_set_flag(void)
508 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
509 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_SET
);
511 cmos_write(RTC_REG_A
, 0x76);
512 cmos_write(RTC_YEAR
, 0x11);
513 cmos_write(RTC_CENTURY
, 0x20);
514 cmos_write(RTC_MONTH
, 0x02);
515 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
516 cmos_write(RTC_HOURS
, 0x02);
517 cmos_write(RTC_MINUTES
, 0x04);
518 cmos_write(RTC_SECONDS
, 0x58);
519 cmos_write(RTC_REG_A
, 0x26);
521 /* Since SET flag is still enabled, these are equality checks. */
522 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
523 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
524 g_assert_cmpint(cmos_read(RTC_SECONDS
), ==, 0x58);
525 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
526 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
527 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
528 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
530 /* Disable SET flag in Register B */
531 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) & ~REG_B_SET
);
533 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
534 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
536 /* Since SET flag is disabled, this is an inequality check.
537 * We (reasonably) assume that no (sexagesimal) overflow occurs. */
538 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
539 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
540 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
541 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
542 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
545 int main(int argc
, char **argv
)
547 QTestState
*s
= NULL
;
550 g_test_init(&argc
, &argv
, NULL
);
552 s
= qtest_start("-rtc clock=vm");
553 qtest_irq_intercept_in(s
, "ioapic");
555 qtest_add_func("/rtc/check-time/bcd", bcd_check_time
);
556 qtest_add_func("/rtc/check-time/dec", dec_check_time
);
557 qtest_add_func("/rtc/alarm/interrupt", alarm_time
);
558 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm
);
559 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec
);
560 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd
);
561 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec
);
562 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd
);
563 qtest_add_func("/rtc/set-year/20xx", set_year_20xx
);
564 qtest_add_func("/rtc/set-year/1980", set_year_1980
);
565 qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag
);
566 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers
);