2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
32 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
35 BDRVQcowState
*s
= bs
->opaque
;
36 int new_l1_size2
, ret
, i
;
37 uint64_t *new_l1_table
;
38 int64_t old_l1_table_offset
, old_l1_size
;
39 int64_t new_l1_table_offset
, new_l1_size
;
42 if (min_size
<= s
->l1_size
)
45 /* Do a sanity check on min_size before trying to calculate new_l1_size
46 * (this prevents overflows during the while loop for the calculation of
48 if (min_size
> INT_MAX
/ sizeof(uint64_t)) {
53 new_l1_size
= min_size
;
55 /* Bump size up to reduce the number of times we have to grow */
56 new_l1_size
= s
->l1_size
;
57 if (new_l1_size
== 0) {
60 while (min_size
> new_l1_size
) {
61 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
65 if (new_l1_size
> INT_MAX
/ sizeof(uint64_t)) {
70 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
71 s
->l1_size
, new_l1_size
);
74 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
75 new_l1_table
= qemu_try_blockalign(bs
->file
,
76 align_offset(new_l1_size2
, 512));
77 if (new_l1_table
== NULL
) {
80 memset(new_l1_table
, 0, align_offset(new_l1_size2
, 512));
82 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
84 /* write new table (align to cluster) */
85 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
86 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
87 if (new_l1_table_offset
< 0) {
88 qemu_vfree(new_l1_table
);
89 return new_l1_table_offset
;
92 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
97 /* the L1 position has not yet been updated, so these clusters must
98 * indeed be completely free */
99 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
105 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
106 for(i
= 0; i
< s
->l1_size
; i
++)
107 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
108 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
111 for(i
= 0; i
< s
->l1_size
; i
++)
112 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
115 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
116 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
117 stq_be_p(data
+ 4, new_l1_table_offset
);
118 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
122 qemu_vfree(s
->l1_table
);
123 old_l1_table_offset
= s
->l1_table_offset
;
124 s
->l1_table_offset
= new_l1_table_offset
;
125 s
->l1_table
= new_l1_table
;
126 old_l1_size
= s
->l1_size
;
127 s
->l1_size
= new_l1_size
;
128 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
129 QCOW2_DISCARD_OTHER
);
132 qemu_vfree(new_l1_table
);
133 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
134 QCOW2_DISCARD_OTHER
);
141 * Loads a L2 table into memory. If the table is in the cache, the cache
142 * is used; otherwise the L2 table is loaded from the image file.
144 * Returns a pointer to the L2 table on success, or NULL if the read from
145 * the image file failed.
148 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
151 BDRVQcowState
*s
= bs
->opaque
;
154 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
160 * Writes one sector of the L1 table to the disk (can't update single entries
161 * and we really don't want bdrv_pread to perform a read-modify-write)
163 #define L1_ENTRIES_PER_SECTOR (512 / 8)
164 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
166 BDRVQcowState
*s
= bs
->opaque
;
167 uint64_t buf
[L1_ENTRIES_PER_SECTOR
] = { 0 };
171 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
172 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
&& l1_start_index
+ i
< s
->l1_size
;
175 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
178 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
179 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
184 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
185 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
197 * Allocate a new l2 entry in the file. If l1_index points to an already
198 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
199 * table) copy the contents of the old L2 table into the newly allocated one.
200 * Otherwise the new table is initialized with zeros.
204 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
206 BDRVQcowState
*s
= bs
->opaque
;
207 uint64_t old_l2_offset
;
208 uint64_t *l2_table
= NULL
;
212 old_l2_offset
= s
->l1_table
[l1_index
];
214 trace_qcow2_l2_allocate(bs
, l1_index
);
216 /* allocate a new l2 entry */
218 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
224 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
229 /* allocate a new entry in the l2 cache */
231 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
232 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
239 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
240 /* if there was no old l2 table, clear the new table */
241 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
245 /* if there was an old l2 table, read it from the disk */
246 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
247 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
248 old_l2_offset
& L1E_OFFSET_MASK
,
249 (void**) &old_table
);
254 memcpy(l2_table
, old_table
, s
->cluster_size
);
256 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &old_table
);
262 /* write the l2 table to the file */
263 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
265 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
266 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
267 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
272 /* update the L1 entry */
273 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
274 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
275 ret
= qcow2_write_l1_entry(bs
, l1_index
);
281 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
285 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
286 if (l2_table
!= NULL
) {
287 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
289 s
->l1_table
[l1_index
] = old_l2_offset
;
291 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
292 QCOW2_DISCARD_ALWAYS
);
298 * Checks how many clusters in a given L2 table are contiguous in the image
299 * file. As soon as one of the flags in the bitmask stop_flags changes compared
300 * to the first cluster, the search is stopped and the cluster is not counted
301 * as contiguous. (This allows it, for example, to stop at the first compressed
302 * cluster which may require a different handling)
304 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
305 uint64_t *l2_table
, uint64_t stop_flags
)
308 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
309 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
310 uint64_t offset
= first_entry
& mask
;
315 assert(qcow2_get_cluster_type(first_entry
) != QCOW2_CLUSTER_COMPRESSED
);
317 for (i
= 0; i
< nb_clusters
; i
++) {
318 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
319 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
327 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
331 for (i
= 0; i
< nb_clusters
; i
++) {
332 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
334 if (type
!= QCOW2_CLUSTER_UNALLOCATED
) {
342 /* The crypt function is compatible with the linux cryptoloop
343 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
345 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
346 uint8_t *out_buf
, const uint8_t *in_buf
,
347 int nb_sectors
, int enc
,
356 for(i
= 0; i
< nb_sectors
; i
++) {
357 ivec
.ll
[0] = cpu_to_le64(sector_num
);
359 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
367 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
369 uint64_t cluster_offset
,
370 int n_start
, int n_end
)
372 BDRVQcowState
*s
= bs
->opaque
;
382 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
383 iov
.iov_base
= qemu_try_blockalign(bs
, iov
.iov_len
);
384 if (iov
.iov_base
== NULL
) {
388 qemu_iovec_init_external(&qiov
, &iov
, 1);
390 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
397 /* Call .bdrv_co_readv() directly instead of using the public block-layer
398 * interface. This avoids double I/O throttling and request tracking,
399 * which can lead to deadlock when block layer copy-on-read is enabled.
401 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
406 if (s
->crypt_method
) {
407 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
408 iov
.iov_base
, iov
.iov_base
, n
, 1,
409 &s
->aes_encrypt_key
);
412 ret
= qcow2_pre_write_overlap_check(bs
, 0,
413 cluster_offset
+ n_start
* BDRV_SECTOR_SIZE
, n
* BDRV_SECTOR_SIZE
);
418 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
419 ret
= bdrv_co_writev(bs
->file
, (cluster_offset
>> 9) + n_start
, n
, &qiov
);
426 qemu_vfree(iov
.iov_base
);
434 * For a given offset of the disk image, find the cluster offset in
435 * qcow2 file. The offset is stored in *cluster_offset.
437 * on entry, *num is the number of contiguous sectors we'd like to
438 * access following offset.
440 * on exit, *num is the number of contiguous sectors we can read.
442 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
445 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
446 int *num
, uint64_t *cluster_offset
)
448 BDRVQcowState
*s
= bs
->opaque
;
449 unsigned int l2_index
;
450 uint64_t l1_index
, l2_offset
, *l2_table
;
452 unsigned int index_in_cluster
, nb_clusters
;
453 uint64_t nb_available
, nb_needed
;
456 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
457 nb_needed
= *num
+ index_in_cluster
;
459 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
461 /* compute how many bytes there are between the offset and
462 * the end of the l1 entry
465 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
467 /* compute the number of available sectors */
469 nb_available
= (nb_available
>> 9) + index_in_cluster
;
471 if (nb_needed
> nb_available
) {
472 nb_needed
= nb_available
;
477 /* seek the the l2 offset in the l1 table */
479 l1_index
= offset
>> l1_bits
;
480 if (l1_index
>= s
->l1_size
) {
481 ret
= QCOW2_CLUSTER_UNALLOCATED
;
485 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
487 ret
= QCOW2_CLUSTER_UNALLOCATED
;
491 if (offset_into_cluster(s
, l2_offset
)) {
492 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
493 " unaligned (L1 index: %#" PRIx64
")",
494 l2_offset
, l1_index
);
498 /* load the l2 table in memory */
500 ret
= l2_load(bs
, l2_offset
, &l2_table
);
505 /* find the cluster offset for the given disk offset */
507 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
508 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
509 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
511 ret
= qcow2_get_cluster_type(*cluster_offset
);
513 case QCOW2_CLUSTER_COMPRESSED
:
514 /* Compressed clusters can only be processed one by one */
516 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
518 case QCOW2_CLUSTER_ZERO
:
519 if (s
->qcow_version
< 3) {
520 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
521 " in pre-v3 image (L2 offset: %#" PRIx64
522 ", L2 index: %#x)", l2_offset
, l2_index
);
526 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
527 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
530 case QCOW2_CLUSTER_UNALLOCATED
:
531 /* how many empty clusters ? */
532 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
535 case QCOW2_CLUSTER_NORMAL
:
536 /* how many allocated clusters ? */
537 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
538 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
539 *cluster_offset
&= L2E_OFFSET_MASK
;
540 if (offset_into_cluster(s
, *cluster_offset
)) {
541 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset %#"
542 PRIx64
" unaligned (L2 offset: %#" PRIx64
543 ", L2 index: %#x)", *cluster_offset
,
544 l2_offset
, l2_index
);
553 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
555 nb_available
= (c
* s
->cluster_sectors
);
558 if (nb_available
> nb_needed
)
559 nb_available
= nb_needed
;
561 *num
= nb_available
- index_in_cluster
;
566 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
573 * for a given disk offset, load (and allocate if needed)
576 * the l2 table offset in the qcow2 file and the cluster index
577 * in the l2 table are given to the caller.
579 * Returns 0 on success, -errno in failure case
581 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
582 uint64_t **new_l2_table
,
585 BDRVQcowState
*s
= bs
->opaque
;
586 unsigned int l2_index
;
587 uint64_t l1_index
, l2_offset
;
588 uint64_t *l2_table
= NULL
;
591 /* seek the the l2 offset in the l1 table */
593 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
594 if (l1_index
>= s
->l1_size
) {
595 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
601 assert(l1_index
< s
->l1_size
);
602 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
603 if (offset_into_cluster(s
, l2_offset
)) {
604 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
605 " unaligned (L1 index: %#" PRIx64
")",
606 l2_offset
, l1_index
);
610 /* seek the l2 table of the given l2 offset */
612 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
613 /* load the l2 table in memory */
614 ret
= l2_load(bs
, l2_offset
, &l2_table
);
619 /* First allocate a new L2 table (and do COW if needed) */
620 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
625 /* Then decrease the refcount of the old table */
627 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
628 QCOW2_DISCARD_OTHER
);
632 /* find the cluster offset for the given disk offset */
634 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
636 *new_l2_table
= l2_table
;
637 *new_l2_index
= l2_index
;
643 * alloc_compressed_cluster_offset
645 * For a given offset of the disk image, return cluster offset in
648 * If the offset is not found, allocate a new compressed cluster.
650 * Return the cluster offset if successful,
651 * Return 0, otherwise.
655 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
659 BDRVQcowState
*s
= bs
->opaque
;
662 int64_t cluster_offset
;
665 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
670 /* Compression can't overwrite anything. Fail if the cluster was already
672 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
673 if (cluster_offset
& L2E_OFFSET_MASK
) {
674 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
678 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
679 if (cluster_offset
< 0) {
680 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
684 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
685 (cluster_offset
>> 9);
687 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
688 ((uint64_t)nb_csectors
<< s
->csize_shift
);
690 /* update L2 table */
692 /* compressed clusters never have the copied flag */
694 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
695 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
696 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
697 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
702 return cluster_offset
;
705 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
707 BDRVQcowState
*s
= bs
->opaque
;
710 if (r
->nb_sectors
== 0) {
714 qemu_co_mutex_unlock(&s
->lock
);
715 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
716 r
->offset
/ BDRV_SECTOR_SIZE
,
717 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
718 qemu_co_mutex_lock(&s
->lock
);
725 * Before we update the L2 table to actually point to the new cluster, we
726 * need to be sure that the refcounts have been increased and COW was
729 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
734 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
736 BDRVQcowState
*s
= bs
->opaque
;
737 int i
, j
= 0, l2_index
, ret
;
738 uint64_t *old_cluster
, *l2_table
;
739 uint64_t cluster_offset
= m
->alloc_offset
;
741 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
742 assert(m
->nb_clusters
> 0);
744 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
745 if (old_cluster
== NULL
) {
750 /* copy content of unmodified sectors */
751 ret
= perform_cow(bs
, m
, &m
->cow_start
);
756 ret
= perform_cow(bs
, m
, &m
->cow_end
);
761 /* Update L2 table. */
762 if (s
->use_lazy_refcounts
) {
763 qcow2_mark_dirty(bs
);
765 if (qcow2_need_accurate_refcounts(s
)) {
766 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
767 s
->refcount_block_cache
);
770 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
774 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
776 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
777 for (i
= 0; i
< m
->nb_clusters
; i
++) {
778 /* if two concurrent writes happen to the same unallocated cluster
779 * each write allocates separate cluster and writes data concurrently.
780 * The first one to complete updates l2 table with pointer to its
781 * cluster the second one has to do RMW (which is done above by
782 * copy_sectors()), update l2 table with its cluster pointer and free
783 * old cluster. This is what this loop does */
784 if(l2_table
[l2_index
+ i
] != 0)
785 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
787 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
788 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
792 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
798 * If this was a COW, we need to decrease the refcount of the old cluster.
799 * Also flush bs->file to get the right order for L2 and refcount update.
801 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
802 * clusters), the next write will reuse them anyway.
805 for (i
= 0; i
< j
; i
++) {
806 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
807 QCOW2_DISCARD_NEVER
);
818 * Returns the number of contiguous clusters that can be used for an allocating
819 * write, but require COW to be performed (this includes yet unallocated space,
820 * which must copy from the backing file)
822 static int count_cow_clusters(BDRVQcowState
*s
, int nb_clusters
,
823 uint64_t *l2_table
, int l2_index
)
827 for (i
= 0; i
< nb_clusters
; i
++) {
828 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
829 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
831 switch(cluster_type
) {
832 case QCOW2_CLUSTER_NORMAL
:
833 if (l2_entry
& QCOW_OFLAG_COPIED
) {
837 case QCOW2_CLUSTER_UNALLOCATED
:
838 case QCOW2_CLUSTER_COMPRESSED
:
839 case QCOW2_CLUSTER_ZERO
:
847 assert(i
<= nb_clusters
);
852 * Check if there already is an AIO write request in flight which allocates
853 * the same cluster. In this case we need to wait until the previous
854 * request has completed and updated the L2 table accordingly.
857 * 0 if there was no dependency. *cur_bytes indicates the number of
858 * bytes from guest_offset that can be read before the next
859 * dependency must be processed (or the request is complete)
861 * -EAGAIN if we had to wait for another request, previously gathered
862 * information on cluster allocation may be invalid now. The caller
863 * must start over anyway, so consider *cur_bytes undefined.
865 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
866 uint64_t *cur_bytes
, QCowL2Meta
**m
)
868 BDRVQcowState
*s
= bs
->opaque
;
869 QCowL2Meta
*old_alloc
;
870 uint64_t bytes
= *cur_bytes
;
872 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
874 uint64_t start
= guest_offset
;
875 uint64_t end
= start
+ bytes
;
876 uint64_t old_start
= l2meta_cow_start(old_alloc
);
877 uint64_t old_end
= l2meta_cow_end(old_alloc
);
879 if (end
<= old_start
|| start
>= old_end
) {
880 /* No intersection */
882 if (start
< old_start
) {
883 /* Stop at the start of a running allocation */
884 bytes
= old_start
- start
;
889 /* Stop if already an l2meta exists. After yielding, it wouldn't
890 * be valid any more, so we'd have to clean up the old L2Metas
891 * and deal with requests depending on them before starting to
892 * gather new ones. Not worth the trouble. */
893 if (bytes
== 0 && *m
) {
899 /* Wait for the dependency to complete. We need to recheck
900 * the free/allocated clusters when we continue. */
901 qemu_co_mutex_unlock(&s
->lock
);
902 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
903 qemu_co_mutex_lock(&s
->lock
);
909 /* Make sure that existing clusters and new allocations are only used up to
910 * the next dependency if we shortened the request above */
917 * Checks how many already allocated clusters that don't require a copy on
918 * write there are at the given guest_offset (up to *bytes). If
919 * *host_offset is not zero, only physically contiguous clusters beginning at
920 * this host offset are counted.
922 * Note that guest_offset may not be cluster aligned. In this case, the
923 * returned *host_offset points to exact byte referenced by guest_offset and
924 * therefore isn't cluster aligned as well.
927 * 0: if no allocated clusters are available at the given offset.
928 * *bytes is normally unchanged. It is set to 0 if the cluster
929 * is allocated and doesn't need COW, but doesn't have the right
932 * 1: if allocated clusters that don't require a COW are available at
933 * the requested offset. *bytes may have decreased and describes
934 * the length of the area that can be written to.
936 * -errno: in error cases
938 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
939 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
941 BDRVQcowState
*s
= bs
->opaque
;
943 uint64_t cluster_offset
;
945 unsigned int nb_clusters
;
946 unsigned int keep_clusters
;
949 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
952 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
953 == offset_into_cluster(s
, *host_offset
));
956 * Calculate the number of clusters to look for. We stop at L2 table
957 * boundaries to keep things simple.
960 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
962 l2_index
= offset_to_l2_index(s
, guest_offset
);
963 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
965 /* Find L2 entry for the first involved cluster */
966 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
971 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
973 /* Check how many clusters are already allocated and don't need COW */
974 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
975 && (cluster_offset
& QCOW_OFLAG_COPIED
))
977 /* If a specific host_offset is required, check it */
978 bool offset_matches
=
979 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
981 if (offset_into_cluster(s
, cluster_offset
& L2E_OFFSET_MASK
)) {
982 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
983 "%#llx unaligned (guest offset: %#" PRIx64
984 ")", cluster_offset
& L2E_OFFSET_MASK
,
990 if (*host_offset
!= 0 && !offset_matches
) {
996 /* We keep all QCOW_OFLAG_COPIED clusters */
998 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1000 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1001 assert(keep_clusters
<= nb_clusters
);
1003 *bytes
= MIN(*bytes
,
1004 keep_clusters
* s
->cluster_size
1005 - offset_into_cluster(s
, guest_offset
));
1014 pret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1019 /* Only return a host offset if we actually made progress. Otherwise we
1020 * would make requirements for handle_alloc() that it can't fulfill */
1022 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
1023 + offset_into_cluster(s
, guest_offset
);
1030 * Allocates new clusters for the given guest_offset.
1032 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1033 * contain the number of clusters that have been allocated and are contiguous
1034 * in the image file.
1036 * If *host_offset is non-zero, it specifies the offset in the image file at
1037 * which the new clusters must start. *nb_clusters can be 0 on return in this
1038 * case if the cluster at host_offset is already in use. If *host_offset is
1039 * zero, the clusters can be allocated anywhere in the image file.
1041 * *host_offset is updated to contain the offset into the image file at which
1042 * the first allocated cluster starts.
1044 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1045 * function has been waiting for another request and the allocation must be
1046 * restarted, but the whole request should not be failed.
1048 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1049 uint64_t *host_offset
, unsigned int *nb_clusters
)
1051 BDRVQcowState
*s
= bs
->opaque
;
1053 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1054 *host_offset
, *nb_clusters
);
1056 /* Allocate new clusters */
1057 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1058 if (*host_offset
== 0) {
1059 int64_t cluster_offset
=
1060 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1061 if (cluster_offset
< 0) {
1062 return cluster_offset
;
1064 *host_offset
= cluster_offset
;
1067 int ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1077 * Allocates new clusters for an area that either is yet unallocated or needs a
1078 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1079 * the new allocation can match the specified host offset.
1081 * Note that guest_offset may not be cluster aligned. In this case, the
1082 * returned *host_offset points to exact byte referenced by guest_offset and
1083 * therefore isn't cluster aligned as well.
1086 * 0: if no clusters could be allocated. *bytes is set to 0,
1087 * *host_offset is left unchanged.
1089 * 1: if new clusters were allocated. *bytes may be decreased if the
1090 * new allocation doesn't cover all of the requested area.
1091 * *host_offset is updated to contain the host offset of the first
1092 * newly allocated cluster.
1094 * -errno: in error cases
1096 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1097 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1099 BDRVQcowState
*s
= bs
->opaque
;
1103 unsigned int nb_clusters
;
1106 uint64_t alloc_cluster_offset
;
1108 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1113 * Calculate the number of clusters to look for. We stop at L2 table
1114 * boundaries to keep things simple.
1117 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1119 l2_index
= offset_to_l2_index(s
, guest_offset
);
1120 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1122 /* Find L2 entry for the first involved cluster */
1123 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1128 entry
= be64_to_cpu(l2_table
[l2_index
]);
1130 /* For the moment, overwrite compressed clusters one by one */
1131 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1134 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1137 /* This function is only called when there were no non-COW clusters, so if
1138 * we can't find any unallocated or COW clusters either, something is
1139 * wrong with our code. */
1140 assert(nb_clusters
> 0);
1142 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1147 /* Allocate, if necessary at a given offset in the image file */
1148 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1149 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1155 /* Can't extend contiguous allocation */
1156 if (nb_clusters
== 0) {
1161 /* !*host_offset would overwrite the image header and is reserved for "no
1162 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1163 * following overlap check; do that now to avoid having an invalid value in
1165 if (!alloc_cluster_offset
) {
1166 ret
= qcow2_pre_write_overlap_check(bs
, 0, alloc_cluster_offset
,
1167 nb_clusters
* s
->cluster_size
);
1173 * Save info needed for meta data update.
1175 * requested_sectors: Number of sectors from the start of the first
1176 * newly allocated cluster to the end of the (possibly shortened
1177 * before) write request.
1179 * avail_sectors: Number of sectors from the start of the first
1180 * newly allocated to the end of the last newly allocated cluster.
1182 * nb_sectors: The number of sectors from the start of the first
1183 * newly allocated cluster to the end of the area that the write
1184 * request actually writes to (excluding COW at the end)
1186 int requested_sectors
=
1187 (*bytes
+ offset_into_cluster(s
, guest_offset
))
1188 >> BDRV_SECTOR_BITS
;
1189 int avail_sectors
= nb_clusters
1190 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
1191 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
1192 >> BDRV_SECTOR_BITS
;
1193 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
1194 QCowL2Meta
*old_m
= *m
;
1196 *m
= g_malloc0(sizeof(**m
));
1198 **m
= (QCowL2Meta
) {
1201 .alloc_offset
= alloc_cluster_offset
,
1202 .offset
= start_of_cluster(s
, guest_offset
),
1203 .nb_clusters
= nb_clusters
,
1204 .nb_available
= nb_sectors
,
1208 .nb_sectors
= alloc_n_start
,
1211 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
1212 .nb_sectors
= avail_sectors
- nb_sectors
,
1215 qemu_co_queue_init(&(*m
)->dependent_requests
);
1216 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1218 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1219 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
1220 - offset_into_cluster(s
, guest_offset
));
1221 assert(*bytes
!= 0);
1226 if (*m
&& (*m
)->nb_clusters
> 0) {
1227 QLIST_REMOVE(*m
, next_in_flight
);
1233 * alloc_cluster_offset
1235 * For a given offset on the virtual disk, find the cluster offset in qcow2
1236 * file. If the offset is not found, allocate a new cluster.
1238 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1239 * other fields in m are meaningless.
1241 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1242 * contiguous clusters that have been allocated. In this case, the other
1243 * fields of m are valid and contain information about the first allocated
1246 * If the request conflicts with another write request in flight, the coroutine
1247 * is queued and will be reentered when the dependency has completed.
1249 * Return 0 on success and -errno in error cases
1251 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1252 int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1254 BDRVQcowState
*s
= bs
->opaque
;
1255 uint64_t start
, remaining
;
1256 uint64_t cluster_offset
;
1260 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *num
);
1262 assert((offset
& ~BDRV_SECTOR_MASK
) == 0);
1266 remaining
= *num
<< BDRV_SECTOR_BITS
;
1274 if (!*host_offset
) {
1275 *host_offset
= start_of_cluster(s
, cluster_offset
);
1278 assert(remaining
>= cur_bytes
);
1281 remaining
-= cur_bytes
;
1282 cluster_offset
+= cur_bytes
;
1284 if (remaining
== 0) {
1288 cur_bytes
= remaining
;
1291 * Now start gathering as many contiguous clusters as possible:
1293 * 1. Check for overlaps with in-flight allocations
1295 * a) Overlap not in the first cluster -> shorten this request and
1296 * let the caller handle the rest in its next loop iteration.
1298 * b) Real overlaps of two requests. Yield and restart the search
1299 * for contiguous clusters (the situation could have changed
1300 * while we were sleeping)
1302 * c) TODO: Request starts in the same cluster as the in-flight
1303 * allocation ends. Shorten the COW of the in-fight allocation,
1304 * set cluster_offset to write to the same cluster and set up
1305 * the right synchronisation between the in-flight request and
1308 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1309 if (ret
== -EAGAIN
) {
1310 /* Currently handle_dependencies() doesn't yield if we already had
1311 * an allocation. If it did, we would have to clean up the L2Meta
1312 * structs before starting over. */
1315 } else if (ret
< 0) {
1317 } else if (cur_bytes
== 0) {
1320 /* handle_dependencies() may have decreased cur_bytes (shortened
1321 * the allocations below) so that the next dependency is processed
1322 * correctly during the next loop iteration. */
1326 * 2. Count contiguous COPIED clusters.
1328 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1333 } else if (cur_bytes
== 0) {
1338 * 3. If the request still hasn't completed, allocate new clusters,
1339 * considering any cluster_offset of steps 1c or 2.
1341 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1347 assert(cur_bytes
== 0);
1352 *num
-= remaining
>> BDRV_SECTOR_BITS
;
1354 assert(*host_offset
!= 0);
1359 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1360 const uint8_t *buf
, int buf_size
)
1362 z_stream strm1
, *strm
= &strm1
;
1365 memset(strm
, 0, sizeof(*strm
));
1367 strm
->next_in
= (uint8_t *)buf
;
1368 strm
->avail_in
= buf_size
;
1369 strm
->next_out
= out_buf
;
1370 strm
->avail_out
= out_buf_size
;
1372 ret
= inflateInit2(strm
, -12);
1375 ret
= inflate(strm
, Z_FINISH
);
1376 out_len
= strm
->next_out
- out_buf
;
1377 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1378 out_len
!= out_buf_size
) {
1386 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1388 BDRVQcowState
*s
= bs
->opaque
;
1389 int ret
, csize
, nb_csectors
, sector_offset
;
1392 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1393 if (s
->cluster_cache_offset
!= coffset
) {
1394 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1395 sector_offset
= coffset
& 511;
1396 csize
= nb_csectors
* 512 - sector_offset
;
1397 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1398 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
1402 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1403 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1406 s
->cluster_cache_offset
= coffset
;
1412 * This discards as many clusters of nb_clusters as possible at once (i.e.
1413 * all clusters in the same L2 table) and returns the number of discarded
1416 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1417 unsigned int nb_clusters
, enum qcow2_discard_type type
, bool full_discard
)
1419 BDRVQcowState
*s
= bs
->opaque
;
1425 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1430 /* Limit nb_clusters to one L2 table */
1431 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1433 for (i
= 0; i
< nb_clusters
; i
++) {
1434 uint64_t old_l2_entry
;
1436 old_l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1439 * If full_discard is false, make sure that a discarded area reads back
1440 * as zeroes for v3 images (we cannot do it for v2 without actually
1441 * writing a zero-filled buffer). We can skip the operation if the
1442 * cluster is already marked as zero, or if it's unallocated and we
1443 * don't have a backing file.
1445 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1446 * holding s->lock, so that doesn't work today.
1448 * If full_discard is true, the sector should not read back as zeroes,
1449 * but rather fall through to the backing file.
1451 switch (qcow2_get_cluster_type(old_l2_entry
)) {
1452 case QCOW2_CLUSTER_UNALLOCATED
:
1453 if (full_discard
|| !bs
->backing_hd
) {
1458 case QCOW2_CLUSTER_ZERO
:
1459 if (!full_discard
) {
1464 case QCOW2_CLUSTER_NORMAL
:
1465 case QCOW2_CLUSTER_COMPRESSED
:
1472 /* First remove L2 entries */
1473 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1474 if (!full_discard
&& s
->qcow_version
>= 3) {
1475 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1477 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1480 /* Then decrease the refcount */
1481 qcow2_free_any_clusters(bs
, old_l2_entry
, 1, type
);
1484 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1492 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1493 int nb_sectors
, enum qcow2_discard_type type
, bool full_discard
)
1495 BDRVQcowState
*s
= bs
->opaque
;
1496 uint64_t end_offset
;
1497 unsigned int nb_clusters
;
1500 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1502 /* Round start up and end down */
1503 offset
= align_offset(offset
, s
->cluster_size
);
1504 end_offset
= start_of_cluster(s
, end_offset
);
1506 if (offset
> end_offset
) {
1510 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1512 s
->cache_discards
= true;
1514 /* Each L2 table is handled by its own loop iteration */
1515 while (nb_clusters
> 0) {
1516 ret
= discard_single_l2(bs
, offset
, nb_clusters
, type
, full_discard
);
1522 offset
+= (ret
* s
->cluster_size
);
1527 s
->cache_discards
= false;
1528 qcow2_process_discards(bs
, ret
);
1534 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1535 * all clusters in the same L2 table) and returns the number of zeroed
1538 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1539 unsigned int nb_clusters
)
1541 BDRVQcowState
*s
= bs
->opaque
;
1547 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1552 /* Limit nb_clusters to one L2 table */
1553 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1555 for (i
= 0; i
< nb_clusters
; i
++) {
1556 uint64_t old_offset
;
1558 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1560 /* Update L2 entries */
1561 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1562 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1563 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1564 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1566 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1570 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1578 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1580 BDRVQcowState
*s
= bs
->opaque
;
1581 unsigned int nb_clusters
;
1584 /* The zero flag is only supported by version 3 and newer */
1585 if (s
->qcow_version
< 3) {
1589 /* Each L2 table is handled by its own loop iteration */
1590 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1592 s
->cache_discards
= true;
1594 while (nb_clusters
> 0) {
1595 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1601 offset
+= (ret
* s
->cluster_size
);
1606 s
->cache_discards
= false;
1607 qcow2_process_discards(bs
, ret
);
1613 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1614 * non-backed non-pre-allocated zero clusters).
1616 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1617 * the image file; a bit gets set if the corresponding cluster has been used for
1618 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1619 * L2 table). nb_clusters contains the total cluster count of the image file,
1620 * i.e., the number of bits in expanded_clusters.
1622 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1623 int l1_size
, uint8_t **expanded_clusters
,
1624 uint64_t *nb_clusters
)
1626 BDRVQcowState
*s
= bs
->opaque
;
1627 bool is_active_l1
= (l1_table
== s
->l1_table
);
1628 uint64_t *l2_table
= NULL
;
1632 if (!is_active_l1
) {
1633 /* inactive L2 tables require a buffer to be stored in when loading
1635 l2_table
= qemu_try_blockalign(bs
->file
, s
->cluster_size
);
1636 if (l2_table
== NULL
) {
1641 for (i
= 0; i
< l1_size
; i
++) {
1642 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1643 bool l2_dirty
= false;
1651 /* get active L2 tables from cache */
1652 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1653 (void **)&l2_table
);
1655 /* load inactive L2 tables from disk */
1656 ret
= bdrv_read(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1657 (void *)l2_table
, s
->cluster_sectors
);
1663 for (j
= 0; j
< s
->l2_size
; j
++) {
1664 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1665 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
, cluster_index
;
1666 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1667 bool preallocated
= offset
!= 0;
1669 if (cluster_type
== QCOW2_CLUSTER_NORMAL
) {
1670 cluster_index
= offset
>> s
->cluster_bits
;
1671 assert((cluster_index
>= 0) && (cluster_index
< *nb_clusters
));
1672 if ((*expanded_clusters
)[cluster_index
/ 8] &
1673 (1 << (cluster_index
% 8))) {
1674 /* Probably a shared L2 table; this cluster was a zero
1675 * cluster which has been expanded, its refcount
1676 * therefore most likely requires an update. */
1677 ret
= qcow2_update_cluster_refcount(bs
, cluster_index
, 1,
1678 QCOW2_DISCARD_NEVER
);
1682 /* Since we just increased the refcount, the COPIED flag may
1683 * no longer be set. */
1684 l2_table
[j
] = cpu_to_be64(l2_entry
& ~QCOW_OFLAG_COPIED
);
1689 else if (qcow2_get_cluster_type(l2_entry
) != QCOW2_CLUSTER_ZERO
) {
1693 if (!preallocated
) {
1694 if (!bs
->backing_hd
) {
1695 /* not backed; therefore we can simply deallocate the
1702 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1709 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
1711 if (!preallocated
) {
1712 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1713 QCOW2_DISCARD_ALWAYS
);
1718 ret
= bdrv_write_zeroes(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1719 s
->cluster_sectors
, 0);
1721 if (!preallocated
) {
1722 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1723 QCOW2_DISCARD_ALWAYS
);
1728 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1731 cluster_index
= offset
>> s
->cluster_bits
;
1733 if (cluster_index
>= *nb_clusters
) {
1734 uint64_t old_bitmap_size
= (*nb_clusters
+ 7) / 8;
1735 uint64_t new_bitmap_size
;
1736 /* The offset may lie beyond the old end of the underlying image
1737 * file for growable files only */
1738 assert(bs
->file
->growable
);
1739 *nb_clusters
= size_to_clusters(s
, bs
->file
->total_sectors
*
1741 new_bitmap_size
= (*nb_clusters
+ 7) / 8;
1742 *expanded_clusters
= g_realloc(*expanded_clusters
,
1744 /* clear the newly allocated space */
1745 memset(&(*expanded_clusters
)[old_bitmap_size
], 0,
1746 new_bitmap_size
- old_bitmap_size
);
1749 assert((cluster_index
>= 0) && (cluster_index
< *nb_clusters
));
1750 (*expanded_clusters
)[cluster_index
/ 8] |= 1 << (cluster_index
% 8);
1755 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1756 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1758 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
1765 ret
= qcow2_pre_write_overlap_check(bs
,
1766 QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
, l2_offset
,
1772 ret
= bdrv_write(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1773 (void *)l2_table
, s
->cluster_sectors
);
1785 if (!is_active_l1
) {
1786 qemu_vfree(l2_table
);
1789 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
1791 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
,
1792 (void **)&l2_table
);
1800 * For backed images, expands all zero clusters on the image. For non-backed
1801 * images, deallocates all non-pre-allocated zero clusters (and claims the
1802 * allocation for pre-allocated ones). This is important for downgrading to a
1803 * qcow2 version which doesn't yet support metadata zero clusters.
1805 int qcow2_expand_zero_clusters(BlockDriverState
*bs
)
1807 BDRVQcowState
*s
= bs
->opaque
;
1808 uint64_t *l1_table
= NULL
;
1809 uint64_t nb_clusters
;
1810 uint8_t *expanded_clusters
;
1814 nb_clusters
= size_to_clusters(s
, bs
->file
->total_sectors
*
1816 expanded_clusters
= g_try_malloc0((nb_clusters
+ 7) / 8);
1817 if (expanded_clusters
== NULL
) {
1822 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
1823 &expanded_clusters
, &nb_clusters
);
1828 /* Inactive L1 tables may point to active L2 tables - therefore it is
1829 * necessary to flush the L2 table cache before trying to access the L2
1830 * tables pointed to by inactive L1 entries (else we might try to expand
1831 * zero clusters that have already been expanded); furthermore, it is also
1832 * necessary to empty the L2 table cache, since it may contain tables which
1833 * are now going to be modified directly on disk, bypassing the cache.
1834 * qcow2_cache_empty() does both for us. */
1835 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
1840 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1841 int l1_sectors
= (s
->snapshots
[i
].l1_size
* sizeof(uint64_t) +
1842 BDRV_SECTOR_SIZE
- 1) / BDRV_SECTOR_SIZE
;
1844 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
1846 ret
= bdrv_read(bs
->file
, s
->snapshots
[i
].l1_table_offset
/
1847 BDRV_SECTOR_SIZE
, (void *)l1_table
, l1_sectors
);
1852 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
1853 be64_to_cpus(&l1_table
[j
]);
1856 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
1857 &expanded_clusters
, &nb_clusters
);
1866 g_free(expanded_clusters
);