3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, ARMMMUIdx mmu_idx
,
17 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 assert(ri
->fieldoffset
);
123 if (cpreg_field_is_64bit(ri
)) {
124 return CPREG_FIELD64(env
, ri
);
126 return CPREG_FIELD32(env
, ri
);
130 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
133 assert(ri
->fieldoffset
);
134 if (cpreg_field_is_64bit(ri
)) {
135 CPREG_FIELD64(env
, ri
) = value
;
137 CPREG_FIELD32(env
, ri
) = value
;
141 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
143 return (char *)env
+ ri
->fieldoffset
;
146 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri
->type
& ARM_CP_CONST
) {
150 return ri
->resetvalue
;
151 } else if (ri
->raw_readfn
) {
152 return ri
->raw_readfn(env
, ri
);
153 } else if (ri
->readfn
) {
154 return ri
->readfn(env
, ri
);
156 return raw_read(env
, ri
);
160 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
168 if (ri
->type
& ARM_CP_CONST
) {
170 } else if (ri
->raw_writefn
) {
171 ri
->raw_writefn(env
, ri
, v
);
172 } else if (ri
->writefn
) {
173 ri
->writefn(env
, ri
, v
);
175 raw_write(env
, ri
, v
);
179 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri
->type
& ARM_CP_CONST
) ||
194 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
200 bool write_cpustate_to_list(ARMCPU
*cpu
)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
206 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
207 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
208 const ARMCPRegInfo
*ri
;
210 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
215 if (ri
->type
& ARM_CP_NO_RAW
) {
218 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
223 bool write_list_to_cpustate(ARMCPU
*cpu
)
228 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
229 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
230 uint64_t v
= cpu
->cpreg_values
[i
];
231 const ARMCPRegInfo
*ri
;
233 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
238 if (ri
->type
& ARM_CP_NO_RAW
) {
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu
->env
, ri
, v
);
246 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
253 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
255 ARMCPU
*cpu
= opaque
;
257 const ARMCPRegInfo
*ri
;
259 regidx
= *(uint32_t *)key
;
260 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
262 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
263 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
264 /* The value array need not be initialized at this point */
265 cpu
->cpreg_array_len
++;
269 static void count_cpreg(gpointer key
, gpointer opaque
)
271 ARMCPU
*cpu
= opaque
;
273 const ARMCPRegInfo
*ri
;
275 regidx
= *(uint32_t *)key
;
276 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
278 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
279 cpu
->cpreg_array_len
++;
283 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
285 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
286 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
297 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
299 GList
**plist
= udata
;
301 *plist
= g_list_prepend(*plist
, key
);
304 void init_cpreg_list(ARMCPU
*cpu
)
306 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
307 * Note that we require cpreg_tuples[] to be sorted by key ID.
312 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
314 keys
= g_list_sort(keys
, cpreg_key_compare
);
316 cpu
->cpreg_array_len
= 0;
318 g_list_foreach(keys
, count_cpreg
, cpu
);
320 arraylen
= cpu
->cpreg_array_len
;
321 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
322 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
323 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
324 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
325 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
326 cpu
->cpreg_array_len
= 0;
328 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
330 assert(cpu
->cpreg_array_len
== arraylen
);
335 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
337 ARMCPU
*cpu
= arm_env_get_cpu(env
);
339 raw_write(env
, ri
, value
);
340 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
343 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
345 ARMCPU
*cpu
= arm_env_get_cpu(env
);
347 if (raw_read(env
, ri
) != value
) {
348 /* Unlike real hardware the qemu TLB uses virtual addresses,
349 * not modified virtual addresses, so this causes a TLB flush.
351 tlb_flush(CPU(cpu
), 1);
352 raw_write(env
, ri
, value
);
356 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
361 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
362 && !extended_addresses_enabled(env
)) {
363 /* For VMSA (when not using the LPAE long descriptor page table
364 * format) this register includes the ASID, so do a TLB flush.
365 * For PMSA it is purely a process ID and no action is needed.
367 tlb_flush(CPU(cpu
), 1);
369 raw_write(env
, ri
, value
);
372 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
375 /* Invalidate all (TLBIALL) */
376 ARMCPU
*cpu
= arm_env_get_cpu(env
);
378 tlb_flush(CPU(cpu
), 1);
381 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
384 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 ARMCPU
*cpu
= arm_env_get_cpu(env
);
387 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
390 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
393 /* Invalidate by ASID (TLBIASID) */
394 ARMCPU
*cpu
= arm_env_get_cpu(env
);
396 tlb_flush(CPU(cpu
), value
== 0);
399 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
402 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 ARMCPU
*cpu
= arm_env_get_cpu(env
);
405 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
408 /* IS variants of TLB operations must affect all cores */
409 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
414 CPU_FOREACH(other_cs
) {
415 tlb_flush(other_cs
, 1);
419 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
424 CPU_FOREACH(other_cs
) {
425 tlb_flush(other_cs
, value
== 0);
429 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
434 CPU_FOREACH(other_cs
) {
435 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
439 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
444 CPU_FOREACH(other_cs
) {
445 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
449 static const ARMCPRegInfo cp_reginfo
[] = {
450 /* Define the secure and non-secure FCSE identifier CP registers
451 * separately because there is no secure bank in V8 (no _EL3). This allows
452 * the secure register to be properly reset and migrated. There is also no
453 * v8 EL1 version of the register so the non-secure instance stands alone.
455 { .name
= "FCSEIDR(NS)",
456 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
457 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
458 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
459 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
460 { .name
= "FCSEIDR(S)",
461 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
462 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
463 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
464 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
465 /* Define the secure and non-secure context identifier CP registers
466 * separately because there is no secure bank in V8 (no _EL3). This allows
467 * the secure register to be properly reset and migrated. In the
468 * non-secure case, the 32-bit register will have reset and migration
469 * disabled during registration as it is handled by the 64-bit instance.
471 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
472 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
473 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
474 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
475 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
476 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
477 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
478 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
479 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
480 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
484 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
485 /* NB: Some of these registers exist in v8 but with more precise
486 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
488 /* MMU Domain access control / MPU write buffer control */
490 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
491 .access
= PL1_RW
, .resetvalue
= 0,
492 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
493 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
494 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
495 /* ??? This covers not just the impdef TLB lockdown registers but also
496 * some v7VMSA registers relating to TEX remap, so it is overly broad.
498 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
499 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
500 /* Cache maintenance ops; some of this space may be overridden later. */
501 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
502 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
503 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
507 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
508 /* Not all pre-v6 cores implemented this WFI, so this is slightly
511 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
512 .access
= PL1_W
, .type
= ARM_CP_WFI
},
516 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
517 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
518 * is UNPREDICTABLE; we choose to NOP as most implementations do).
520 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
521 .access
= PL1_W
, .type
= ARM_CP_WFI
},
522 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
523 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
524 * OMAPCP will override this space.
526 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
527 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
529 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
530 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
532 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
533 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
534 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
536 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
537 * implementing it as RAZ means the "debug architecture version" bits
538 * will read as a reserved value, which should cause Linux to not try
539 * to use the debug hardware.
541 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
542 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
543 /* MMU TLB control. Note that the wildcarding means we cover not just
544 * the unified TLB ops but also the dside/iside/inner-shareable variants.
546 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
547 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
548 .type
= ARM_CP_NO_RAW
},
549 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
550 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
551 .type
= ARM_CP_NO_RAW
},
552 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
553 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
554 .type
= ARM_CP_NO_RAW
},
555 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
556 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
557 .type
= ARM_CP_NO_RAW
},
561 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
566 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
567 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
568 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
569 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
570 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
572 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
573 /* VFP coprocessor: cp10 & cp11 [23:20] */
574 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
576 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
577 /* ASEDIS [31] bit is RAO/WI */
581 /* VFPv3 and upwards with NEON implement 32 double precision
582 * registers (D0-D31).
584 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
585 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
586 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
592 env
->cp15
.cpacr_el1
= value
;
595 static const ARMCPRegInfo v6_cp_reginfo
[] = {
596 /* prefetch by MVA in v6, NOP in v7 */
597 { .name
= "MVA_prefetch",
598 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
599 .access
= PL1_W
, .type
= ARM_CP_NOP
},
600 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
601 .access
= PL0_W
, .type
= ARM_CP_NOP
},
602 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
603 .access
= PL0_W
, .type
= ARM_CP_NOP
},
604 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
605 .access
= PL0_W
, .type
= ARM_CP_NOP
},
606 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
608 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
609 offsetof(CPUARMState
, cp15
.ifar_ns
) },
611 /* Watchpoint Fault Address Register : should actually only be present
612 * for 1136, 1176, 11MPCore.
614 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
615 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
616 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
617 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
618 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
619 .resetvalue
= 0, .writefn
= cpacr_write
},
623 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
625 /* Performance monitor registers user accessibility is controlled
628 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
629 return CP_ACCESS_TRAP
;
634 #ifndef CONFIG_USER_ONLY
636 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
638 /* This does not support checking PMCCFILTR_EL0 register */
640 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
647 void pmccntr_sync(CPUARMState
*env
)
651 temp_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
652 get_ticks_per_sec(), 1000000);
654 if (env
->cp15
.c9_pmcr
& PMCRD
) {
655 /* Increment once every 64 processor clock cycles */
659 if (arm_ccnt_enabled(env
)) {
660 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
664 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
670 /* The counter has been reset */
671 env
->cp15
.c15_ccnt
= 0;
674 /* only the DP, X, D and E bits are writable */
675 env
->cp15
.c9_pmcr
&= ~0x39;
676 env
->cp15
.c9_pmcr
|= (value
& 0x39);
681 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
683 uint64_t total_ticks
;
685 if (!arm_ccnt_enabled(env
)) {
686 /* Counter is disabled, do not change value */
687 return env
->cp15
.c15_ccnt
;
690 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
691 get_ticks_per_sec(), 1000000);
693 if (env
->cp15
.c9_pmcr
& PMCRD
) {
694 /* Increment once every 64 processor clock cycles */
697 return total_ticks
- env
->cp15
.c15_ccnt
;
700 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
703 uint64_t total_ticks
;
705 if (!arm_ccnt_enabled(env
)) {
706 /* Counter is disabled, set the absolute value */
707 env
->cp15
.c15_ccnt
= value
;
711 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
712 get_ticks_per_sec(), 1000000);
714 if (env
->cp15
.c9_pmcr
& PMCRD
) {
715 /* Increment once every 64 processor clock cycles */
718 env
->cp15
.c15_ccnt
= total_ticks
- value
;
721 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
724 uint64_t cur_val
= pmccntr_read(env
, NULL
);
726 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
729 #else /* CONFIG_USER_ONLY */
731 void pmccntr_sync(CPUARMState
*env
)
737 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
741 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
745 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
749 env
->cp15
.c9_pmcnten
|= value
;
752 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
756 env
->cp15
.c9_pmcnten
&= ~value
;
759 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
762 env
->cp15
.c9_pmovsr
&= ~value
;
765 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
768 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
771 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
774 env
->cp15
.c9_pmuserenr
= value
& 1;
777 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
780 /* We have no event counters so only the C bit can be changed */
782 env
->cp15
.c9_pminten
|= value
;
785 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
789 env
->cp15
.c9_pminten
&= ~value
;
792 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
795 /* Note that even though the AArch64 view of this register has bits
796 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
797 * architectural requirements for bits which are RES0 only in some
798 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
799 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
801 raw_write(env
, ri
, value
& ~0x1FULL
);
804 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
806 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
807 * For bits that vary between AArch32/64, code needs to check the
808 * current execution mode before directly using the feature bit.
810 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
812 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
813 valid_mask
&= ~SCR_HCE
;
815 /* On ARMv7, SMD (or SCD as it is called in v7) is only
816 * supported if EL2 exists. The bit is UNK/SBZP when
817 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
818 * when EL2 is unavailable.
819 * On ARMv8, this bit is always available.
821 if (arm_feature(env
, ARM_FEATURE_V7
) &&
822 !arm_feature(env
, ARM_FEATURE_V8
)) {
823 valid_mask
&= ~SCR_SMD
;
827 /* Clear all-context RES0 bits. */
829 raw_write(env
, ri
, value
);
832 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
834 ARMCPU
*cpu
= arm_env_get_cpu(env
);
836 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
839 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
840 ri
->secure
& ARM_CP_SECSTATE_S
);
842 return cpu
->ccsidr
[index
];
845 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
848 raw_write(env
, ri
, value
& 0xf);
851 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
853 CPUState
*cs
= ENV_GET_CPU(env
);
856 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
859 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
862 /* External aborts are not possible in QEMU so A bit is always clear */
866 static const ARMCPRegInfo v7_cp_reginfo
[] = {
867 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
868 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
869 .access
= PL1_W
, .type
= ARM_CP_NOP
},
870 /* Performance monitors are implementation defined in v7,
871 * but with an ARM recommended set of registers, which we
872 * follow (although we don't actually implement any counters)
874 * Performance registers fall into three categories:
875 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
876 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
877 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
878 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
879 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
881 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
882 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
883 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
884 .writefn
= pmcntenset_write
,
885 .accessfn
= pmreg_access
,
886 .raw_writefn
= raw_write
},
887 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
888 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
889 .access
= PL0_RW
, .accessfn
= pmreg_access
,
890 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
891 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
892 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
894 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
895 .accessfn
= pmreg_access
,
896 .writefn
= pmcntenclr_write
,
897 .type
= ARM_CP_ALIAS
},
898 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
899 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
900 .access
= PL0_RW
, .accessfn
= pmreg_access
,
901 .type
= ARM_CP_ALIAS
,
902 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
903 .writefn
= pmcntenclr_write
},
904 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
905 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
906 .accessfn
= pmreg_access
,
907 .writefn
= pmovsr_write
,
908 .raw_writefn
= raw_write
},
909 /* Unimplemented so WI. */
910 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
911 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
912 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
913 * We choose to RAZ/WI.
915 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
916 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
917 .accessfn
= pmreg_access
},
918 #ifndef CONFIG_USER_ONLY
919 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
920 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
921 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
922 .accessfn
= pmreg_access
},
923 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
924 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
925 .access
= PL0_RW
, .accessfn
= pmreg_access
,
927 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
929 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
930 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
931 .writefn
= pmccfiltr_write
,
932 .access
= PL0_RW
, .accessfn
= pmreg_access
,
934 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
936 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
938 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
939 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
940 .raw_writefn
= raw_write
},
941 /* Unimplemented, RAZ/WI. */
942 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
943 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
944 .accessfn
= pmreg_access
},
945 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
946 .access
= PL0_R
| PL1_RW
,
947 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
949 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
950 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
952 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
954 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
955 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
956 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
957 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
958 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
959 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
960 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
961 .access
= PL1_RW
, .writefn
= vbar_write
,
962 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
963 offsetof(CPUARMState
, cp15
.vbar_ns
) },
965 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
966 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
967 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
968 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
969 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
970 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
971 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
972 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
973 /* Auxiliary ID register: this actually has an IMPDEF value but for now
974 * just RAZ for all cores:
976 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
977 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
978 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
979 /* Auxiliary fault status registers: these also are IMPDEF, and we
980 * choose to RAZ/WI for all cores.
982 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
983 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
984 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
985 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
986 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
987 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
988 /* MAIR can just read-as-written because we don't implement caches
989 * and so don't need to care about memory attributes.
991 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
992 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
993 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
995 /* For non-long-descriptor page tables these are PRRR and NMRR;
996 * regardless they still act as reads-as-written for QEMU.
997 * The override is necessary because of the overly-broad TLB_LOCKDOWN
1000 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1001 * allows them to assign the correct fieldoffset based on the endianness
1002 * handled in the field definitions.
1004 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
1005 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1006 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1007 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1008 .resetfn
= arm_cp_reset_ignore
},
1009 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
1010 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1011 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1012 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1013 .resetfn
= arm_cp_reset_ignore
},
1014 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1015 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1016 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1017 /* 32 bit ITLB invalidates */
1018 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1019 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1020 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1021 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1022 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1023 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1024 /* 32 bit DTLB invalidates */
1025 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1026 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1027 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1028 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1029 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1030 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1031 /* 32 bit TLB invalidates */
1032 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1033 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1034 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1035 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1036 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1037 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1038 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1039 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1043 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1044 /* 32 bit TLB invalidates, Inner Shareable */
1045 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1046 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1047 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1048 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1049 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1050 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1051 .writefn
= tlbiasid_is_write
},
1052 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1053 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1054 .writefn
= tlbimvaa_is_write
},
1058 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1065 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1067 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1068 return CP_ACCESS_TRAP
;
1070 return CP_ACCESS_OK
;
1073 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1074 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1075 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1077 .writefn
= teecr_write
},
1078 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1079 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1080 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1084 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1085 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1086 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1088 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1089 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1091 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1092 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1093 .resetfn
= arm_cp_reset_ignore
},
1094 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1095 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1096 .access
= PL0_R
|PL1_W
,
1097 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1099 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1100 .access
= PL0_R
|PL1_W
,
1101 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1102 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1103 .resetfn
= arm_cp_reset_ignore
},
1104 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1105 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1107 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1108 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1110 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1111 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1116 #ifndef CONFIG_USER_ONLY
1118 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1120 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1121 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1122 return CP_ACCESS_TRAP
;
1124 return CP_ACCESS_OK
;
1127 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1129 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1130 if (arm_current_el(env
) == 0 &&
1131 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1132 return CP_ACCESS_TRAP
;
1134 return CP_ACCESS_OK
;
1137 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1139 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1140 * EL0[PV]TEN is zero.
1142 if (arm_current_el(env
) == 0 &&
1143 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1144 return CP_ACCESS_TRAP
;
1146 return CP_ACCESS_OK
;
1149 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1150 const ARMCPRegInfo
*ri
)
1152 return gt_counter_access(env
, GTIMER_PHYS
);
1155 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1156 const ARMCPRegInfo
*ri
)
1158 return gt_counter_access(env
, GTIMER_VIRT
);
1161 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1163 return gt_timer_access(env
, GTIMER_PHYS
);
1166 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1168 return gt_timer_access(env
, GTIMER_VIRT
);
1171 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1173 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1176 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1178 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1181 /* Timer enabled: calculate and set current ISTATUS, irq, and
1182 * reset timer to when ISTATUS next has to change
1184 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1185 /* Note that this must be unsigned 64 bit arithmetic: */
1186 int istatus
= count
>= gt
->cval
;
1189 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1190 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1191 (istatus
&& !(gt
->ctl
& 2)));
1193 /* Next transition is when count rolls back over to zero */
1194 nexttick
= UINT64_MAX
;
1196 /* Next transition is when we hit cval */
1197 nexttick
= gt
->cval
;
1199 /* Note that the desired next expiry time might be beyond the
1200 * signed-64-bit range of a QEMUTimer -- in this case we just
1201 * set the timer for as far in the future as possible. When the
1202 * timer expires we will reset the timer for any remaining period.
1204 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1205 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1207 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1209 /* Timer disabled: ISTATUS and timer output always clear */
1211 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1212 timer_del(cpu
->gt_timer
[timeridx
]);
1216 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1218 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1219 int timeridx
= ri
->opc1
& 1;
1221 timer_del(cpu
->gt_timer
[timeridx
]);
1224 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1226 return gt_get_countervalue(env
);
1229 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1232 int timeridx
= ri
->opc1
& 1;
1234 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1235 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1238 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1240 int timeridx
= ri
->crm
& 1;
1242 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1243 gt_get_countervalue(env
));
1246 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1249 int timeridx
= ri
->crm
& 1;
1251 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1252 sextract64(value
, 0, 32);
1253 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1256 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1259 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1260 int timeridx
= ri
->crm
& 1;
1261 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1263 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1264 if ((oldval
^ value
) & 1) {
1265 /* Enable toggled */
1266 gt_recalc_timer(cpu
, timeridx
);
1267 } else if ((oldval
^ value
) & 2) {
1268 /* IMASK toggled: don't need to recalculate,
1269 * just set the interrupt line based on ISTATUS
1271 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1272 (oldval
& 4) && !(value
& 2));
1276 void arm_gt_ptimer_cb(void *opaque
)
1278 ARMCPU
*cpu
= opaque
;
1280 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1283 void arm_gt_vtimer_cb(void *opaque
)
1285 ARMCPU
*cpu
= opaque
;
1287 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1290 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1291 /* Note that CNTFRQ is purely reads-as-written for the benefit
1292 * of software; writing it doesn't actually change the timer frequency.
1293 * Our reset value matches the fixed frequency we implement the timer at.
1295 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1296 .type
= ARM_CP_ALIAS
,
1297 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1298 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1299 .resetfn
= arm_cp_reset_ignore
,
1301 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1302 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1303 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1304 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1305 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1307 /* overall control: mostly access permissions */
1308 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1309 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1311 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1314 /* per-timer control */
1315 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1316 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1317 .accessfn
= gt_ptimer_access
,
1318 .fieldoffset
= offsetoflow32(CPUARMState
,
1319 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1320 .resetfn
= arm_cp_reset_ignore
,
1321 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1323 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1324 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1325 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1326 .accessfn
= gt_ptimer_access
,
1327 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1329 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1331 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1332 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1333 .accessfn
= gt_vtimer_access
,
1334 .fieldoffset
= offsetoflow32(CPUARMState
,
1335 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1336 .resetfn
= arm_cp_reset_ignore
,
1337 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1339 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1340 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1341 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1342 .accessfn
= gt_vtimer_access
,
1343 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1345 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1347 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1348 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1349 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1350 .accessfn
= gt_ptimer_access
,
1351 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1353 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1354 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1355 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1356 .accessfn
= gt_ptimer_access
,
1357 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1359 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1360 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1361 .accessfn
= gt_vtimer_access
,
1362 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1364 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1365 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1366 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1367 .accessfn
= gt_vtimer_access
,
1368 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1370 /* The counter itself */
1371 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1372 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1373 .accessfn
= gt_pct_access
,
1374 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1376 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1377 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1378 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1379 .accessfn
= gt_pct_access
,
1380 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1382 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1383 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1384 .accessfn
= gt_vct_access
,
1385 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1387 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1388 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1389 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1390 .accessfn
= gt_vct_access
,
1391 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1393 /* Comparison value, indicating when the timer goes off */
1394 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1395 .access
= PL1_RW
| PL0_R
,
1396 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1397 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1398 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1399 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1401 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1402 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1403 .access
= PL1_RW
| PL0_R
,
1405 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1406 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1407 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1409 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1410 .access
= PL1_RW
| PL0_R
,
1411 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1412 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1413 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1414 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1416 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1417 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1418 .access
= PL1_RW
| PL0_R
,
1420 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1421 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1422 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1428 /* In user-mode none of the generic timer registers are accessible,
1429 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1430 * so instead just don't register any of them.
1432 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1438 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1440 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1441 raw_write(env
, ri
, value
);
1442 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1443 raw_write(env
, ri
, value
& 0xfffff6ff);
1445 raw_write(env
, ri
, value
& 0xfffff1ff);
1449 #ifndef CONFIG_USER_ONLY
1450 /* get_phys_addr() isn't present for user-mode-only targets */
1452 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1455 /* Other states are only available with TrustZone; in
1456 * a non-TZ implementation these registers don't exist
1457 * at all, which is an Uncategorized trap. This underdecoding
1458 * is safe because the reginfo is NO_RAW.
1460 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1462 return CP_ACCESS_OK
;
1465 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1466 int access_type
, ARMMMUIdx mmu_idx
)
1469 target_ulong page_size
;
1473 MemTxAttrs attrs
= {};
1475 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1476 &phys_addr
, &attrs
, &prot
, &page_size
);
1477 if (extended_addresses_enabled(env
)) {
1478 /* ret is a DFSR/IFSR value for the long descriptor
1479 * translation table format, but with WnR always clear.
1480 * Convert it to a 64-bit PAR.
1482 par64
= (1 << 11); /* LPAE bit always set */
1484 par64
|= phys_addr
& ~0xfffULL
;
1485 if (!attrs
.secure
) {
1486 par64
|= (1 << 9); /* NS */
1488 /* We don't set the ATTR or SH fields in the PAR. */
1491 par64
|= (ret
& 0x3f) << 1; /* FS */
1492 /* Note that S2WLK and FSTAGE are always zero, because we don't
1493 * implement virtualization and therefore there can't be a stage 2
1498 /* ret is a DFSR/IFSR value for the short descriptor
1499 * translation table format (with WnR always clear).
1500 * Convert it to a 32-bit PAR.
1503 /* We do not set any attribute bits in the PAR */
1504 if (page_size
== (1 << 24)
1505 && arm_feature(env
, ARM_FEATURE_V7
)) {
1506 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1508 par64
= phys_addr
& 0xfffff000;
1510 if (!attrs
.secure
) {
1511 par64
|= (1 << 9); /* NS */
1514 par64
= ((ret
& (1 << 10)) >> 5) | ((ret
& (1 << 12)) >> 6) |
1515 ((ret
& 0xf) << 1) | 1;
1521 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1523 int access_type
= ri
->opc2
& 1;
1526 int el
= arm_current_el(env
);
1527 bool secure
= arm_is_secure_below_el3(env
);
1529 switch (ri
->opc2
& 6) {
1531 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1534 mmu_idx
= ARMMMUIdx_S1E3
;
1537 mmu_idx
= ARMMMUIdx_S1NSE1
;
1540 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1543 g_assert_not_reached();
1547 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1550 mmu_idx
= ARMMMUIdx_S1SE0
;
1553 mmu_idx
= ARMMMUIdx_S1NSE0
;
1556 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1559 g_assert_not_reached();
1563 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1564 mmu_idx
= ARMMMUIdx_S12NSE1
;
1567 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1568 mmu_idx
= ARMMMUIdx_S12NSE0
;
1571 g_assert_not_reached();
1574 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1576 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1579 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1582 int access_type
= ri
->opc2
& 1;
1584 int secure
= arm_is_secure_below_el3(env
);
1586 switch (ri
->opc2
& 6) {
1589 case 0: /* AT S1E1R, AT S1E1W */
1590 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1592 case 4: /* AT S1E2R, AT S1E2W */
1593 mmu_idx
= ARMMMUIdx_S1E2
;
1595 case 6: /* AT S1E3R, AT S1E3W */
1596 mmu_idx
= ARMMMUIdx_S1E3
;
1599 g_assert_not_reached();
1602 case 2: /* AT S1E0R, AT S1E0W */
1603 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1605 case 4: /* AT S12E1R, AT S12E1W */
1606 mmu_idx
= ARMMMUIdx_S12NSE1
;
1608 case 6: /* AT S12E0R, AT S12E0W */
1609 mmu_idx
= ARMMMUIdx_S12NSE0
;
1612 g_assert_not_reached();
1615 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1619 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1620 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1621 .access
= PL1_RW
, .resetvalue
= 0,
1622 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1623 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1624 .writefn
= par_write
},
1625 #ifndef CONFIG_USER_ONLY
1626 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1627 .access
= PL1_W
, .accessfn
= ats_access
,
1628 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1633 /* Return basic MPU access permission bits. */
1634 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1641 for (i
= 0; i
< 16; i
+= 2) {
1642 ret
|= (val
>> i
) & mask
;
1648 /* Pad basic MPU access permission bits to extended format. */
1649 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1656 for (i
= 0; i
< 16; i
+= 2) {
1657 ret
|= (val
& mask
) << i
;
1663 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1666 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1669 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1671 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1674 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1677 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1680 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1682 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1685 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1686 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1687 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1688 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1690 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1691 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1692 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1693 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1695 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1696 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1698 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1700 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1702 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1704 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1706 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1707 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1709 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1710 /* Protection region base and size registers */
1711 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1712 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1713 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1714 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1715 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1716 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1717 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1718 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1719 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1720 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1721 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1722 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1723 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1724 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1725 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1726 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1727 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1728 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1729 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1730 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1731 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1732 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1733 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1734 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1738 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1741 TCR
*tcr
= raw_ptr(env
, ri
);
1742 int maskshift
= extract32(value
, 0, 3);
1744 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1745 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
1746 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1747 * using Long-desciptor translation table format */
1748 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1749 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1750 /* In an implementation that includes the Security Extensions
1751 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1752 * Short-descriptor translation table format.
1754 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
1760 /* Update the masks corresponding to the the TCR bank being written
1761 * Note that we always calculate mask and base_mask, but
1762 * they are only used for short-descriptor tables (ie if EAE is 0);
1763 * for long-descriptor tables the TCR fields are used differently
1764 * and the mask and base_mask values are meaningless.
1766 tcr
->raw_tcr
= value
;
1767 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1768 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1771 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1774 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1776 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1777 /* With LPAE the TTBCR could result in a change of ASID
1778 * via the TTBCR.A1 bit, so do a TLB flush.
1780 tlb_flush(CPU(cpu
), 1);
1782 vmsa_ttbcr_raw_write(env
, ri
, value
);
1785 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1787 TCR
*tcr
= raw_ptr(env
, ri
);
1789 /* Reset both the TCR as well as the masks corresponding to the bank of
1790 * the TCR being reset.
1794 tcr
->base_mask
= 0xffffc000u
;
1797 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1800 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1801 TCR
*tcr
= raw_ptr(env
, ri
);
1803 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1804 tlb_flush(CPU(cpu
), 1);
1805 tcr
->raw_tcr
= value
;
1808 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1811 /* 64 bit accesses to the TTBRs can change the ASID and so we
1812 * must flush the TLB.
1814 if (cpreg_field_is_64bit(ri
)) {
1815 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1817 tlb_flush(CPU(cpu
), 1);
1819 raw_write(env
, ri
, value
);
1822 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1823 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1824 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1825 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
1826 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) },
1827 .resetfn
= arm_cp_reset_ignore
, },
1828 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1829 .access
= PL1_RW
, .resetvalue
= 0,
1830 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
1831 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
1832 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1833 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1835 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
1836 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1837 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
1838 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1839 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
1840 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
1841 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1842 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
1843 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1844 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
1845 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
1846 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1847 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1848 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1849 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1850 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
1851 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1852 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
1853 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1854 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
1855 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
1856 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
1857 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1858 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
1860 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
1861 .access
= PL1_RW
, .resetvalue
= 0,
1862 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
1863 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
1867 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1870 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1871 /* The OS_TYPE bit in this register changes the reported CPUID! */
1872 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1873 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1876 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1879 env
->cp15
.c15_threadid
= value
& 0xffff;
1882 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1885 /* Wait-for-interrupt (deprecated) */
1886 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1889 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1892 /* On OMAP there are registers indicating the max/min index of dcache lines
1893 * containing a dirty line; cache flush operations have to reset these.
1895 env
->cp15
.c15_i_max
= 0x000;
1896 env
->cp15
.c15_i_min
= 0xff0;
1899 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1900 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1901 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1902 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1904 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1905 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1906 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1908 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1909 .writefn
= omap_ticonfig_write
},
1910 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1912 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1913 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1914 .access
= PL1_RW
, .resetvalue
= 0xff0,
1915 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1916 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1918 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1919 .writefn
= omap_threadid_write
},
1920 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1921 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1922 .type
= ARM_CP_NO_RAW
,
1923 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1924 /* TODO: Peripheral port remap register:
1925 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1926 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1929 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1930 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1931 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
1932 .writefn
= omap_cachemaint_write
},
1933 { .name
= "C9", .cp
= 15, .crn
= 9,
1934 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1935 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1939 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1942 env
->cp15
.c15_cpar
= value
& 0x3fff;
1945 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1946 { .name
= "XSCALE_CPAR",
1947 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1948 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1949 .writefn
= xscale_cpar_write
, },
1950 { .name
= "XSCALE_AUXCR",
1951 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1952 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1954 /* XScale specific cache-lockdown: since we have no cache we NOP these
1955 * and hope the guest does not really rely on cache behaviour.
1957 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1958 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1959 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1960 { .name
= "XSCALE_UNLOCK_ICACHE",
1961 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1962 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1963 { .name
= "XSCALE_DCACHE_LOCK",
1964 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1965 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1966 { .name
= "XSCALE_UNLOCK_DCACHE",
1967 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1968 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1972 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1973 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1974 * implementation of this implementation-defined space.
1975 * Ideally this should eventually disappear in favour of actually
1976 * implementing the correct behaviour for all cores.
1978 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1979 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1981 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
1986 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1987 /* Cache status: RAZ because we have no cache so it's always clean */
1988 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1989 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
1994 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1995 /* We never have a a block transfer operation in progress */
1996 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1997 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
1999 /* The cache ops themselves: these all NOP for QEMU */
2000 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2001 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2002 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2003 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2004 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2005 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2006 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2007 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2008 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2009 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2010 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2011 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2015 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2016 /* The cache test-and-clean instructions always return (1 << 30)
2017 * to indicate that there are no dirty cache lines.
2019 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2020 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2021 .resetvalue
= (1 << 30) },
2022 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2023 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2024 .resetvalue
= (1 << 30) },
2028 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2029 /* Ignore ReadBuffer accesses */
2030 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2031 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2032 .access
= PL1_RW
, .resetvalue
= 0,
2033 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2037 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2039 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
2040 uint32_t mpidr
= cs
->cpu_index
;
2041 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2042 * in later ARM ARM versions), or any of the higher affinity level fields,
2043 * so these bits always RAZ.
2045 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2046 mpidr
|= (1U << 31);
2047 /* Cores which are uniprocessor (non-coherent)
2048 * but still implement the MP extensions set
2049 * bit 30. (For instance, A9UP.) However we do
2050 * not currently model any of those cores.
2056 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2057 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2058 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2059 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2063 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2064 /* NOP AMAIR0/1: the override is because these clash with the rather
2065 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
2067 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2068 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2069 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
2071 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2072 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2073 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
2075 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2076 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2077 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2078 offsetof(CPUARMState
, cp15
.par_ns
)} },
2079 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2080 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2081 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2082 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2083 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
2084 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2085 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2086 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2087 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2088 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
2092 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2094 return vfp_get_fpcr(env
);
2097 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2100 vfp_set_fpcr(env
, value
);
2103 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2105 return vfp_get_fpsr(env
);
2108 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2111 vfp_set_fpsr(env
, value
);
2114 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2116 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2117 return CP_ACCESS_TRAP
;
2119 return CP_ACCESS_OK
;
2122 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2125 env
->daif
= value
& PSTATE_DAIF
;
2128 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2129 const ARMCPRegInfo
*ri
)
2131 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2132 * SCTLR_EL1.UCI is set.
2134 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2135 return CP_ACCESS_TRAP
;
2137 return CP_ACCESS_OK
;
2140 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2141 * Page D4-1736 (DDI0487A.b)
2144 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2147 /* Invalidate by VA (AArch64 version) */
2148 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2149 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2151 tlb_flush_page(CPU(cpu
), pageaddr
);
2154 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2157 /* Invalidate by VA, all ASIDs (AArch64 version) */
2158 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2159 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2161 tlb_flush_page(CPU(cpu
), pageaddr
);
2164 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2167 /* Invalidate by ASID (AArch64 version) */
2168 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2169 int asid
= extract64(value
, 48, 16);
2170 tlb_flush(CPU(cpu
), asid
== 0);
2173 static void tlbi_aa64_va_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2177 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2179 CPU_FOREACH(other_cs
) {
2180 tlb_flush_page(other_cs
, pageaddr
);
2184 static void tlbi_aa64_vaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2188 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2190 CPU_FOREACH(other_cs
) {
2191 tlb_flush_page(other_cs
, pageaddr
);
2195 static void tlbi_aa64_asid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2199 int asid
= extract64(value
, 48, 16);
2201 CPU_FOREACH(other_cs
) {
2202 tlb_flush(other_cs
, asid
== 0);
2206 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2208 /* We don't implement EL2, so the only control on DC ZVA is the
2209 * bit in the SCTLR which can prohibit access for EL0.
2211 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2212 return CP_ACCESS_TRAP
;
2214 return CP_ACCESS_OK
;
2217 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2219 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2220 int dzp_bit
= 1 << 4;
2222 /* DZP indicates whether DC ZVA access is allowed */
2223 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2226 return cpu
->dcz_blocksize
| dzp_bit
;
2229 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2231 if (!(env
->pstate
& PSTATE_SP
)) {
2232 /* Access to SP_EL0 is undefined if it's being used as
2233 * the stack pointer.
2235 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2237 return CP_ACCESS_OK
;
2240 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2242 return env
->pstate
& PSTATE_SP
;
2245 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2247 update_spsel(env
, val
);
2250 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2253 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2255 if (raw_read(env
, ri
) == value
) {
2256 /* Skip the TLB flush if nothing actually changed; Linux likes
2257 * to do a lot of pointless SCTLR writes.
2262 raw_write(env
, ri
, value
);
2263 /* ??? Lots of these bits are not implemented. */
2264 /* This may enable/disable the MMU, so do a TLB flush. */
2265 tlb_flush(CPU(cpu
), 1);
2268 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2269 /* Minimal set of EL0-visible registers. This will need to be expanded
2270 * significantly for system emulation of AArch64 CPUs.
2272 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2273 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2274 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2275 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2276 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2277 .type
= ARM_CP_NO_RAW
,
2278 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2279 .fieldoffset
= offsetof(CPUARMState
, daif
),
2280 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2281 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2282 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2283 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2284 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2285 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2286 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2287 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2288 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2289 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2290 .readfn
= aa64_dczid_read
},
2291 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2292 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2293 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2294 #ifndef CONFIG_USER_ONLY
2295 /* Avoid overhead of an access check that always passes in user-mode */
2296 .accessfn
= aa64_zva_access
,
2299 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2300 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2301 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2302 /* Cache ops: all NOPs since we don't emulate caches */
2303 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2304 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2305 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2306 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2307 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2308 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2309 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2310 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2311 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2312 .accessfn
= aa64_cacheop_access
},
2313 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2314 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2315 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2316 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2317 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2318 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2319 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2320 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2321 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2322 .accessfn
= aa64_cacheop_access
},
2323 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2324 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2325 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2326 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2327 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2328 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2329 .accessfn
= aa64_cacheop_access
},
2330 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2331 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2332 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2333 .accessfn
= aa64_cacheop_access
},
2334 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2335 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2336 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2337 /* TLBI operations */
2338 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2339 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2340 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2341 .writefn
= tlbiall_is_write
},
2342 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2343 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2344 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2345 .writefn
= tlbi_aa64_va_is_write
},
2346 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2347 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2348 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2349 .writefn
= tlbi_aa64_asid_is_write
},
2350 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2351 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2352 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2353 .writefn
= tlbi_aa64_vaa_is_write
},
2354 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2355 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2356 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2357 .writefn
= tlbi_aa64_va_is_write
},
2358 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2359 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2360 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2361 .writefn
= tlbi_aa64_vaa_is_write
},
2362 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2363 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2364 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2365 .writefn
= tlbiall_write
},
2366 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2367 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2368 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2369 .writefn
= tlbi_aa64_va_write
},
2370 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2371 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2372 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2373 .writefn
= tlbi_aa64_asid_write
},
2374 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2375 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2376 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2377 .writefn
= tlbi_aa64_vaa_write
},
2378 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2379 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2380 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2381 .writefn
= tlbi_aa64_va_write
},
2382 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2383 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2384 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2385 .writefn
= tlbi_aa64_vaa_write
},
2386 #ifndef CONFIG_USER_ONLY
2387 /* 64 bit address translation operations */
2388 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
2389 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
2390 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2391 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
2392 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
2393 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2394 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
2395 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
2396 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2397 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
2398 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
2399 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2401 /* TLB invalidate last level of translation table walk */
2402 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2403 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2404 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2405 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2406 .writefn
= tlbimvaa_is_write
},
2407 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2408 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2409 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2410 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2411 /* 32 bit cache operations */
2412 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2413 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2414 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2415 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2416 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2417 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2418 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2419 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2420 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2421 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2422 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2423 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2424 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2425 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2426 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2427 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2428 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2429 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2430 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2431 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2432 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2433 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2434 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2435 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2436 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2437 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2438 /* MMU Domain access control / MPU write buffer control */
2439 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2440 .access
= PL1_RW
, .resetvalue
= 0,
2441 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2442 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
2443 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
2444 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2445 .type
= ARM_CP_ALIAS
,
2446 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2448 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
2449 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2450 .type
= ARM_CP_ALIAS
,
2451 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2452 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[1]) },
2453 /* We rely on the access checks not allowing the guest to write to the
2454 * state field when SPSel indicates that it's being used as the stack
2457 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2458 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2459 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2460 .type
= ARM_CP_ALIAS
,
2461 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2462 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
2463 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
2464 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
2465 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
2466 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2467 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2468 .type
= ARM_CP_NO_RAW
,
2469 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2473 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2474 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo
[] = {
2475 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2476 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2478 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2479 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2480 .type
= ARM_CP_NO_RAW
,
2481 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2483 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2487 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2489 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2490 uint64_t valid_mask
= HCR_MASK
;
2492 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2493 valid_mask
&= ~HCR_HCD
;
2495 valid_mask
&= ~HCR_TSC
;
2498 /* Clear RES0 bits. */
2499 value
&= valid_mask
;
2501 /* These bits change the MMU setup:
2502 * HCR_VM enables stage 2 translation
2503 * HCR_PTW forbids certain page-table setups
2504 * HCR_DC Disables stage1 and enables stage2 translation
2506 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
2507 tlb_flush(CPU(cpu
), 1);
2509 raw_write(env
, ri
, value
);
2512 static const ARMCPRegInfo v8_el2_cp_reginfo
[] = {
2513 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2514 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2515 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
2516 .writefn
= hcr_write
},
2517 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
2518 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
2519 .access
= PL2_RW
, .resetvalue
= 0,
2520 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2521 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
2522 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
2523 .type
= ARM_CP_ALIAS
,
2524 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
2526 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
2527 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
2528 .type
= ARM_CP_ALIAS
,
2529 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
2530 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
2531 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
2532 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
2533 .access
= PL2_RW
, .resetvalue
= 0,
2534 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
2535 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
2536 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
2537 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
2538 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
2539 .type
= ARM_CP_ALIAS
,
2540 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
2541 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
2542 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2543 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2544 .access
= PL2_RW
, .writefn
= vbar_write
,
2545 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
2547 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
2548 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
2549 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
2550 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
2554 static const ARMCPRegInfo el3_cp_reginfo
[] = {
2555 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
2556 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
2557 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
2558 .resetvalue
= 0, .writefn
= scr_write
},
2559 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
2560 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
2561 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
2562 .resetfn
= arm_cp_reset_ignore
, .writefn
= scr_write
},
2563 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
2564 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
2565 .access
= PL3_RW
, .resetvalue
= 0,
2566 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
2568 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
2569 .access
= PL3_RW
, .resetvalue
= 0,
2570 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
2571 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2572 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
2573 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
2574 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
2575 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
2576 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
2577 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
2578 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
2579 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
2580 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
2581 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
2582 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
2583 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
2584 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2585 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
2586 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
2587 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
2588 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
2589 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2590 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
2591 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
2592 .type
= ARM_CP_ALIAS
,
2593 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
2595 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
2596 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
2597 .type
= ARM_CP_ALIAS
,
2598 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
2599 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
2600 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
2601 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
2602 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
2603 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
2604 .type
= ARM_CP_ALIAS
,
2605 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
2606 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
2607 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
2608 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
2609 .access
= PL3_RW
, .writefn
= vbar_write
,
2610 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
2615 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2617 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2618 * but the AArch32 CTR has its own reginfo struct)
2620 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
2621 return CP_ACCESS_TRAP
;
2623 return CP_ACCESS_OK
;
2626 static const ARMCPRegInfo debug_cp_reginfo
[] = {
2627 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2628 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2629 * unlike DBGDRAR it is never accessible from EL0.
2630 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2633 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2634 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2635 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
2636 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
2637 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2638 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2639 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2640 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2641 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
2642 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2644 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2646 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2647 * We don't implement the configurable EL0 access.
2649 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
2650 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2651 .type
= ARM_CP_ALIAS
,
2653 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2654 .resetfn
= arm_cp_reset_ignore
},
2655 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2656 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
2657 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2658 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2659 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2660 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2661 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
2662 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2663 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2664 * implement vector catch debug events yet.
2667 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2668 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2672 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
2673 /* 64 bit access versions of the (dummy) debug registers */
2674 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
2675 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2676 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
2677 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2681 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
2683 CPUARMState
*env
= &cpu
->env
;
2685 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
2686 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
2688 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
2690 if (env
->cpu_watchpoint
[n
]) {
2691 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
2692 env
->cpu_watchpoint
[n
] = NULL
;
2695 if (!extract64(wcr
, 0, 1)) {
2696 /* E bit clear : watchpoint disabled */
2700 switch (extract64(wcr
, 3, 2)) {
2702 /* LSC 00 is reserved and must behave as if the wp is disabled */
2705 flags
|= BP_MEM_READ
;
2708 flags
|= BP_MEM_WRITE
;
2711 flags
|= BP_MEM_ACCESS
;
2715 /* Attempts to use both MASK and BAS fields simultaneously are
2716 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2717 * thus generating a watchpoint for every byte in the masked region.
2719 mask
= extract64(wcr
, 24, 4);
2720 if (mask
== 1 || mask
== 2) {
2721 /* Reserved values of MASK; we must act as if the mask value was
2722 * some non-reserved value, or as if the watchpoint were disabled.
2723 * We choose the latter.
2727 /* Watchpoint covers an aligned area up to 2GB in size */
2729 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2730 * whether the watchpoint fires when the unmasked bits match; we opt
2731 * to generate the exceptions.
2735 /* Watchpoint covers bytes defined by the byte address select bits */
2736 int bas
= extract64(wcr
, 5, 8);
2740 /* This must act as if the watchpoint is disabled */
2744 if (extract64(wvr
, 2, 1)) {
2745 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2746 * ignored, and BAS[3:0] define which bytes to watch.
2750 /* The BAS bits are supposed to be programmed to indicate a contiguous
2751 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2752 * we fire for each byte in the word/doubleword addressed by the WVR.
2753 * We choose to ignore any non-zero bits after the first range of 1s.
2755 basstart
= ctz32(bas
);
2756 len
= cto32(bas
>> basstart
);
2760 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
2761 &env
->cpu_watchpoint
[n
]);
2764 void hw_watchpoint_update_all(ARMCPU
*cpu
)
2767 CPUARMState
*env
= &cpu
->env
;
2769 /* Completely clear out existing QEMU watchpoints and our array, to
2770 * avoid possible stale entries following migration load.
2772 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
2773 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
2775 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
2776 hw_watchpoint_update(cpu
, i
);
2780 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2783 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2786 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2787 * register reads and behaves as if values written are sign extended.
2788 * Bits [1:0] are RES0.
2790 value
= sextract64(value
, 0, 49) & ~3ULL;
2792 raw_write(env
, ri
, value
);
2793 hw_watchpoint_update(cpu
, i
);
2796 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2799 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2802 raw_write(env
, ri
, value
);
2803 hw_watchpoint_update(cpu
, i
);
2806 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
2808 CPUARMState
*env
= &cpu
->env
;
2809 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
2810 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
2815 if (env
->cpu_breakpoint
[n
]) {
2816 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
2817 env
->cpu_breakpoint
[n
] = NULL
;
2820 if (!extract64(bcr
, 0, 1)) {
2821 /* E bit clear : watchpoint disabled */
2825 bt
= extract64(bcr
, 20, 4);
2828 case 4: /* unlinked address mismatch (reserved if AArch64) */
2829 case 5: /* linked address mismatch (reserved if AArch64) */
2830 qemu_log_mask(LOG_UNIMP
,
2831 "arm: address mismatch breakpoint types not implemented");
2833 case 0: /* unlinked address match */
2834 case 1: /* linked address match */
2836 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2837 * we behave as if the register was sign extended. Bits [1:0] are
2838 * RES0. The BAS field is used to allow setting breakpoints on 16
2839 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2840 * a bp will fire if the addresses covered by the bp and the addresses
2841 * covered by the insn overlap but the insn doesn't start at the
2842 * start of the bp address range. We choose to require the insn and
2843 * the bp to have the same address. The constraints on writing to
2844 * BAS enforced in dbgbcr_write mean we have only four cases:
2845 * 0b0000 => no breakpoint
2846 * 0b0011 => breakpoint on addr
2847 * 0b1100 => breakpoint on addr + 2
2848 * 0b1111 => breakpoint on addr
2849 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2851 int bas
= extract64(bcr
, 5, 4);
2852 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
2861 case 2: /* unlinked context ID match */
2862 case 8: /* unlinked VMID match (reserved if no EL2) */
2863 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2864 qemu_log_mask(LOG_UNIMP
,
2865 "arm: unlinked context breakpoint types not implemented");
2867 case 9: /* linked VMID match (reserved if no EL2) */
2868 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2869 case 3: /* linked context ID match */
2871 /* We must generate no events for Linked context matches (unless
2872 * they are linked to by some other bp/wp, which is handled in
2873 * updates for the linking bp/wp). We choose to also generate no events
2874 * for reserved values.
2879 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
2882 void hw_breakpoint_update_all(ARMCPU
*cpu
)
2885 CPUARMState
*env
= &cpu
->env
;
2887 /* Completely clear out existing QEMU breakpoints and our array, to
2888 * avoid possible stale entries following migration load.
2890 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
2891 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
2893 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
2894 hw_breakpoint_update(cpu
, i
);
2898 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2901 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2904 raw_write(env
, ri
, value
);
2905 hw_breakpoint_update(cpu
, i
);
2908 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2911 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2914 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2917 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
2918 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
2920 raw_write(env
, ri
, value
);
2921 hw_breakpoint_update(cpu
, i
);
2924 static void define_debug_regs(ARMCPU
*cpu
)
2926 /* Define v7 and v8 architectural debug registers.
2927 * These are just dummy implementations for now.
2930 int wrps
, brps
, ctx_cmps
;
2931 ARMCPRegInfo dbgdidr
= {
2932 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
2933 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
2936 /* Note that all these register fields hold "number of Xs minus 1". */
2937 brps
= extract32(cpu
->dbgdidr
, 24, 4);
2938 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
2939 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
2941 assert(ctx_cmps
<= brps
);
2943 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2944 * of the debug registers such as number of breakpoints;
2945 * check that if they both exist then they agree.
2947 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2948 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
2949 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
2950 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
2953 define_one_arm_cp_reg(cpu
, &dbgdidr
);
2954 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
2956 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
2957 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
2960 for (i
= 0; i
< brps
+ 1; i
++) {
2961 ARMCPRegInfo dbgregs
[] = {
2962 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
2963 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2965 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
2966 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
2968 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
2969 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2971 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
2972 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
2976 define_arm_cp_regs(cpu
, dbgregs
);
2979 for (i
= 0; i
< wrps
+ 1; i
++) {
2980 ARMCPRegInfo dbgregs
[] = {
2981 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
2982 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2984 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
2985 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
2987 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
2988 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2990 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
2991 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
2995 define_arm_cp_regs(cpu
, dbgregs
);
2999 void register_cp_regs_for_features(ARMCPU
*cpu
)
3001 /* Register all the coprocessor registers based on feature bits */
3002 CPUARMState
*env
= &cpu
->env
;
3003 if (arm_feature(env
, ARM_FEATURE_M
)) {
3004 /* M profile has no coprocessor registers */
3008 define_arm_cp_regs(cpu
, cp_reginfo
);
3009 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3010 /* Must go early as it is full of wildcards that may be
3011 * overridden by later definitions.
3013 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
3016 if (arm_feature(env
, ARM_FEATURE_V6
)) {
3017 /* The ID registers all have impdef reset values */
3018 ARMCPRegInfo v6_idregs
[] = {
3019 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
3020 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3021 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3022 .resetvalue
= cpu
->id_pfr0
},
3023 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
3024 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
3025 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3026 .resetvalue
= cpu
->id_pfr1
},
3027 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
3028 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
3029 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3030 .resetvalue
= cpu
->id_dfr0
},
3031 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
3032 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
3033 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3034 .resetvalue
= cpu
->id_afr0
},
3035 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
3036 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
3037 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3038 .resetvalue
= cpu
->id_mmfr0
},
3039 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
3040 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
3041 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3042 .resetvalue
= cpu
->id_mmfr1
},
3043 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
3044 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
3045 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3046 .resetvalue
= cpu
->id_mmfr2
},
3047 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
3048 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
3049 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3050 .resetvalue
= cpu
->id_mmfr3
},
3051 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
3052 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
3053 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3054 .resetvalue
= cpu
->id_isar0
},
3055 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
3056 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
3057 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3058 .resetvalue
= cpu
->id_isar1
},
3059 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
3060 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3061 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3062 .resetvalue
= cpu
->id_isar2
},
3063 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
3064 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
3065 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3066 .resetvalue
= cpu
->id_isar3
},
3067 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
3068 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
3069 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3070 .resetvalue
= cpu
->id_isar4
},
3071 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
3072 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
3073 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3074 .resetvalue
= cpu
->id_isar5
},
3075 /* 6..7 are as yet unallocated and must RAZ */
3076 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
3077 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3079 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
3080 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3084 define_arm_cp_regs(cpu
, v6_idregs
);
3085 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
3087 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
3089 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
3090 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
3092 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
3093 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
3095 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3096 /* v7 performance monitor control register: same implementor
3097 * field as main ID register, and we implement only the cycle
3100 #ifndef CONFIG_USER_ONLY
3101 ARMCPRegInfo pmcr
= {
3102 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
3104 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
3105 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
3106 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
3107 .raw_writefn
= raw_write
,
3109 ARMCPRegInfo pmcr64
= {
3110 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
3111 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
3112 .access
= PL0_RW
, .accessfn
= pmreg_access
,
3114 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
3115 .resetvalue
= cpu
->midr
& 0xff000000,
3116 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
3118 define_one_arm_cp_reg(cpu
, &pmcr
);
3119 define_one_arm_cp_reg(cpu
, &pmcr64
);
3121 ARMCPRegInfo clidr
= {
3122 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
3123 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
3124 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
3126 define_one_arm_cp_reg(cpu
, &clidr
);
3127 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
3128 define_debug_regs(cpu
);
3130 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
3132 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3133 /* AArch64 ID registers, which all have impdef reset values */
3134 ARMCPRegInfo v8_idregs
[] = {
3135 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3136 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
3137 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3138 .resetvalue
= cpu
->id_aa64pfr0
},
3139 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3140 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
3141 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3142 .resetvalue
= cpu
->id_aa64pfr1
},
3143 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3144 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
3145 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3146 /* We mask out the PMUVer field, because we don't currently
3147 * implement the PMU. Not advertising it prevents the guest
3148 * from trying to use it and getting UNDEFs on registers we
3151 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
3152 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3153 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
3154 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3155 .resetvalue
= cpu
->id_aa64dfr1
},
3156 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3157 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
3158 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3159 .resetvalue
= cpu
->id_aa64afr0
},
3160 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3161 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
3162 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3163 .resetvalue
= cpu
->id_aa64afr1
},
3164 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
3165 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
3166 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3167 .resetvalue
= cpu
->id_aa64isar0
},
3168 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
3169 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
3170 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3171 .resetvalue
= cpu
->id_aa64isar1
},
3172 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3173 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3174 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3175 .resetvalue
= cpu
->id_aa64mmfr0
},
3176 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3177 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
3178 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3179 .resetvalue
= cpu
->id_aa64mmfr1
},
3180 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3181 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
3182 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3183 .resetvalue
= cpu
->mvfr0
},
3184 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3185 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
3186 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3187 .resetvalue
= cpu
->mvfr1
},
3188 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
3189 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
3190 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3191 .resetvalue
= cpu
->mvfr2
},
3194 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3195 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
3196 !arm_feature(env
, ARM_FEATURE_EL2
)) {
3197 ARMCPRegInfo rvbar
= {
3198 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3199 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3200 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
3202 define_one_arm_cp_reg(cpu
, &rvbar
);
3204 define_arm_cp_regs(cpu
, v8_idregs
);
3205 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
3207 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3208 define_arm_cp_regs(cpu
, v8_el2_cp_reginfo
);
3209 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3210 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
3211 ARMCPRegInfo rvbar
= {
3212 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3213 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
3214 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
3216 define_one_arm_cp_reg(cpu
, &rvbar
);
3219 /* If EL2 is missing but higher ELs are enabled, we need to
3220 * register the no_el2 reginfos.
3222 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3223 define_arm_cp_regs(cpu
, v8_el3_no_el2_cp_reginfo
);
3226 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3227 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
3228 ARMCPRegInfo rvbar
= {
3229 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3230 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
3231 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
3233 define_one_arm_cp_reg(cpu
, &rvbar
);
3235 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3236 /* These are the MPU registers prior to PMSAv6. Any new
3237 * PMSA core later than the ARM946 will require that we
3238 * implement the PMSAv6 or PMSAv7 registers, which are
3239 * completely different.
3241 assert(!arm_feature(env
, ARM_FEATURE_V6
));
3242 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
3244 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
3246 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
3247 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
3249 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
3250 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
3252 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
3253 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
3255 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
3256 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
3258 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
3259 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
3261 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
3262 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
3264 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
3265 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
3267 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3268 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
3270 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3271 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
3273 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
3274 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
3276 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3277 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
3279 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3280 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3281 * be read-only (ie write causes UNDEF exception).
3284 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
3285 /* Pre-v8 MIDR space.
3286 * Note that the MIDR isn't a simple constant register because
3287 * of the TI925 behaviour where writes to another register can
3288 * cause the MIDR value to change.
3290 * Unimplemented registers in the c15 0 0 0 space default to
3291 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3292 * and friends override accordingly.
3295 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
3296 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
3297 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
3298 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
3299 .type
= ARM_CP_OVERRIDE
},
3300 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3302 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
3303 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3305 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
3306 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3308 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
3309 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3311 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
3312 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3314 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
3315 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3318 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
3319 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3320 * variable-MIDR TI925 behaviour. Instead we have a single
3321 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3323 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3324 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
3325 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3326 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3327 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
3328 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3331 ARMCPRegInfo id_cp_reginfo
[] = {
3332 /* These are common to v8 and pre-v8 */
3334 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
3335 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3336 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
3337 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
3338 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
3339 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3340 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3342 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
3343 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3345 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
3346 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3349 ARMCPRegInfo crn0_wi_reginfo
= {
3350 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
3351 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
3352 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
3354 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
3355 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3357 /* Register the blanket "writes ignored" value first to cover the
3358 * whole space. Then update the specific ID registers to allow write
3359 * access, so that they ignore writes rather than causing them to
3362 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
3363 for (r
= id_pre_v8_midr_cp_reginfo
;
3364 r
->type
!= ARM_CP_SENTINEL
; r
++) {
3367 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3371 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3372 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
3374 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
3376 define_arm_cp_regs(cpu
, id_cp_reginfo
);
3379 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
3380 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
3383 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
3384 ARMCPRegInfo auxcr
= {
3385 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3386 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
3387 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3388 .resetvalue
= cpu
->reset_auxcr
3390 define_one_arm_cp_reg(cpu
, &auxcr
);
3393 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
3394 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3395 /* 32 bit view is [31:18] 0...0 [43:32]. */
3396 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
3397 | extract64(cpu
->reset_cbar
, 32, 12);
3398 ARMCPRegInfo cbar_reginfo
[] = {
3400 .type
= ARM_CP_CONST
,
3401 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3402 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
3403 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3404 .type
= ARM_CP_CONST
,
3405 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
3406 .access
= PL1_R
, .resetvalue
= cbar32
},
3409 /* We don't implement a r/w 64 bit CBAR currently */
3410 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
3411 define_arm_cp_regs(cpu
, cbar_reginfo
);
3413 ARMCPRegInfo cbar
= {
3415 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3416 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
3417 .fieldoffset
= offsetof(CPUARMState
,
3418 cp15
.c15_config_base_address
)
3420 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
3421 cbar
.access
= PL1_R
;
3422 cbar
.fieldoffset
= 0;
3423 cbar
.type
= ARM_CP_CONST
;
3425 define_one_arm_cp_reg(cpu
, &cbar
);
3429 /* Generic registers whose values depend on the implementation */
3431 ARMCPRegInfo sctlr
= {
3432 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
3433 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3435 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
3436 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
3437 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
3438 .raw_writefn
= raw_write
,
3440 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3441 /* Normally we would always end the TB on an SCTLR write, but Linux
3442 * arch/arm/mach-pxa/sleep.S expects two instructions following
3443 * an MMU enable to execute from cache. Imitate this behaviour.
3445 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
3447 define_one_arm_cp_reg(cpu
, &sctlr
);
3451 ARMCPU
*cpu_arm_init(const char *cpu_model
)
3453 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
3456 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
3458 CPUState
*cs
= CPU(cpu
);
3459 CPUARMState
*env
= &cpu
->env
;
3461 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3462 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
3463 aarch64_fpu_gdb_set_reg
,
3464 34, "aarch64-fpu.xml", 0);
3465 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
3466 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3467 51, "arm-neon.xml", 0);
3468 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
3469 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3470 35, "arm-vfp3.xml", 0);
3471 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
3472 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3473 19, "arm-vfp.xml", 0);
3477 /* Sort alphabetically by type name, except for "any". */
3478 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
3480 ObjectClass
*class_a
= (ObjectClass
*)a
;
3481 ObjectClass
*class_b
= (ObjectClass
*)b
;
3482 const char *name_a
, *name_b
;
3484 name_a
= object_class_get_name(class_a
);
3485 name_b
= object_class_get_name(class_b
);
3486 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
3488 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
3491 return strcmp(name_a
, name_b
);
3495 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
3497 ObjectClass
*oc
= data
;
3498 CPUListState
*s
= user_data
;
3499 const char *typename
;
3502 typename
= object_class_get_name(oc
);
3503 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3504 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
3509 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
3513 .cpu_fprintf
= cpu_fprintf
,
3517 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3518 list
= g_slist_sort(list
, arm_cpu_list_compare
);
3519 (*cpu_fprintf
)(f
, "Available CPUs:\n");
3520 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
3523 /* The 'host' CPU type is dynamically registered only if KVM is
3524 * enabled, so we have to special-case it here:
3526 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
3530 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
3532 ObjectClass
*oc
= data
;
3533 CpuDefinitionInfoList
**cpu_list
= user_data
;
3534 CpuDefinitionInfoList
*entry
;
3535 CpuDefinitionInfo
*info
;
3536 const char *typename
;
3538 typename
= object_class_get_name(oc
);
3539 info
= g_malloc0(sizeof(*info
));
3540 info
->name
= g_strndup(typename
,
3541 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3543 entry
= g_malloc0(sizeof(*entry
));
3544 entry
->value
= info
;
3545 entry
->next
= *cpu_list
;
3549 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
3551 CpuDefinitionInfoList
*cpu_list
= NULL
;
3554 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3555 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
3561 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
3562 void *opaque
, int state
, int secstate
,
3563 int crm
, int opc1
, int opc2
)
3565 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3566 * add a single reginfo struct to the hash table.
3568 uint32_t *key
= g_new(uint32_t, 1);
3569 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
3570 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
3571 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
3573 /* Reset the secure state to the specific incoming state. This is
3574 * necessary as the register may have been defined with both states.
3576 r2
->secure
= secstate
;
3578 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3579 /* Register is banked (using both entries in array).
3580 * Overwriting fieldoffset as the array is only used to define
3581 * banked registers but later only fieldoffset is used.
3583 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
3586 if (state
== ARM_CP_STATE_AA32
) {
3587 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3588 /* If the register is banked then we don't need to migrate or
3589 * reset the 32-bit instance in certain cases:
3591 * 1) If the register has both 32-bit and 64-bit instances then we
3592 * can count on the 64-bit instance taking care of the
3594 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3595 * taking care of the secure bank. This requires that separate
3596 * 32 and 64-bit definitions are provided.
3598 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
3599 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
3600 r2
->type
|= ARM_CP_ALIAS
;
3601 r2
->resetfn
= arm_cp_reset_ignore
;
3603 } else if ((secstate
!= r
->secure
) && !ns
) {
3604 /* The register is not banked so we only want to allow migration of
3605 * the non-secure instance.
3607 r2
->type
|= ARM_CP_ALIAS
;
3608 r2
->resetfn
= arm_cp_reset_ignore
;
3611 if (r
->state
== ARM_CP_STATE_BOTH
) {
3612 /* We assume it is a cp15 register if the .cp field is left unset.
3618 #ifdef HOST_WORDS_BIGENDIAN
3619 if (r2
->fieldoffset
) {
3620 r2
->fieldoffset
+= sizeof(uint32_t);
3625 if (state
== ARM_CP_STATE_AA64
) {
3626 /* To allow abbreviation of ARMCPRegInfo
3627 * definitions, we treat cp == 0 as equivalent to
3628 * the value for "standard guest-visible sysreg".
3629 * STATE_BOTH definitions are also always "standard
3630 * sysreg" in their AArch64 view (the .cp value may
3631 * be non-zero for the benefit of the AArch32 view).
3633 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
3634 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
3636 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
3637 r2
->opc0
, opc1
, opc2
);
3639 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
3642 r2
->opaque
= opaque
;
3644 /* reginfo passed to helpers is correct for the actual access,
3645 * and is never ARM_CP_STATE_BOTH:
3648 /* Make sure reginfo passed to helpers for wildcarded regs
3649 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3654 /* By convention, for wildcarded registers only the first
3655 * entry is used for migration; the others are marked as
3656 * ALIAS so we don't try to transfer the register
3657 * multiple times. Special registers (ie NOP/WFI) are
3658 * never migratable and not even raw-accessible.
3660 if ((r
->type
& ARM_CP_SPECIAL
)) {
3661 r2
->type
|= ARM_CP_NO_RAW
;
3663 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
3664 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
3665 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
3666 r2
->type
|= ARM_CP_ALIAS
;
3669 /* Check that raw accesses are either forbidden or handled. Note that
3670 * we can't assert this earlier because the setup of fieldoffset for
3671 * banked registers has to be done first.
3673 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
3674 assert(!raw_accessors_invalid(r2
));
3677 /* Overriding of an existing definition must be explicitly
3680 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
3681 ARMCPRegInfo
*oldreg
;
3682 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
3683 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
3684 fprintf(stderr
, "Register redefined: cp=%d %d bit "
3685 "crn=%d crm=%d opc1=%d opc2=%d, "
3686 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
3687 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
3688 oldreg
->name
, r2
->name
);
3689 g_assert_not_reached();
3692 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
3696 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
3697 const ARMCPRegInfo
*r
, void *opaque
)
3699 /* Define implementations of coprocessor registers.
3700 * We store these in a hashtable because typically
3701 * there are less than 150 registers in a space which
3702 * is 16*16*16*8*8 = 262144 in size.
3703 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3704 * If a register is defined twice then the second definition is
3705 * used, so this can be used to define some generic registers and
3706 * then override them with implementation specific variations.
3707 * At least one of the original and the second definition should
3708 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3709 * against accidental use.
3711 * The state field defines whether the register is to be
3712 * visible in the AArch32 or AArch64 execution state. If the
3713 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3714 * reginfo structure for the AArch32 view, which sees the lower
3715 * 32 bits of the 64 bit register.
3717 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3718 * be wildcarded. AArch64 registers are always considered to be 64
3719 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3720 * the register, if any.
3722 int crm
, opc1
, opc2
, state
;
3723 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
3724 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
3725 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
3726 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
3727 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
3728 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
3729 /* 64 bit registers have only CRm and Opc1 fields */
3730 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
3731 /* op0 only exists in the AArch64 encodings */
3732 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
3733 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3734 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
3735 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3736 * encodes a minimum access level for the register. We roll this
3737 * runtime check into our general permission check code, so check
3738 * here that the reginfo's specified permissions are strict enough
3739 * to encompass the generic architectural permission check.
3741 if (r
->state
!= ARM_CP_STATE_AA32
) {
3744 case 0: case 1: case 2:
3757 /* unallocated encoding, so not possible */
3765 /* min_EL EL1, secure mode only (we don't check the latter) */
3769 /* broken reginfo with out-of-range opc1 */
3773 /* assert our permissions are not too lax (stricter is fine) */
3774 assert((r
->access
& ~mask
) == 0);
3777 /* Check that the register definition has enough info to handle
3778 * reads and writes if they are permitted.
3780 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
3781 if (r
->access
& PL3_R
) {
3782 assert((r
->fieldoffset
||
3783 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3786 if (r
->access
& PL3_W
) {
3787 assert((r
->fieldoffset
||
3788 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3792 /* Bad type field probably means missing sentinel at end of reg list */
3793 assert(cptype_valid(r
->type
));
3794 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
3795 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
3796 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
3797 for (state
= ARM_CP_STATE_AA32
;
3798 state
<= ARM_CP_STATE_AA64
; state
++) {
3799 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
3802 if (state
== ARM_CP_STATE_AA32
) {
3803 /* Under AArch32 CP registers can be common
3804 * (same for secure and non-secure world) or banked.
3806 switch (r
->secure
) {
3807 case ARM_CP_SECSTATE_S
:
3808 case ARM_CP_SECSTATE_NS
:
3809 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3810 r
->secure
, crm
, opc1
, opc2
);
3813 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3816 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3822 /* AArch64 registers get mapped to non-secure instance
3824 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3834 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
3835 const ARMCPRegInfo
*regs
, void *opaque
)
3837 /* Define a whole list of registers */
3838 const ARMCPRegInfo
*r
;
3839 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3840 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
3844 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
3846 return g_hash_table_lookup(cpregs
, &encoded_cp
);
3849 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3852 /* Helper coprocessor write function for write-ignore registers */
3855 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3857 /* Helper coprocessor write function for read-as-zero registers */
3861 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
3863 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3866 static int bad_mode_switch(CPUARMState
*env
, int mode
)
3868 /* Return true if it is not valid for us to switch to
3869 * this CPU mode (ie all the UNPREDICTABLE cases in
3870 * the ARM ARM CPSRWriteByInstr pseudocode).
3873 case ARM_CPU_MODE_USR
:
3874 case ARM_CPU_MODE_SYS
:
3875 case ARM_CPU_MODE_SVC
:
3876 case ARM_CPU_MODE_ABT
:
3877 case ARM_CPU_MODE_UND
:
3878 case ARM_CPU_MODE_IRQ
:
3879 case ARM_CPU_MODE_FIQ
:
3881 case ARM_CPU_MODE_MON
:
3882 return !arm_is_secure(env
);
3888 uint32_t cpsr_read(CPUARMState
*env
)
3891 ZF
= (env
->ZF
== 0);
3892 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
3893 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
3894 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
3895 | ((env
->condexec_bits
& 0xfc) << 8)
3896 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
3899 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
3901 uint32_t changed_daif
;
3903 if (mask
& CPSR_NZCV
) {
3904 env
->ZF
= (~val
) & CPSR_Z
;
3906 env
->CF
= (val
>> 29) & 1;
3907 env
->VF
= (val
<< 3) & 0x80000000;
3910 env
->QF
= ((val
& CPSR_Q
) != 0);
3912 env
->thumb
= ((val
& CPSR_T
) != 0);
3913 if (mask
& CPSR_IT_0_1
) {
3914 env
->condexec_bits
&= ~3;
3915 env
->condexec_bits
|= (val
>> 25) & 3;
3917 if (mask
& CPSR_IT_2_7
) {
3918 env
->condexec_bits
&= 3;
3919 env
->condexec_bits
|= (val
>> 8) & 0xfc;
3921 if (mask
& CPSR_GE
) {
3922 env
->GE
= (val
>> 16) & 0xf;
3925 /* In a V7 implementation that includes the security extensions but does
3926 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
3927 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
3928 * bits respectively.
3930 * In a V8 implementation, it is permitted for privileged software to
3931 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
3933 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
3934 arm_feature(env
, ARM_FEATURE_EL3
) &&
3935 !arm_feature(env
, ARM_FEATURE_EL2
) &&
3936 !arm_is_secure(env
)) {
3938 changed_daif
= (env
->daif
^ val
) & mask
;
3940 if (changed_daif
& CPSR_A
) {
3941 /* Check to see if we are allowed to change the masking of async
3942 * abort exceptions from a non-secure state.
3944 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
3945 qemu_log_mask(LOG_GUEST_ERROR
,
3946 "Ignoring attempt to switch CPSR_A flag from "
3947 "non-secure world with SCR.AW bit clear\n");
3952 if (changed_daif
& CPSR_F
) {
3953 /* Check to see if we are allowed to change the masking of FIQ
3954 * exceptions from a non-secure state.
3956 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
3957 qemu_log_mask(LOG_GUEST_ERROR
,
3958 "Ignoring attempt to switch CPSR_F flag from "
3959 "non-secure world with SCR.FW bit clear\n");
3963 /* Check whether non-maskable FIQ (NMFI) support is enabled.
3964 * If this bit is set software is not allowed to mask
3965 * FIQs, but is allowed to set CPSR_F to 0.
3967 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
3969 qemu_log_mask(LOG_GUEST_ERROR
,
3970 "Ignoring attempt to enable CPSR_F flag "
3971 "(non-maskable FIQ [NMFI] support enabled)\n");
3977 env
->daif
&= ~(CPSR_AIF
& mask
);
3978 env
->daif
|= val
& CPSR_AIF
& mask
;
3980 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
3981 if (bad_mode_switch(env
, val
& CPSR_M
)) {
3982 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3983 * We choose to ignore the attempt and leave the CPSR M field
3988 switch_mode(env
, val
& CPSR_M
);
3991 mask
&= ~CACHED_CPSR_BITS
;
3992 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
3995 /* Sign/zero extend */
3996 uint32_t HELPER(sxtb16
)(uint32_t x
)
3999 res
= (uint16_t)(int8_t)x
;
4000 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
4004 uint32_t HELPER(uxtb16
)(uint32_t x
)
4007 res
= (uint16_t)(uint8_t)x
;
4008 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
4012 uint32_t HELPER(clz
)(uint32_t x
)
4017 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
4021 if (num
== INT_MIN
&& den
== -1)
4026 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
4033 uint32_t HELPER(rbit
)(uint32_t x
)
4035 x
= ((x
& 0xff000000) >> 24)
4036 | ((x
& 0x00ff0000) >> 8)
4037 | ((x
& 0x0000ff00) << 8)
4038 | ((x
& 0x000000ff) << 24);
4039 x
= ((x
& 0xf0f0f0f0) >> 4)
4040 | ((x
& 0x0f0f0f0f) << 4);
4041 x
= ((x
& 0x88888888) >> 3)
4042 | ((x
& 0x44444444) >> 1)
4043 | ((x
& 0x22222222) << 1)
4044 | ((x
& 0x11111111) << 3);
4048 #if defined(CONFIG_USER_ONLY)
4050 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
4053 ARMCPU
*cpu
= ARM_CPU(cs
);
4054 CPUARMState
*env
= &cpu
->env
;
4056 env
->exception
.vaddress
= address
;
4058 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4060 cs
->exception_index
= EXCP_DATA_ABORT
;
4065 /* These should probably raise undefined insn exceptions. */
4066 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4068 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4070 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
4073 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4075 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4077 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
4081 void switch_mode(CPUARMState
*env
, int mode
)
4083 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4085 if (mode
!= ARM_CPU_MODE_USR
) {
4086 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
4090 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4092 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4094 cpu_abort(CPU(cpu
), "banked r13 write\n");
4097 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4099 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4101 cpu_abort(CPU(cpu
), "banked r13 read\n");
4105 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
4110 void aarch64_sync_64_to_32(CPUARMState
*env
)
4112 g_assert_not_reached();
4117 /* Map CPU modes onto saved register banks. */
4118 int bank_number(int mode
)
4121 case ARM_CPU_MODE_USR
:
4122 case ARM_CPU_MODE_SYS
:
4124 case ARM_CPU_MODE_SVC
:
4126 case ARM_CPU_MODE_ABT
:
4128 case ARM_CPU_MODE_UND
:
4130 case ARM_CPU_MODE_IRQ
:
4132 case ARM_CPU_MODE_FIQ
:
4134 case ARM_CPU_MODE_HYP
:
4136 case ARM_CPU_MODE_MON
:
4139 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
4142 void switch_mode(CPUARMState
*env
, int mode
)
4147 old_mode
= env
->uncached_cpsr
& CPSR_M
;
4148 if (mode
== old_mode
)
4151 if (old_mode
== ARM_CPU_MODE_FIQ
) {
4152 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
4153 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
4154 } else if (mode
== ARM_CPU_MODE_FIQ
) {
4155 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
4156 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
4159 i
= bank_number(old_mode
);
4160 env
->banked_r13
[i
] = env
->regs
[13];
4161 env
->banked_r14
[i
] = env
->regs
[14];
4162 env
->banked_spsr
[i
] = env
->spsr
;
4164 i
= bank_number(mode
);
4165 env
->regs
[13] = env
->banked_r13
[i
];
4166 env
->regs
[14] = env
->banked_r14
[i
];
4167 env
->spsr
= env
->banked_spsr
[i
];
4170 /* Physical Interrupt Target EL Lookup Table
4172 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4174 * The below multi-dimensional table is used for looking up the target
4175 * exception level given numerous condition criteria. Specifically, the
4176 * target EL is based on SCR and HCR routing controls as well as the
4177 * currently executing EL and secure state.
4180 * target_el_table[2][2][2][2][2][4]
4181 * | | | | | +--- Current EL
4182 * | | | | +------ Non-secure(0)/Secure(1)
4183 * | | | +--------- HCR mask override
4184 * | | +------------ SCR exec state control
4185 * | +--------------- SCR mask override
4186 * +------------------ 32-bit(0)/64-bit(1) EL3
4188 * The table values are as such:
4192 * The ARM ARM target EL table includes entries indicating that an "exception
4193 * is not taken". The two cases where this is applicable are:
4194 * 1) An exception is taken from EL3 but the SCR does not have the exception
4196 * 2) An exception is taken from EL2 but the HCR does not have the exception
4198 * In these two cases, the below table contain a target of EL1. This value is
4199 * returned as it is expected that the consumer of the table data will check
4200 * for "target EL >= current EL" to ensure the exception is not taken.
4204 * BIT IRQ IMO Non-secure Secure
4205 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4207 const int8_t target_el_table
[2][2][2][2][2][4] = {
4208 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4209 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4210 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4211 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4212 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4213 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4214 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4215 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4216 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4217 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4218 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4219 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4220 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4221 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4222 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4223 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4227 * Determine the target EL for physical exceptions
4229 static inline uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
4230 uint32_t cur_el
, bool secure
)
4232 CPUARMState
*env
= cs
->env_ptr
;
4233 int rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
4237 int is64
= arm_el_is_aa64(env
, 3);
4241 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
4242 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
4245 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
4246 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
4249 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
4250 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
4254 /* If HCR.TGE is set then HCR is treated as being 1 */
4255 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
4257 /* Perform a table-lookup for the target EL given the current state */
4258 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
4260 assert(target_el
> 0);
4266 * Determine the target EL for a given exception type.
4268 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
4270 ARMCPU
*cpu
= ARM_CPU(cs
);
4271 CPUARMState
*env
= &cpu
->env
;
4272 unsigned int cur_el
= arm_current_el(env
);
4273 unsigned int target_el
;
4274 bool secure
= arm_is_secure(env
);
4286 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
4293 target_el
= MAX(cur_el
, 1);
4299 static void v7m_push(CPUARMState
*env
, uint32_t val
)
4301 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4304 stl_phys(cs
->as
, env
->regs
[13], val
);
4307 static uint32_t v7m_pop(CPUARMState
*env
)
4309 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4312 val
= ldl_phys(cs
->as
, env
->regs
[13]);
4317 /* Switch to V7M main or process stack pointer. */
4318 static void switch_v7m_sp(CPUARMState
*env
, int process
)
4321 if (env
->v7m
.current_sp
!= process
) {
4322 tmp
= env
->v7m
.other_sp
;
4323 env
->v7m
.other_sp
= env
->regs
[13];
4324 env
->regs
[13] = tmp
;
4325 env
->v7m
.current_sp
= process
;
4329 static void do_v7m_exception_exit(CPUARMState
*env
)
4334 type
= env
->regs
[15];
4335 if (env
->v7m
.exception
!= 0)
4336 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
4338 /* Switch to the target stack. */
4339 switch_v7m_sp(env
, (type
& 4) != 0);
4340 /* Pop registers. */
4341 env
->regs
[0] = v7m_pop(env
);
4342 env
->regs
[1] = v7m_pop(env
);
4343 env
->regs
[2] = v7m_pop(env
);
4344 env
->regs
[3] = v7m_pop(env
);
4345 env
->regs
[12] = v7m_pop(env
);
4346 env
->regs
[14] = v7m_pop(env
);
4347 env
->regs
[15] = v7m_pop(env
);
4348 if (env
->regs
[15] & 1) {
4349 qemu_log_mask(LOG_GUEST_ERROR
,
4350 "M profile return from interrupt with misaligned "
4351 "PC is UNPREDICTABLE\n");
4352 /* Actual hardware seems to ignore the lsbit, and there are several
4353 * RTOSes out there which incorrectly assume the r15 in the stack
4354 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4356 env
->regs
[15] &= ~1U;
4358 xpsr
= v7m_pop(env
);
4359 xpsr_write(env
, xpsr
, 0xfffffdff);
4360 /* Undo stack alignment. */
4363 /* ??? The exception return type specifies Thread/Handler mode. However
4364 this is also implied by the xPSR value. Not sure what to do
4365 if there is a mismatch. */
4366 /* ??? Likewise for mismatches between the CONTROL register and the stack
4370 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
4372 ARMCPU
*cpu
= ARM_CPU(cs
);
4373 CPUARMState
*env
= &cpu
->env
;
4374 uint32_t xpsr
= xpsr_read(env
);
4378 arm_log_exception(cs
->exception_index
);
4381 if (env
->v7m
.current_sp
)
4383 if (env
->v7m
.exception
== 0)
4386 /* For exceptions we just mark as pending on the NVIC, and let that
4388 /* TODO: Need to escalate if the current priority is higher than the
4389 one we're raising. */
4390 switch (cs
->exception_index
) {
4392 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
4395 /* The PC already points to the next instruction. */
4396 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
4398 case EXCP_PREFETCH_ABORT
:
4399 case EXCP_DATA_ABORT
:
4400 /* TODO: if we implemented the MPU registers, this is where we
4401 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4403 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
4406 if (semihosting_enabled
) {
4408 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4411 env
->regs
[0] = do_arm_semihosting(env
);
4412 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4416 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
4419 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
4421 case EXCP_EXCEPTION_EXIT
:
4422 do_v7m_exception_exit(env
);
4425 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4426 return; /* Never happens. Keep compiler happy. */
4429 /* Align stack pointer. */
4430 /* ??? Should only do this if Configuration Control Register
4431 STACKALIGN bit is set. */
4432 if (env
->regs
[13] & 4) {
4436 /* Switch to the handler mode. */
4437 v7m_push(env
, xpsr
);
4438 v7m_push(env
, env
->regs
[15]);
4439 v7m_push(env
, env
->regs
[14]);
4440 v7m_push(env
, env
->regs
[12]);
4441 v7m_push(env
, env
->regs
[3]);
4442 v7m_push(env
, env
->regs
[2]);
4443 v7m_push(env
, env
->regs
[1]);
4444 v7m_push(env
, env
->regs
[0]);
4445 switch_v7m_sp(env
, 0);
4447 env
->condexec_bits
= 0;
4449 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
4450 env
->regs
[15] = addr
& 0xfffffffe;
4451 env
->thumb
= addr
& 1;
4454 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4455 * register set. This is necessary when switching between AArch32 and AArch64
4458 void aarch64_sync_32_to_64(CPUARMState
*env
)
4461 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
4463 /* We can blanket copy R[0:7] to X[0:7] */
4464 for (i
= 0; i
< 8; i
++) {
4465 env
->xregs
[i
] = env
->regs
[i
];
4468 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4469 * Otherwise, they come from the banked user regs.
4471 if (mode
== ARM_CPU_MODE_FIQ
) {
4472 for (i
= 8; i
< 13; i
++) {
4473 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
4476 for (i
= 8; i
< 13; i
++) {
4477 env
->xregs
[i
] = env
->regs
[i
];
4481 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4482 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4483 * from the mode banked register.
4485 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
4486 env
->xregs
[13] = env
->regs
[13];
4487 env
->xregs
[14] = env
->regs
[14];
4489 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
4490 /* HYP is an exception in that it is copied from r14 */
4491 if (mode
== ARM_CPU_MODE_HYP
) {
4492 env
->xregs
[14] = env
->regs
[14];
4494 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
4498 if (mode
== ARM_CPU_MODE_HYP
) {
4499 env
->xregs
[15] = env
->regs
[13];
4501 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
4504 if (mode
== ARM_CPU_MODE_IRQ
) {
4505 env
->xregs
[16] = env
->regs
[13];
4506 env
->xregs
[17] = env
->regs
[14];
4508 env
->xregs
[16] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
4509 env
->xregs
[17] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
4512 if (mode
== ARM_CPU_MODE_SVC
) {
4513 env
->xregs
[18] = env
->regs
[13];
4514 env
->xregs
[19] = env
->regs
[14];
4516 env
->xregs
[18] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
4517 env
->xregs
[19] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
4520 if (mode
== ARM_CPU_MODE_ABT
) {
4521 env
->xregs
[20] = env
->regs
[13];
4522 env
->xregs
[21] = env
->regs
[14];
4524 env
->xregs
[20] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
4525 env
->xregs
[21] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
4528 if (mode
== ARM_CPU_MODE_UND
) {
4529 env
->xregs
[22] = env
->regs
[13];
4530 env
->xregs
[23] = env
->regs
[14];
4532 env
->xregs
[22] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
4533 env
->xregs
[23] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
4536 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4537 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4538 * FIQ bank for r8-r14.
4540 if (mode
== ARM_CPU_MODE_FIQ
) {
4541 for (i
= 24; i
< 31; i
++) {
4542 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
4545 for (i
= 24; i
< 29; i
++) {
4546 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
4548 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
4549 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
4552 env
->pc
= env
->regs
[15];
4555 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4556 * register set. This is necessary when switching between AArch32 and AArch64
4559 void aarch64_sync_64_to_32(CPUARMState
*env
)
4562 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
4564 /* We can blanket copy X[0:7] to R[0:7] */
4565 for (i
= 0; i
< 8; i
++) {
4566 env
->regs
[i
] = env
->xregs
[i
];
4569 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4570 * Otherwise, we copy x8-x12 into the banked user regs.
4572 if (mode
== ARM_CPU_MODE_FIQ
) {
4573 for (i
= 8; i
< 13; i
++) {
4574 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
4577 for (i
= 8; i
< 13; i
++) {
4578 env
->regs
[i
] = env
->xregs
[i
];
4582 /* Registers r13 & r14 depend on the current mode.
4583 * If we are in a given mode, we copy the corresponding x registers to r13
4584 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4587 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
4588 env
->regs
[13] = env
->xregs
[13];
4589 env
->regs
[14] = env
->xregs
[14];
4591 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
4593 /* HYP is an exception in that it does not have its own banked r14 but
4594 * shares the USR r14
4596 if (mode
== ARM_CPU_MODE_HYP
) {
4597 env
->regs
[14] = env
->xregs
[14];
4599 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
4603 if (mode
== ARM_CPU_MODE_HYP
) {
4604 env
->regs
[13] = env
->xregs
[15];
4606 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
4609 if (mode
== ARM_CPU_MODE_IRQ
) {
4610 env
->regs
[13] = env
->xregs
[16];
4611 env
->regs
[14] = env
->xregs
[17];
4613 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
4614 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
4617 if (mode
== ARM_CPU_MODE_SVC
) {
4618 env
->regs
[13] = env
->xregs
[18];
4619 env
->regs
[14] = env
->xregs
[19];
4621 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
4622 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
4625 if (mode
== ARM_CPU_MODE_ABT
) {
4626 env
->regs
[13] = env
->xregs
[20];
4627 env
->regs
[14] = env
->xregs
[21];
4629 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
4630 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
4633 if (mode
== ARM_CPU_MODE_UND
) {
4634 env
->regs
[13] = env
->xregs
[22];
4635 env
->regs
[14] = env
->xregs
[23];
4637 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
4638 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
4641 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4642 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4643 * FIQ bank for r8-r14.
4645 if (mode
== ARM_CPU_MODE_FIQ
) {
4646 for (i
= 24; i
< 31; i
++) {
4647 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
4650 for (i
= 24; i
< 29; i
++) {
4651 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
4653 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
4654 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
4657 env
->regs
[15] = env
->pc
;
4660 /* Handle a CPU exception. */
4661 void arm_cpu_do_interrupt(CPUState
*cs
)
4663 ARMCPU
*cpu
= ARM_CPU(cs
);
4664 CPUARMState
*env
= &cpu
->env
;
4673 arm_log_exception(cs
->exception_index
);
4675 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
4676 arm_handle_psci_call(cpu
);
4677 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
4681 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4682 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
4684 case EC_BREAKPOINT_SAME_EL
:
4688 case EC_WATCHPOINT_SAME_EL
:
4694 case EC_VECTORCATCH
:
4703 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
4706 /* TODO: Vectored interrupt controller. */
4707 switch (cs
->exception_index
) {
4709 new_mode
= ARM_CPU_MODE_UND
;
4718 if (semihosting_enabled
) {
4719 /* Check for semihosting interrupt. */
4721 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
4724 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
4727 /* Only intercept calls from privileged modes, to provide some
4728 semblance of security. */
4729 if (((mask
== 0x123456 && !env
->thumb
)
4730 || (mask
== 0xab && env
->thumb
))
4731 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4732 env
->regs
[0] = do_arm_semihosting(env
);
4733 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4737 new_mode
= ARM_CPU_MODE_SVC
;
4740 /* The PC already points to the next instruction. */
4744 /* See if this is a semihosting syscall. */
4745 if (env
->thumb
&& semihosting_enabled
) {
4746 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4748 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4750 env
->regs
[0] = do_arm_semihosting(env
);
4751 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4755 env
->exception
.fsr
= 2;
4756 /* Fall through to prefetch abort. */
4757 case EXCP_PREFETCH_ABORT
:
4758 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
4759 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
4760 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
4761 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
4762 new_mode
= ARM_CPU_MODE_ABT
;
4764 mask
= CPSR_A
| CPSR_I
;
4767 case EXCP_DATA_ABORT
:
4768 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
4769 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
4770 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
4772 (uint32_t)env
->exception
.vaddress
);
4773 new_mode
= ARM_CPU_MODE_ABT
;
4775 mask
= CPSR_A
| CPSR_I
;
4779 new_mode
= ARM_CPU_MODE_IRQ
;
4781 /* Disable IRQ and imprecise data aborts. */
4782 mask
= CPSR_A
| CPSR_I
;
4784 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
4785 /* IRQ routed to monitor mode */
4786 new_mode
= ARM_CPU_MODE_MON
;
4791 new_mode
= ARM_CPU_MODE_FIQ
;
4793 /* Disable FIQ, IRQ and imprecise data aborts. */
4794 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4795 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
4796 /* FIQ routed to monitor mode */
4797 new_mode
= ARM_CPU_MODE_MON
;
4802 new_mode
= ARM_CPU_MODE_MON
;
4804 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4808 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4809 return; /* Never happens. Keep compiler happy. */
4812 if (new_mode
== ARM_CPU_MODE_MON
) {
4813 addr
+= env
->cp15
.mvbar
;
4814 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
4815 /* High vectors. When enabled, base address cannot be remapped. */
4818 /* ARM v7 architectures provide a vector base address register to remap
4819 * the interrupt vector table.
4820 * This register is only followed in non-monitor mode, and is banked.
4821 * Note: only bits 31:5 are valid.
4823 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
4826 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
4827 env
->cp15
.scr_el3
&= ~SCR_NS
;
4830 switch_mode (env
, new_mode
);
4831 /* For exceptions taken to AArch32 we must clear the SS bit in both
4832 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4834 env
->uncached_cpsr
&= ~PSTATE_SS
;
4835 env
->spsr
= cpsr_read(env
);
4836 /* Clear IT bits. */
4837 env
->condexec_bits
= 0;
4838 /* Switch to the new mode, and to the correct instruction set. */
4839 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
4841 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4842 * and we should just guard the thumb mode on V4 */
4843 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
4844 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
4846 env
->regs
[14] = env
->regs
[15] + offset
;
4847 env
->regs
[15] = addr
;
4848 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
4852 /* Return the exception level which controls this address translation regime */
4853 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4856 case ARMMMUIdx_S2NS
:
4857 case ARMMMUIdx_S1E2
:
4859 case ARMMMUIdx_S1E3
:
4861 case ARMMMUIdx_S1SE0
:
4862 return arm_el_is_aa64(env
, 3) ? 1 : 3;
4863 case ARMMMUIdx_S1SE1
:
4864 case ARMMMUIdx_S1NSE0
:
4865 case ARMMMUIdx_S1NSE1
:
4868 g_assert_not_reached();
4872 /* Return true if this address translation regime is secure */
4873 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4876 case ARMMMUIdx_S12NSE0
:
4877 case ARMMMUIdx_S12NSE1
:
4878 case ARMMMUIdx_S1NSE0
:
4879 case ARMMMUIdx_S1NSE1
:
4880 case ARMMMUIdx_S1E2
:
4881 case ARMMMUIdx_S2NS
:
4883 case ARMMMUIdx_S1E3
:
4884 case ARMMMUIdx_S1SE0
:
4885 case ARMMMUIdx_S1SE1
:
4888 g_assert_not_reached();
4892 /* Return the SCTLR value which controls this address translation regime */
4893 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4895 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
4898 /* Return true if the specified stage of address translation is disabled */
4899 static inline bool regime_translation_disabled(CPUARMState
*env
,
4902 if (mmu_idx
== ARMMMUIdx_S2NS
) {
4903 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
4905 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
4908 /* Return the TCR controlling this translation regime */
4909 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4911 if (mmu_idx
== ARMMMUIdx_S2NS
) {
4912 /* TODO: return VTCR_EL2 */
4913 g_assert_not_reached();
4915 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
4918 /* Return the TTBR associated with this translation regime */
4919 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
4922 if (mmu_idx
== ARMMMUIdx_S2NS
) {
4923 /* TODO: return VTTBR_EL2 */
4924 g_assert_not_reached();
4927 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
4929 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
4933 /* Return true if the translation regime is using LPAE format page tables */
4934 static inline bool regime_using_lpae_format(CPUARMState
*env
,
4937 int el
= regime_el(env
, mmu_idx
);
4938 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
4941 if (arm_feature(env
, ARM_FEATURE_LPAE
)
4942 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
4948 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4951 case ARMMMUIdx_S1SE0
:
4952 case ARMMMUIdx_S1NSE0
:
4956 case ARMMMUIdx_S12NSE0
:
4957 case ARMMMUIdx_S12NSE1
:
4958 g_assert_not_reached();
4962 /* Translate section/page access permissions to page
4963 * R/W protection flags
4966 * @mmu_idx: MMU index indicating required translation regime
4967 * @ap: The 3-bit access permissions (AP[2:0])
4968 * @domain_prot: The 2-bit domain access permissions
4970 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
4971 int ap
, int domain_prot
)
4973 bool is_user
= regime_is_user(env
, mmu_idx
);
4975 if (domain_prot
== 3) {
4976 return PAGE_READ
| PAGE_WRITE
;
4981 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4984 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
4986 return is_user
? 0 : PAGE_READ
;
4993 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
4998 return PAGE_READ
| PAGE_WRITE
;
5001 return PAGE_READ
| PAGE_WRITE
;
5002 case 4: /* Reserved. */
5005 return is_user
? 0 : PAGE_READ
;
5009 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
5014 g_assert_not_reached();
5018 /* Translate section/page access permissions to page
5019 * R/W protection flags.
5021 * @ap: The 2-bit simple AP (AP[2:1])
5022 * @is_user: TRUE if accessing from PL0
5024 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
5028 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
5030 return PAGE_READ
| PAGE_WRITE
;
5032 return is_user
? 0 : PAGE_READ
;
5036 g_assert_not_reached();
5041 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
5043 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
5046 /* Translate section/page access permissions to protection flags
5049 * @mmu_idx: MMU index indicating required translation regime
5050 * @is_aa64: TRUE if AArch64
5051 * @ap: The 2-bit simple AP (AP[2:1])
5052 * @ns: NS (non-secure) bit
5053 * @xn: XN (execute-never) bit
5054 * @pxn: PXN (privileged execute-never) bit
5056 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
5057 int ap
, int ns
, int xn
, int pxn
)
5059 bool is_user
= regime_is_user(env
, mmu_idx
);
5060 int prot_rw
, user_rw
;
5064 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
5066 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
5070 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
5073 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
5077 /* TODO have_wxn should be replaced with
5078 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5079 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5080 * compatible processors have EL2, which is required for [U]WXN.
5082 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
5085 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
5089 switch (regime_el(env
, mmu_idx
)) {
5092 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
5099 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
5100 switch (regime_el(env
, mmu_idx
)) {
5104 xn
= xn
|| !(user_rw
& PAGE_READ
);
5108 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
5110 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
5111 (uwxn
&& (user_rw
& PAGE_WRITE
));
5121 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
5124 return prot_rw
| PAGE_EXEC
;
5127 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5128 uint32_t *table
, uint32_t address
)
5130 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5131 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
5133 if (address
& tcr
->mask
) {
5134 if (tcr
->raw_tcr
& TTBCR_PD1
) {
5135 /* Translation table walk disabled for TTBR1 */
5138 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
5140 if (tcr
->raw_tcr
& TTBCR_PD0
) {
5141 /* Translation table walk disabled for TTBR0 */
5144 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
5146 *table
|= (address
>> 18) & 0x3ffc;
5150 /* All loads done in the course of a page table walk go through here.
5151 * TODO: rather than ignoring errors from physical memory reads (which
5152 * are external aborts in ARM terminology) we should propagate this
5153 * error out so that we can turn it into a Data Abort if this walk
5154 * was being done for a CPU load/store or an address translation instruction
5155 * (but not if it was for a debug access).
5157 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
5159 MemTxAttrs attrs
= {};
5161 attrs
.secure
= is_secure
;
5162 return address_space_ldl(cs
->as
, addr
, attrs
, NULL
);
5165 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
)
5167 MemTxAttrs attrs
= {};
5169 attrs
.secure
= is_secure
;
5170 return address_space_ldq(cs
->as
, addr
, attrs
, NULL
);
5173 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
5174 ARMMMUIdx mmu_idx
, hwaddr
*phys_ptr
,
5175 int *prot
, target_ulong
*page_size
)
5177 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5188 /* Pagetable walk. */
5189 /* Lookup l1 descriptor. */
5190 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
5191 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5195 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5197 domain
= (desc
>> 5) & 0x0f;
5198 if (regime_el(env
, mmu_idx
) == 1) {
5199 dacr
= env
->cp15
.dacr_ns
;
5201 dacr
= env
->cp15
.dacr_s
;
5203 domain_prot
= (dacr
>> (domain
* 2)) & 3;
5205 /* Section translation fault. */
5209 if (domain_prot
== 0 || domain_prot
== 2) {
5211 code
= 9; /* Section domain fault. */
5213 code
= 11; /* Page domain fault. */
5218 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
5219 ap
= (desc
>> 10) & 3;
5221 *page_size
= 1024 * 1024;
5223 /* Lookup l2 entry. */
5225 /* Coarse pagetable. */
5226 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
5228 /* Fine pagetable. */
5229 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
5231 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5233 case 0: /* Page translation fault. */
5236 case 1: /* 64k page. */
5237 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
5238 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
5239 *page_size
= 0x10000;
5241 case 2: /* 4k page. */
5242 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5243 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
5244 *page_size
= 0x1000;
5246 case 3: /* 1k page. */
5248 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
5249 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5251 /* Page translation fault. */
5256 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
5258 ap
= (desc
>> 4) & 3;
5262 /* Never happens, but compiler isn't smart enough to tell. */
5267 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
5268 *prot
|= *prot
? PAGE_EXEC
: 0;
5269 if (!(*prot
& (1 << access_type
))) {
5270 /* Access permission fault. */
5273 *phys_ptr
= phys_addr
;
5276 return code
| (domain
<< 4);
5279 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
5280 ARMMMUIdx mmu_idx
, hwaddr
*phys_ptr
,
5282 int *prot
, target_ulong
*page_size
)
5284 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5298 /* Pagetable walk. */
5299 /* Lookup l1 descriptor. */
5300 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
5301 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5305 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5307 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
5308 /* Section translation fault, or attempt to use the encoding
5309 * which is Reserved on implementations without PXN.
5314 if ((type
== 1) || !(desc
& (1 << 18))) {
5315 /* Page or Section. */
5316 domain
= (desc
>> 5) & 0x0f;
5318 if (regime_el(env
, mmu_idx
) == 1) {
5319 dacr
= env
->cp15
.dacr_ns
;
5321 dacr
= env
->cp15
.dacr_s
;
5323 domain_prot
= (dacr
>> (domain
* 2)) & 3;
5324 if (domain_prot
== 0 || domain_prot
== 2) {
5326 code
= 9; /* Section domain fault. */
5328 code
= 11; /* Page domain fault. */
5333 if (desc
& (1 << 18)) {
5335 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
5336 *page_size
= 0x1000000;
5339 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
5340 *page_size
= 0x100000;
5342 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
5343 xn
= desc
& (1 << 4);
5346 ns
= extract32(desc
, 19, 1);
5348 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
5349 pxn
= (desc
>> 2) & 1;
5351 ns
= extract32(desc
, 3, 1);
5352 /* Lookup l2 entry. */
5353 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
5354 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
));
5355 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
5357 case 0: /* Page translation fault. */
5360 case 1: /* 64k page. */
5361 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
5362 xn
= desc
& (1 << 15);
5363 *page_size
= 0x10000;
5365 case 2: case 3: /* 4k page. */
5366 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5368 *page_size
= 0x1000;
5371 /* Never happens, but compiler isn't smart enough to tell. */
5376 if (domain_prot
== 3) {
5377 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5379 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
5382 if (xn
&& access_type
== 2)
5385 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
5386 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
5387 /* The simplified model uses AP[0] as an access control bit. */
5388 if ((ap
& 1) == 0) {
5389 /* Access flag fault. */
5390 code
= (code
== 15) ? 6 : 3;
5393 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
5395 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
5400 if (!(*prot
& (1 << access_type
))) {
5401 /* Access permission fault. */
5406 /* The NS bit will (as required by the architecture) have no effect if
5407 * the CPU doesn't support TZ or this is a non-secure translation
5408 * regime, because the attribute will already be non-secure.
5410 attrs
->secure
= false;
5412 *phys_ptr
= phys_addr
;
5415 return code
| (domain
<< 4);
5418 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5419 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5422 translation_fault
= 1,
5424 permission_fault
= 3,
5427 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
5428 int access_type
, ARMMMUIdx mmu_idx
,
5429 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
5430 target_ulong
*page_size_ptr
)
5432 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5433 /* Read an LPAE long-descriptor translation table. */
5434 MMUFaultType fault_type
= translation_fault
;
5441 hwaddr descaddr
, descmask
;
5442 uint32_t tableattrs
;
5443 target_ulong page_size
;
5445 int32_t granule_sz
= 9;
5446 int32_t va_size
= 32;
5448 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
5449 int ap
, ns
, xn
, pxn
;
5450 uint32_t el
= regime_el(env
, mmu_idx
);
5451 bool ttbr1_valid
= true;
5454 * This code does not handle the different format TCR for VTCR_EL2.
5455 * This code also does not support shareability levels.
5456 * Attribute and permission bit handling should also be checked when adding
5457 * support for those page table walks.
5459 if (arm_el_is_aa64(env
, el
)) {
5462 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
5464 if (extract64(address
, 55, 1)) {
5465 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
5467 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
5472 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
5476 ttbr1_valid
= false;
5480 /* Determine whether this address is in the region controlled by
5481 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5482 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5483 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5485 uint32_t t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
5486 if (va_size
== 64) {
5487 t0sz
= MIN(t0sz
, 39);
5488 t0sz
= MAX(t0sz
, 16);
5490 uint32_t t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
5491 if (va_size
== 64) {
5492 t1sz
= MIN(t1sz
, 39);
5493 t1sz
= MAX(t1sz
, 16);
5495 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
5496 /* there is a ttbr0 region and we are in it (high bits all zero) */
5498 } else if (ttbr1_valid
&& t1sz
&&
5499 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
5500 /* there is a ttbr1 region and we are in it (high bits all one) */
5503 /* ttbr0 region is "everything not in the ttbr1 region" */
5505 } else if (!t1sz
&& ttbr1_valid
) {
5506 /* ttbr1 region is "everything not in the ttbr0 region" */
5509 /* in the gap between the two regions, this is a Translation fault */
5510 fault_type
= translation_fault
;
5514 /* Note that QEMU ignores shareability and cacheability attributes,
5515 * so we don't need to do anything with the SH, ORGN, IRGN fields
5516 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5517 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5518 * implement any ASID-like capability so we can ignore it (instead
5519 * we will always flush the TLB any time the ASID is changed).
5521 if (ttbr_select
== 0) {
5522 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
5523 epd
= extract32(tcr
->raw_tcr
, 7, 1);
5526 tg
= extract32(tcr
->raw_tcr
, 14, 2);
5527 if (tg
== 1) { /* 64KB pages */
5530 if (tg
== 2) { /* 16KB pages */
5534 /* We should only be here if TTBR1 is valid */
5535 assert(ttbr1_valid
);
5537 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
5538 epd
= extract32(tcr
->raw_tcr
, 23, 1);
5541 tg
= extract32(tcr
->raw_tcr
, 30, 2);
5542 if (tg
== 3) { /* 64KB pages */
5545 if (tg
== 1) { /* 16KB pages */
5550 /* Here we should have set up all the parameters for the translation:
5551 * va_size, ttbr, epd, tsz, granule_sz, tbi
5555 /* Translation table walk disabled => Translation fault on TLB miss
5556 * Note: This is always 0 on 64-bit EL2 and EL3.
5561 /* The starting level depends on the virtual address size (which can be
5562 * up to 48 bits) and the translation granule size. It indicates the number
5563 * of strides (granule_sz bits at a time) needed to consume the bits
5564 * of the input address. In the pseudocode this is:
5565 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5566 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5567 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5568 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5569 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5570 * = 4 - (va_size - tsz - 4) / granule_sz;
5572 level
= 4 - (va_size
- tsz
- 4) / granule_sz
;
5574 /* Clear the vaddr bits which aren't part of the within-region address,
5575 * so that we don't have to special case things when calculating the
5576 * first descriptor address.
5579 address
&= (1ULL << (va_size
- tsz
)) - 1;
5582 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
5584 /* Now we can extract the actual base address from the TTBR */
5585 descaddr
= extract64(ttbr
, 0, 48);
5586 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
5588 /* Secure accesses start with the page table in secure memory and
5589 * can be downgraded to non-secure at any step. Non-secure accesses
5590 * remain non-secure. We implement this by just ORing in the NSTable/NS
5591 * bits at each step.
5593 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
5595 uint64_t descriptor
;
5598 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
5600 nstable
= extract32(tableattrs
, 4, 1);
5601 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
);
5602 if (!(descriptor
& 1) ||
5603 (!(descriptor
& 2) && (level
== 3))) {
5604 /* Invalid, or the Reserved level 3 encoding */
5607 descaddr
= descriptor
& 0xfffffff000ULL
;
5609 if ((descriptor
& 2) && (level
< 3)) {
5610 /* Table entry. The top five bits are attributes which may
5611 * propagate down through lower levels of the table (and
5612 * which are all arranged so that 0 means "no effect", so
5613 * we can gather them up by ORing in the bits at each level).
5615 tableattrs
|= extract64(descriptor
, 59, 5);
5619 /* Block entry at level 1 or 2, or page entry at level 3.
5620 * These are basically the same thing, although the number
5621 * of bits we pull in from the vaddr varies.
5623 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
5624 descaddr
|= (address
& (page_size
- 1));
5625 /* Extract attributes from the descriptor and merge with table attrs */
5626 attrs
= extract64(descriptor
, 2, 10)
5627 | (extract64(descriptor
, 52, 12) << 10);
5628 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
5629 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
5630 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5631 * means "force PL1 access only", which means forcing AP[1] to 0.
5633 if (extract32(tableattrs
, 2, 1)) {
5636 attrs
|= nstable
<< 3; /* NS */
5639 /* Here descaddr is the final physical address, and attributes
5642 fault_type
= access_fault
;
5643 if ((attrs
& (1 << 8)) == 0) {
5648 ap
= extract32(attrs
, 4, 2);
5649 ns
= extract32(attrs
, 3, 1);
5650 xn
= extract32(attrs
, 12, 1);
5651 pxn
= extract32(attrs
, 11, 1);
5653 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
5655 fault_type
= permission_fault
;
5656 if (!(*prot
& (1 << access_type
))) {
5661 /* The NS bit will (as required by the architecture) have no effect if
5662 * the CPU doesn't support TZ or this is a non-secure translation
5663 * regime, because the attribute will already be non-secure.
5665 txattrs
->secure
= false;
5667 *phys_ptr
= descaddr
;
5668 *page_size_ptr
= page_size
;
5672 /* Long-descriptor format IFSR/DFSR value */
5673 return (1 << 9) | (fault_type
<< 2) | level
;
5676 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
5677 int access_type
, ARMMMUIdx mmu_idx
,
5678 hwaddr
*phys_ptr
, int *prot
)
5683 bool is_user
= regime_is_user(env
, mmu_idx
);
5685 *phys_ptr
= address
;
5686 for (n
= 7; n
>= 0; n
--) {
5687 base
= env
->cp15
.c6_region
[n
];
5688 if ((base
& 1) == 0) {
5691 mask
= 1 << ((base
>> 1) & 0x1f);
5692 /* Keep this shift separate from the above to avoid an
5693 (undefined) << 32. */
5694 mask
= (mask
<< 1) - 1;
5695 if (((base
^ address
) & ~mask
) == 0) {
5703 if (access_type
== 2) {
5704 mask
= env
->cp15
.pmsav5_insn_ap
;
5706 mask
= env
->cp15
.pmsav5_data_ap
;
5708 mask
= (mask
>> (n
* 4)) & 0xf;
5716 *prot
= PAGE_READ
| PAGE_WRITE
;
5721 *prot
|= PAGE_WRITE
;
5725 *prot
= PAGE_READ
| PAGE_WRITE
;
5737 /* Bad permission. */
5744 /* get_phys_addr - get the physical address for this virtual address
5746 * Find the physical address corresponding to the given virtual address,
5747 * by doing a translation table walk on MMU based systems or using the
5748 * MPU state on MPU based systems.
5750 * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs,
5751 * prot and page_size may not be filled in, and the return value provides
5752 * information on why the translation aborted, in the format of a
5753 * DFSR/IFSR fault register, with the following caveats:
5754 * * we honour the short vs long DFSR format differences.
5755 * * the WnR bit is never set (the caller must do this).
5756 * * for MPU based systems we don't bother to return a full FSR format
5760 * @address: virtual address to get physical address for
5761 * @access_type: 0 for read, 1 for write, 2 for execute
5762 * @mmu_idx: MMU index indicating required translation regime
5763 * @phys_ptr: set to the physical address corresponding to the virtual address
5764 * @attrs: set to the memory transaction attributes to use
5765 * @prot: set to the permissions for the page containing phys_ptr
5766 * @page_size: set to the size of the page containing phys_ptr
5768 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
5769 int access_type
, ARMMMUIdx mmu_idx
,
5770 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
5771 target_ulong
*page_size
)
5773 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
5774 /* TODO: when we support EL2 we should here call ourselves recursively
5775 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
5776 * functions will also need changing to perform ARMMMUIdx_S2NS loads
5777 * rather than direct physical memory loads when appropriate.
5778 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5780 assert(!arm_feature(env
, ARM_FEATURE_EL2
));
5781 mmu_idx
+= ARMMMUIdx_S1NSE0
;
5784 /* The page table entries may downgrade secure to non-secure, but
5785 * cannot upgrade an non-secure translation regime's attributes
5788 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
5789 attrs
->user
= regime_is_user(env
, mmu_idx
);
5791 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5792 * In v7 and earlier it affects all stage 1 translations.
5794 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
5795 && !arm_feature(env
, ARM_FEATURE_V8
)) {
5796 if (regime_el(env
, mmu_idx
) == 3) {
5797 address
+= env
->cp15
.fcseidr_s
;
5799 address
+= env
->cp15
.fcseidr_ns
;
5803 if (regime_translation_disabled(env
, mmu_idx
)) {
5804 /* MMU/MPU disabled. */
5805 *phys_ptr
= address
;
5806 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5807 *page_size
= TARGET_PAGE_SIZE
;
5811 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
5812 *page_size
= TARGET_PAGE_SIZE
;
5813 return get_phys_addr_mpu(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5817 if (regime_using_lpae_format(env
, mmu_idx
)) {
5818 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5819 attrs
, prot
, page_size
);
5820 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
5821 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5822 attrs
, prot
, page_size
);
5824 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5829 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
5830 int access_type
, int mmu_idx
)
5832 ARMCPU
*cpu
= ARM_CPU(cs
);
5833 CPUARMState
*env
= &cpu
->env
;
5835 target_ulong page_size
;
5839 bool same_el
= (arm_current_el(env
) != 0);
5840 MemTxAttrs attrs
= {};
5842 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
5843 &attrs
, &prot
, &page_size
);
5845 /* Map a single [sub]page. */
5846 phys_addr
&= TARGET_PAGE_MASK
;
5847 address
&= TARGET_PAGE_MASK
;
5848 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
5849 prot
, mmu_idx
, page_size
);
5853 /* AArch64 syndrome does not have an LPAE bit */
5854 syn
= ret
& ~(1 << 9);
5856 /* For insn and data aborts we assume there is no instruction syndrome
5857 * information; this is always true for exceptions reported to EL1.
5859 if (access_type
== 2) {
5860 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
5861 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
5863 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
5864 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
5867 cs
->exception_index
= EXCP_DATA_ABORT
;
5870 env
->exception
.syndrome
= syn
;
5871 env
->exception
.vaddress
= address
;
5872 env
->exception
.fsr
= ret
;
5876 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
5878 ARMCPU
*cpu
= ARM_CPU(cs
);
5879 CPUARMState
*env
= &cpu
->env
;
5881 target_ulong page_size
;
5884 MemTxAttrs attrs
= {};
5886 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
), &phys_addr
,
5887 &attrs
, &prot
, &page_size
);
5896 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5898 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5899 env
->regs
[13] = val
;
5901 env
->banked_r13
[bank_number(mode
)] = val
;
5905 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5907 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5908 return env
->regs
[13];
5910 return env
->banked_r13
[bank_number(mode
)];
5914 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5916 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5920 return xpsr_read(env
) & 0xf8000000;
5922 return xpsr_read(env
) & 0xf80001ff;
5924 return xpsr_read(env
) & 0xff00fc00;
5926 return xpsr_read(env
) & 0xff00fdff;
5928 return xpsr_read(env
) & 0x000001ff;
5930 return xpsr_read(env
) & 0x0700fc00;
5932 return xpsr_read(env
) & 0x0700edff;
5934 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
5936 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
5937 case 16: /* PRIMASK */
5938 return (env
->daif
& PSTATE_I
) != 0;
5939 case 17: /* BASEPRI */
5940 case 18: /* BASEPRI_MAX */
5941 return env
->v7m
.basepri
;
5942 case 19: /* FAULTMASK */
5943 return (env
->daif
& PSTATE_F
) != 0;
5944 case 20: /* CONTROL */
5945 return env
->v7m
.control
;
5947 /* ??? For debugging only. */
5948 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
5953 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5955 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5959 xpsr_write(env
, val
, 0xf8000000);
5962 xpsr_write(env
, val
, 0xf8000000);
5965 xpsr_write(env
, val
, 0xfe00fc00);
5968 xpsr_write(env
, val
, 0xfe00fc00);
5971 /* IPSR bits are readonly. */
5974 xpsr_write(env
, val
, 0x0600fc00);
5977 xpsr_write(env
, val
, 0x0600fc00);
5980 if (env
->v7m
.current_sp
)
5981 env
->v7m
.other_sp
= val
;
5983 env
->regs
[13] = val
;
5986 if (env
->v7m
.current_sp
)
5987 env
->regs
[13] = val
;
5989 env
->v7m
.other_sp
= val
;
5991 case 16: /* PRIMASK */
5993 env
->daif
|= PSTATE_I
;
5995 env
->daif
&= ~PSTATE_I
;
5998 case 17: /* BASEPRI */
5999 env
->v7m
.basepri
= val
& 0xff;
6001 case 18: /* BASEPRI_MAX */
6003 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
6004 env
->v7m
.basepri
= val
;
6006 case 19: /* FAULTMASK */
6008 env
->daif
|= PSTATE_F
;
6010 env
->daif
&= ~PSTATE_F
;
6013 case 20: /* CONTROL */
6014 env
->v7m
.control
= val
& 3;
6015 switch_v7m_sp(env
, (val
& 2) != 0);
6018 /* ??? For debugging only. */
6019 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
6026 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
6028 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
6029 * Note that we do not implement the (architecturally mandated)
6030 * alignment fault for attempts to use this on Device memory
6031 * (which matches the usual QEMU behaviour of not implementing either
6032 * alignment faults or any memory attribute handling).
6035 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6036 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
6037 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
6039 #ifndef CONFIG_USER_ONLY
6041 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6042 * the block size so we might have to do more than one TLB lookup.
6043 * We know that in fact for any v8 CPU the page size is at least 4K
6044 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6045 * 1K as an artefact of legacy v5 subpage support being present in the
6046 * same QEMU executable.
6048 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
6049 void *hostaddr
[maxidx
];
6051 unsigned mmu_idx
= cpu_mmu_index(env
);
6052 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
6054 for (try = 0; try < 2; try++) {
6056 for (i
= 0; i
< maxidx
; i
++) {
6057 hostaddr
[i
] = tlb_vaddr_to_host(env
,
6058 vaddr
+ TARGET_PAGE_SIZE
* i
,
6065 /* If it's all in the TLB it's fair game for just writing to;
6066 * we know we don't need to update dirty status, etc.
6068 for (i
= 0; i
< maxidx
- 1; i
++) {
6069 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
6071 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
6074 /* OK, try a store and see if we can populate the tlb. This
6075 * might cause an exception if the memory isn't writable,
6076 * in which case we will longjmp out of here. We must for
6077 * this purpose use the actual register value passed to us
6078 * so that we get the fault address right.
6080 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
6081 /* Now we can populate the other TLB entries, if any */
6082 for (i
= 0; i
< maxidx
; i
++) {
6083 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
6084 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
6085 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
6090 /* Slow path (probably attempt to do this to an I/O device or
6091 * similar, or clearing of a block of code we have translations
6092 * cached for). Just do a series of byte writes as the architecture
6093 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6094 * memset(), unmap() sequence here because:
6095 * + we'd need to account for the blocksize being larger than a page
6096 * + the direct-RAM access case is almost always going to be dealt
6097 * with in the fastpath code above, so there's no speed benefit
6098 * + we would have to deal with the map returning NULL because the
6099 * bounce buffer was in use
6101 for (i
= 0; i
< blocklen
; i
++) {
6102 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
6106 memset(g2h(vaddr
), 0, blocklen
);
6110 /* Note that signed overflow is undefined in C. The following routines are
6111 careful to use unsigned types where modulo arithmetic is required.
6112 Failure to do so _will_ break on newer gcc. */
6114 /* Signed saturating arithmetic. */
6116 /* Perform 16-bit signed saturating addition. */
6117 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
6122 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
6131 /* Perform 8-bit signed saturating addition. */
6132 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
6137 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
6146 /* Perform 16-bit signed saturating subtraction. */
6147 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
6152 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
6161 /* Perform 8-bit signed saturating subtraction. */
6162 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
6167 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
6176 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6177 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6178 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6179 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6182 #include "op_addsub.h"
6184 /* Unsigned saturating arithmetic. */
6185 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
6194 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
6202 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
6211 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
6219 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6220 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6221 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6222 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6225 #include "op_addsub.h"
6227 /* Signed modulo arithmetic. */
6228 #define SARITH16(a, b, n, op) do { \
6230 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6231 RESULT(sum, n, 16); \
6233 ge |= 3 << (n * 2); \
6236 #define SARITH8(a, b, n, op) do { \
6238 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6239 RESULT(sum, n, 8); \
6245 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6246 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6247 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6248 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6252 #include "op_addsub.h"
6254 /* Unsigned modulo arithmetic. */
6255 #define ADD16(a, b, n) do { \
6257 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6258 RESULT(sum, n, 16); \
6259 if ((sum >> 16) == 1) \
6260 ge |= 3 << (n * 2); \
6263 #define ADD8(a, b, n) do { \
6265 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6266 RESULT(sum, n, 8); \
6267 if ((sum >> 8) == 1) \
6271 #define SUB16(a, b, n) do { \
6273 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6274 RESULT(sum, n, 16); \
6275 if ((sum >> 16) == 0) \
6276 ge |= 3 << (n * 2); \
6279 #define SUB8(a, b, n) do { \
6281 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6282 RESULT(sum, n, 8); \
6283 if ((sum >> 8) == 0) \
6290 #include "op_addsub.h"
6292 /* Halved signed arithmetic. */
6293 #define ADD16(a, b, n) \
6294 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6295 #define SUB16(a, b, n) \
6296 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6297 #define ADD8(a, b, n) \
6298 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6299 #define SUB8(a, b, n) \
6300 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6303 #include "op_addsub.h"
6305 /* Halved unsigned arithmetic. */
6306 #define ADD16(a, b, n) \
6307 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6308 #define SUB16(a, b, n) \
6309 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6310 #define ADD8(a, b, n) \
6311 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6312 #define SUB8(a, b, n) \
6313 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6316 #include "op_addsub.h"
6318 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
6326 /* Unsigned sum of absolute byte differences. */
6327 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
6330 sum
= do_usad(a
, b
);
6331 sum
+= do_usad(a
>> 8, b
>> 8);
6332 sum
+= do_usad(a
>> 16, b
>>16);
6333 sum
+= do_usad(a
>> 24, b
>> 24);
6337 /* For ARMv6 SEL instruction. */
6338 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
6351 return (a
& mask
) | (b
& ~mask
);
6354 /* VFP support. We follow the convention used for VFP instructions:
6355 Single precision routines have a "s" suffix, double precision a
6358 /* Convert host exception flags to vfp form. */
6359 static inline int vfp_exceptbits_from_host(int host_bits
)
6361 int target_bits
= 0;
6363 if (host_bits
& float_flag_invalid
)
6365 if (host_bits
& float_flag_divbyzero
)
6367 if (host_bits
& float_flag_overflow
)
6369 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
6371 if (host_bits
& float_flag_inexact
)
6372 target_bits
|= 0x10;
6373 if (host_bits
& float_flag_input_denormal
)
6374 target_bits
|= 0x80;
6378 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
6383 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
6384 | (env
->vfp
.vec_len
<< 16)
6385 | (env
->vfp
.vec_stride
<< 20);
6386 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
6387 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
6388 fpscr
|= vfp_exceptbits_from_host(i
);
6392 uint32_t vfp_get_fpscr(CPUARMState
*env
)
6394 return HELPER(vfp_get_fpscr
)(env
);
6397 /* Convert vfp exception flags to target form. */
6398 static inline int vfp_exceptbits_to_host(int target_bits
)
6402 if (target_bits
& 1)
6403 host_bits
|= float_flag_invalid
;
6404 if (target_bits
& 2)
6405 host_bits
|= float_flag_divbyzero
;
6406 if (target_bits
& 4)
6407 host_bits
|= float_flag_overflow
;
6408 if (target_bits
& 8)
6409 host_bits
|= float_flag_underflow
;
6410 if (target_bits
& 0x10)
6411 host_bits
|= float_flag_inexact
;
6412 if (target_bits
& 0x80)
6413 host_bits
|= float_flag_input_denormal
;
6417 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
6422 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
6423 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
6424 env
->vfp
.vec_len
= (val
>> 16) & 7;
6425 env
->vfp
.vec_stride
= (val
>> 20) & 3;
6428 if (changed
& (3 << 22)) {
6429 i
= (val
>> 22) & 3;
6431 case FPROUNDING_TIEEVEN
:
6432 i
= float_round_nearest_even
;
6434 case FPROUNDING_POSINF
:
6437 case FPROUNDING_NEGINF
:
6438 i
= float_round_down
;
6440 case FPROUNDING_ZERO
:
6441 i
= float_round_to_zero
;
6444 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
6446 if (changed
& (1 << 24)) {
6447 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
6448 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
6450 if (changed
& (1 << 25))
6451 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
6453 i
= vfp_exceptbits_to_host(val
);
6454 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
6455 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
6458 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
6460 HELPER(vfp_set_fpscr
)(env
, val
);
6463 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6465 #define VFP_BINOP(name) \
6466 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6468 float_status *fpst = fpstp; \
6469 return float32_ ## name(a, b, fpst); \
6471 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6473 float_status *fpst = fpstp; \
6474 return float64_ ## name(a, b, fpst); \
6486 float32
VFP_HELPER(neg
, s
)(float32 a
)
6488 return float32_chs(a
);
6491 float64
VFP_HELPER(neg
, d
)(float64 a
)
6493 return float64_chs(a
);
6496 float32
VFP_HELPER(abs
, s
)(float32 a
)
6498 return float32_abs(a
);
6501 float64
VFP_HELPER(abs
, d
)(float64 a
)
6503 return float64_abs(a
);
6506 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
6508 return float32_sqrt(a
, &env
->vfp
.fp_status
);
6511 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
6513 return float64_sqrt(a
, &env
->vfp
.fp_status
);
6516 /* XXX: check quiet/signaling case */
6517 #define DO_VFP_cmp(p, type) \
6518 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6521 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6522 case 0: flags = 0x6; break; \
6523 case -1: flags = 0x8; break; \
6524 case 1: flags = 0x2; break; \
6525 default: case 2: flags = 0x3; break; \
6527 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6528 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6530 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6533 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6534 case 0: flags = 0x6; break; \
6535 case -1: flags = 0x8; break; \
6536 case 1: flags = 0x2; break; \
6537 default: case 2: flags = 0x3; break; \
6539 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6540 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6542 DO_VFP_cmp(s
, float32
)
6543 DO_VFP_cmp(d
, float64
)
6546 /* Integer to float and float to integer conversions */
6548 #define CONV_ITOF(name, fsz, sign) \
6549 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6551 float_status *fpst = fpstp; \
6552 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6555 #define CONV_FTOI(name, fsz, sign, round) \
6556 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6558 float_status *fpst = fpstp; \
6559 if (float##fsz##_is_any_nan(x)) { \
6560 float_raise(float_flag_invalid, fpst); \
6563 return float##fsz##_to_##sign##int32##round(x, fpst); \
6566 #define FLOAT_CONVS(name, p, fsz, sign) \
6567 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6568 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6569 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6571 FLOAT_CONVS(si
, s
, 32, )
6572 FLOAT_CONVS(si
, d
, 64, )
6573 FLOAT_CONVS(ui
, s
, 32, u
)
6574 FLOAT_CONVS(ui
, d
, 64, u
)
6580 /* floating point conversion */
6581 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
6583 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
6584 /* ARM requires that S<->D conversion of any kind of NaN generates
6585 * a quiet NaN by forcing the most significant frac bit to 1.
6587 return float64_maybe_silence_nan(r
);
6590 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
6592 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
6593 /* ARM requires that S<->D conversion of any kind of NaN generates
6594 * a quiet NaN by forcing the most significant frac bit to 1.
6596 return float32_maybe_silence_nan(r
);
6599 /* VFP3 fixed point conversion. */
6600 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6601 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6604 float_status *fpst = fpstp; \
6606 tmp = itype##_to_##float##fsz(x, fpst); \
6607 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6610 /* Notice that we want only input-denormal exception flags from the
6611 * scalbn operation: the other possible flags (overflow+inexact if
6612 * we overflow to infinity, output-denormal) aren't correct for the
6613 * complete scale-and-convert operation.
6615 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6616 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6620 float_status *fpst = fpstp; \
6621 int old_exc_flags = get_float_exception_flags(fpst); \
6623 if (float##fsz##_is_any_nan(x)) { \
6624 float_raise(float_flag_invalid, fpst); \
6627 tmp = float##fsz##_scalbn(x, shift, fpst); \
6628 old_exc_flags |= get_float_exception_flags(fpst) \
6629 & float_flag_input_denormal; \
6630 set_float_exception_flags(old_exc_flags, fpst); \
6631 return float##fsz##_to_##itype##round(tmp, fpst); \
6634 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6635 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6636 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6637 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6639 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6640 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6641 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6643 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
6644 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
6645 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
6646 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
6647 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
6648 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
6649 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
6650 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
6651 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
6652 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
6653 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
6654 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
6656 #undef VFP_CONV_FIX_FLOAT
6657 #undef VFP_CONV_FLOAT_FIX_ROUND
6659 /* Set the current fp rounding mode and return the old one.
6660 * The argument is a softfloat float_round_ value.
6662 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
6664 float_status
*fp_status
= &env
->vfp
.fp_status
;
6666 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
6667 set_float_rounding_mode(rmode
, fp_status
);
6672 /* Set the current fp rounding mode in the standard fp status and return
6673 * the old one. This is for NEON instructions that need to change the
6674 * rounding mode but wish to use the standard FPSCR values for everything
6675 * else. Always set the rounding mode back to the correct value after
6677 * The argument is a softfloat float_round_ value.
6679 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
6681 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
6683 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
6684 set_float_rounding_mode(rmode
, fp_status
);
6689 /* Half precision conversions. */
6690 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
6692 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6693 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
6695 return float32_maybe_silence_nan(r
);
6700 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
6702 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6703 float16 r
= float32_to_float16(a
, ieee
, s
);
6705 r
= float16_maybe_silence_nan(r
);
6707 return float16_val(r
);
6710 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
6712 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
6715 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
6717 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
6720 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
6722 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
6725 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
6727 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
6730 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
6732 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6733 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
6735 return float64_maybe_silence_nan(r
);
6740 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
6742 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6743 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
6745 r
= float16_maybe_silence_nan(r
);
6747 return float16_val(r
);
6750 #define float32_two make_float32(0x40000000)
6751 #define float32_three make_float32(0x40400000)
6752 #define float32_one_point_five make_float32(0x3fc00000)
6754 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6756 float_status
*s
= &env
->vfp
.standard_fp_status
;
6757 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6758 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6759 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6760 float_raise(float_flag_input_denormal
, s
);
6764 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
6767 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6769 float_status
*s
= &env
->vfp
.standard_fp_status
;
6771 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6772 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6773 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6774 float_raise(float_flag_input_denormal
, s
);
6776 return float32_one_point_five
;
6778 product
= float32_mul(a
, b
, s
);
6779 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
6784 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6785 * int->float conversions at run-time. */
6786 #define float64_256 make_float64(0x4070000000000000LL)
6787 #define float64_512 make_float64(0x4080000000000000LL)
6788 #define float32_maxnorm make_float32(0x7f7fffff)
6789 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6791 /* Reciprocal functions
6793 * The algorithm that must be used to calculate the estimate
6794 * is specified by the ARM ARM, see FPRecipEstimate()
6797 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
6799 /* These calculations mustn't set any fp exception flags,
6800 * so we use a local copy of the fp_status.
6802 float_status dummy_status
= *real_fp_status
;
6803 float_status
*s
= &dummy_status
;
6804 /* q = (int)(a * 512.0) */
6805 float64 q
= float64_mul(float64_512
, a
, s
);
6806 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
6808 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6809 q
= int64_to_float64(q_int
, s
);
6810 q
= float64_add(q
, float64_half
, s
);
6811 q
= float64_div(q
, float64_512
, s
);
6812 q
= float64_div(float64_one
, q
, s
);
6814 /* s = (int)(256.0 * r + 0.5) */
6815 q
= float64_mul(q
, float64_256
, s
);
6816 q
= float64_add(q
, float64_half
, s
);
6817 q_int
= float64_to_int64_round_to_zero(q
, s
);
6819 /* return (double)s / 256.0 */
6820 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
6823 /* Common wrapper to call recip_estimate */
6824 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
6826 uint64_t val64
= float64_val(num
);
6827 uint64_t frac
= extract64(val64
, 0, 52);
6828 int64_t exp
= extract64(val64
, 52, 11);
6830 float64 scaled
, estimate
;
6832 /* Generate the scaled number for the estimate function */
6834 if (extract64(frac
, 51, 1) == 0) {
6836 frac
= extract64(frac
, 0, 50) << 2;
6838 frac
= extract64(frac
, 0, 51) << 1;
6842 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6843 scaled
= make_float64((0x3feULL
<< 52)
6844 | extract64(frac
, 44, 8) << 44);
6846 estimate
= recip_estimate(scaled
, fpst
);
6848 /* Build new result */
6849 val64
= float64_val(estimate
);
6850 sbit
= 0x8000000000000000ULL
& val64
;
6852 frac
= extract64(val64
, 0, 52);
6855 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
6856 } else if (exp
== -1) {
6857 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
6861 return make_float64(sbit
| (exp
<< 52) | frac
);
6864 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
6866 switch (fpst
->float_rounding_mode
) {
6867 case float_round_nearest_even
: /* Round to Nearest */
6869 case float_round_up
: /* Round to +Inf */
6871 case float_round_down
: /* Round to -Inf */
6873 case float_round_to_zero
: /* Round to Zero */
6877 g_assert_not_reached();
6880 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
6882 float_status
*fpst
= fpstp
;
6883 float32 f32
= float32_squash_input_denormal(input
, fpst
);
6884 uint32_t f32_val
= float32_val(f32
);
6885 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
6886 int32_t f32_exp
= extract32(f32_val
, 23, 8);
6887 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
6893 if (float32_is_any_nan(f32
)) {
6895 if (float32_is_signaling_nan(f32
)) {
6896 float_raise(float_flag_invalid
, fpst
);
6897 nan
= float32_maybe_silence_nan(f32
);
6899 if (fpst
->default_nan_mode
) {
6900 nan
= float32_default_nan
;
6903 } else if (float32_is_infinity(f32
)) {
6904 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6905 } else if (float32_is_zero(f32
)) {
6906 float_raise(float_flag_divbyzero
, fpst
);
6907 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6908 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
6909 /* Abs(value) < 2.0^-128 */
6910 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6911 if (round_to_inf(fpst
, f32_sbit
)) {
6912 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6914 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
6916 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
6917 float_raise(float_flag_underflow
, fpst
);
6918 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6922 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
6923 r64
= call_recip_estimate(f64
, 253, fpst
);
6924 r64_val
= float64_val(r64
);
6925 r64_exp
= extract64(r64_val
, 52, 11);
6926 r64_frac
= extract64(r64_val
, 0, 52);
6928 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6929 return make_float32(f32_sbit
|
6930 (r64_exp
& 0xff) << 23 |
6931 extract64(r64_frac
, 29, 24));
6934 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
6936 float_status
*fpst
= fpstp
;
6937 float64 f64
= float64_squash_input_denormal(input
, fpst
);
6938 uint64_t f64_val
= float64_val(f64
);
6939 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
6940 int64_t f64_exp
= extract64(f64_val
, 52, 11);
6946 /* Deal with any special cases */
6947 if (float64_is_any_nan(f64
)) {
6949 if (float64_is_signaling_nan(f64
)) {
6950 float_raise(float_flag_invalid
, fpst
);
6951 nan
= float64_maybe_silence_nan(f64
);
6953 if (fpst
->default_nan_mode
) {
6954 nan
= float64_default_nan
;
6957 } else if (float64_is_infinity(f64
)) {
6958 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6959 } else if (float64_is_zero(f64
)) {
6960 float_raise(float_flag_divbyzero
, fpst
);
6961 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6962 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
6963 /* Abs(value) < 2.0^-1024 */
6964 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6965 if (round_to_inf(fpst
, f64_sbit
)) {
6966 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6968 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
6970 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
6971 float_raise(float_flag_underflow
, fpst
);
6972 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6975 r64
= call_recip_estimate(f64
, 2045, fpst
);
6976 r64_val
= float64_val(r64
);
6977 r64_exp
= extract64(r64_val
, 52, 11);
6978 r64_frac
= extract64(r64_val
, 0, 52);
6980 /* result = sign : result_exp<10:0> : fraction<51:0> */
6981 return make_float64(f64_sbit
|
6982 ((r64_exp
& 0x7ff) << 52) |
6986 /* The algorithm that must be used to calculate the estimate
6987 * is specified by the ARM ARM.
6989 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
6991 /* These calculations mustn't set any fp exception flags,
6992 * so we use a local copy of the fp_status.
6994 float_status dummy_status
= *real_fp_status
;
6995 float_status
*s
= &dummy_status
;
6999 if (float64_lt(a
, float64_half
, s
)) {
7000 /* range 0.25 <= a < 0.5 */
7002 /* a in units of 1/512 rounded down */
7003 /* q0 = (int)(a * 512.0); */
7004 q
= float64_mul(float64_512
, a
, s
);
7005 q_int
= float64_to_int64_round_to_zero(q
, s
);
7007 /* reciprocal root r */
7008 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
7009 q
= int64_to_float64(q_int
, s
);
7010 q
= float64_add(q
, float64_half
, s
);
7011 q
= float64_div(q
, float64_512
, s
);
7012 q
= float64_sqrt(q
, s
);
7013 q
= float64_div(float64_one
, q
, s
);
7015 /* range 0.5 <= a < 1.0 */
7017 /* a in units of 1/256 rounded down */
7018 /* q1 = (int)(a * 256.0); */
7019 q
= float64_mul(float64_256
, a
, s
);
7020 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
7022 /* reciprocal root r */
7023 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
7024 q
= int64_to_float64(q_int
, s
);
7025 q
= float64_add(q
, float64_half
, s
);
7026 q
= float64_div(q
, float64_256
, s
);
7027 q
= float64_sqrt(q
, s
);
7028 q
= float64_div(float64_one
, q
, s
);
7030 /* r in units of 1/256 rounded to nearest */
7031 /* s = (int)(256.0 * r + 0.5); */
7033 q
= float64_mul(q
, float64_256
,s
);
7034 q
= float64_add(q
, float64_half
, s
);
7035 q_int
= float64_to_int64_round_to_zero(q
, s
);
7037 /* return (double)s / 256.0;*/
7038 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
7041 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
7043 float_status
*s
= fpstp
;
7044 float32 f32
= float32_squash_input_denormal(input
, s
);
7045 uint32_t val
= float32_val(f32
);
7046 uint32_t f32_sbit
= 0x80000000 & val
;
7047 int32_t f32_exp
= extract32(val
, 23, 8);
7048 uint32_t f32_frac
= extract32(val
, 0, 23);
7054 if (float32_is_any_nan(f32
)) {
7056 if (float32_is_signaling_nan(f32
)) {
7057 float_raise(float_flag_invalid
, s
);
7058 nan
= float32_maybe_silence_nan(f32
);
7060 if (s
->default_nan_mode
) {
7061 nan
= float32_default_nan
;
7064 } else if (float32_is_zero(f32
)) {
7065 float_raise(float_flag_divbyzero
, s
);
7066 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
7067 } else if (float32_is_neg(f32
)) {
7068 float_raise(float_flag_invalid
, s
);
7069 return float32_default_nan
;
7070 } else if (float32_is_infinity(f32
)) {
7071 return float32_zero
;
7074 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7075 * preserving the parity of the exponent. */
7077 f64_frac
= ((uint64_t) f32_frac
) << 29;
7079 while (extract64(f64_frac
, 51, 1) == 0) {
7080 f64_frac
= f64_frac
<< 1;
7081 f32_exp
= f32_exp
-1;
7083 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
7086 if (extract64(f32_exp
, 0, 1) == 0) {
7087 f64
= make_float64(((uint64_t) f32_sbit
) << 32
7091 f64
= make_float64(((uint64_t) f32_sbit
) << 32
7096 result_exp
= (380 - f32_exp
) / 2;
7098 f64
= recip_sqrt_estimate(f64
, s
);
7100 val64
= float64_val(f64
);
7102 val
= ((result_exp
& 0xff) << 23)
7103 | ((val64
>> 29) & 0x7fffff);
7104 return make_float32(val
);
7107 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
7109 float_status
*s
= fpstp
;
7110 float64 f64
= float64_squash_input_denormal(input
, s
);
7111 uint64_t val
= float64_val(f64
);
7112 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
7113 int64_t f64_exp
= extract64(val
, 52, 11);
7114 uint64_t f64_frac
= extract64(val
, 0, 52);
7116 uint64_t result_frac
;
7118 if (float64_is_any_nan(f64
)) {
7120 if (float64_is_signaling_nan(f64
)) {
7121 float_raise(float_flag_invalid
, s
);
7122 nan
= float64_maybe_silence_nan(f64
);
7124 if (s
->default_nan_mode
) {
7125 nan
= float64_default_nan
;
7128 } else if (float64_is_zero(f64
)) {
7129 float_raise(float_flag_divbyzero
, s
);
7130 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
7131 } else if (float64_is_neg(f64
)) {
7132 float_raise(float_flag_invalid
, s
);
7133 return float64_default_nan
;
7134 } else if (float64_is_infinity(f64
)) {
7135 return float64_zero
;
7138 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7139 * preserving the parity of the exponent. */
7142 while (extract64(f64_frac
, 51, 1) == 0) {
7143 f64_frac
= f64_frac
<< 1;
7144 f64_exp
= f64_exp
- 1;
7146 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
7149 if (extract64(f64_exp
, 0, 1) == 0) {
7150 f64
= make_float64(f64_sbit
7154 f64
= make_float64(f64_sbit
7159 result_exp
= (3068 - f64_exp
) / 2;
7161 f64
= recip_sqrt_estimate(f64
, s
);
7163 result_frac
= extract64(float64_val(f64
), 0, 52);
7165 return make_float64(f64_sbit
|
7166 ((result_exp
& 0x7ff) << 52) |
7170 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
7172 float_status
*s
= fpstp
;
7175 if ((a
& 0x80000000) == 0) {
7179 f64
= make_float64((0x3feULL
<< 52)
7180 | ((int64_t)(a
& 0x7fffffff) << 21));
7182 f64
= recip_estimate(f64
, s
);
7184 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
7187 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
7189 float_status
*fpst
= fpstp
;
7192 if ((a
& 0xc0000000) == 0) {
7196 if (a
& 0x80000000) {
7197 f64
= make_float64((0x3feULL
<< 52)
7198 | ((uint64_t)(a
& 0x7fffffff) << 21));
7199 } else { /* bits 31-30 == '01' */
7200 f64
= make_float64((0x3fdULL
<< 52)
7201 | ((uint64_t)(a
& 0x3fffffff) << 22));
7204 f64
= recip_sqrt_estimate(f64
, fpst
);
7206 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
7209 /* VFPv4 fused multiply-accumulate */
7210 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
7212 float_status
*fpst
= fpstp
;
7213 return float32_muladd(a
, b
, c
, 0, fpst
);
7216 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
7218 float_status
*fpst
= fpstp
;
7219 return float64_muladd(a
, b
, c
, 0, fpst
);
7222 /* ARMv8 round to integral */
7223 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
7225 return float32_round_to_int(x
, fp_status
);
7228 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
7230 return float64_round_to_int(x
, fp_status
);
7233 float32
HELPER(rints
)(float32 x
, void *fp_status
)
7235 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
7238 ret
= float32_round_to_int(x
, fp_status
);
7240 /* Suppress any inexact exceptions the conversion produced */
7241 if (!(old_flags
& float_flag_inexact
)) {
7242 new_flags
= get_float_exception_flags(fp_status
);
7243 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
7249 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
7251 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
7254 ret
= float64_round_to_int(x
, fp_status
);
7256 new_flags
= get_float_exception_flags(fp_status
);
7258 /* Suppress any inexact exceptions the conversion produced */
7259 if (!(old_flags
& float_flag_inexact
)) {
7260 new_flags
= get_float_exception_flags(fp_status
);
7261 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
7267 /* Convert ARM rounding mode to softfloat */
7268 int arm_rmode_to_sf(int rmode
)
7271 case FPROUNDING_TIEAWAY
:
7272 rmode
= float_round_ties_away
;
7274 case FPROUNDING_ODD
:
7275 /* FIXME: add support for TIEAWAY and ODD */
7276 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
7278 case FPROUNDING_TIEEVEN
:
7280 rmode
= float_round_nearest_even
;
7282 case FPROUNDING_POSINF
:
7283 rmode
= float_round_up
;
7285 case FPROUNDING_NEGINF
:
7286 rmode
= float_round_down
;
7288 case FPROUNDING_ZERO
:
7289 rmode
= float_round_to_zero
;
7296 * The upper bytes of val (above the number specified by 'bytes') must have
7297 * been zeroed out by the caller.
7299 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
7305 /* zlib crc32 converts the accumulator and output to one's complement. */
7306 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
7309 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
7315 /* Linux crc32c converts the output to one's complement. */
7316 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;