hw/intc: arm_gic_kvm.c restore config first
[qemu/qmp-unstable.git] / target-arm / kvm64.c
blobfed03f2ae66e3fe31663b0b529d8cf2c5ab2cca6
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 static inline void set_feature(uint64_t *features, int feature)
29 *features |= 1ULL << feature;
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
38 * For AArch64 we currently don't care about ID registers at
39 * all; we just want to know the CPU type.
41 int fdarray[3];
42 uint64_t features = 0;
43 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
44 * we know these will only support creating one kind of guest CPU,
45 * which is its preferred CPU type. Fortunately these old kernels
46 * support only a very limited number of CPUs.
48 static const uint32_t cpus_to_try[] = {
49 KVM_ARM_TARGET_AEM_V8,
50 KVM_ARM_TARGET_FOUNDATION_V8,
51 KVM_ARM_TARGET_CORTEX_A57,
52 QEMU_KVM_ARM_TARGET_NONE
54 struct kvm_vcpu_init init;
56 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
57 return false;
60 ahcc->target = init.target;
61 ahcc->dtb_compatible = "arm,arm-v8";
63 kvm_arm_destroy_scratch_host_vcpu(fdarray);
65 /* We can assume any KVM supporting CPU is at least a v8
66 * with VFPv4+Neon; this in turn implies most of the other
67 * feature bits.
69 set_feature(&features, ARM_FEATURE_V8);
70 set_feature(&features, ARM_FEATURE_VFP4);
71 set_feature(&features, ARM_FEATURE_NEON);
72 set_feature(&features, ARM_FEATURE_AARCH64);
74 ahcc->features = features;
76 return true;
79 int kvm_arch_init_vcpu(CPUState *cs)
81 int ret;
82 ARMCPU *cpu = ARM_CPU(cs);
84 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
85 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
86 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
87 return -EINVAL;
90 /* Determine init features for this CPU */
91 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
92 if (cpu->start_powered_off) {
93 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
95 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
96 cpu->psci_version = 2;
97 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
99 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
100 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
103 /* Do KVM_ARM_VCPU_INIT ioctl */
104 ret = kvm_arm_vcpu_init(cs);
105 if (ret) {
106 return ret;
109 return kvm_arm_init_cpreg_list(cpu);
112 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
114 /* Return true if the regidx is a register we should synchronize
115 * via the cpreg_tuples array (ie is not a core reg we sync by
116 * hand in kvm_arch_get/put_registers())
118 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
119 case KVM_REG_ARM_CORE:
120 return false;
121 default:
122 return true;
126 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
127 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
129 int kvm_arch_put_registers(CPUState *cs, int level)
131 struct kvm_one_reg reg;
132 uint64_t val;
133 int i;
134 int ret;
136 ARMCPU *cpu = ARM_CPU(cs);
137 CPUARMState *env = &cpu->env;
139 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
140 * AArch64 registers before pushing them out to 64-bit KVM.
142 if (!is_a64(env)) {
143 aarch64_sync_32_to_64(env);
146 for (i = 0; i < 31; i++) {
147 reg.id = AARCH64_CORE_REG(regs.regs[i]);
148 reg.addr = (uintptr_t) &env->xregs[i];
149 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
150 if (ret) {
151 return ret;
155 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
156 * QEMU side we keep the current SP in xregs[31] as well.
158 aarch64_save_sp(env, 1);
160 reg.id = AARCH64_CORE_REG(regs.sp);
161 reg.addr = (uintptr_t) &env->sp_el[0];
162 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
163 if (ret) {
164 return ret;
167 reg.id = AARCH64_CORE_REG(sp_el1);
168 reg.addr = (uintptr_t) &env->sp_el[1];
169 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
170 if (ret) {
171 return ret;
174 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
175 if (is_a64(env)) {
176 val = pstate_read(env);
177 } else {
178 val = cpsr_read(env);
180 reg.id = AARCH64_CORE_REG(regs.pstate);
181 reg.addr = (uintptr_t) &val;
182 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
183 if (ret) {
184 return ret;
187 reg.id = AARCH64_CORE_REG(regs.pc);
188 reg.addr = (uintptr_t) &env->pc;
189 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
190 if (ret) {
191 return ret;
194 reg.id = AARCH64_CORE_REG(elr_el1);
195 reg.addr = (uintptr_t) &env->elr_el[1];
196 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
197 if (ret) {
198 return ret;
201 for (i = 0; i < KVM_NR_SPSR; i++) {
202 reg.id = AARCH64_CORE_REG(spsr[i]);
203 reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
204 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
205 if (ret) {
206 return ret;
210 if (!write_list_to_kvmstate(cpu)) {
211 return EINVAL;
214 kvm_arm_sync_mpstate_to_kvm(cpu);
216 /* TODO:
217 * FP state
219 return ret;
222 int kvm_arch_get_registers(CPUState *cs)
224 struct kvm_one_reg reg;
225 uint64_t val;
226 int i;
227 int ret;
229 ARMCPU *cpu = ARM_CPU(cs);
230 CPUARMState *env = &cpu->env;
232 for (i = 0; i < 31; i++) {
233 reg.id = AARCH64_CORE_REG(regs.regs[i]);
234 reg.addr = (uintptr_t) &env->xregs[i];
235 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
236 if (ret) {
237 return ret;
241 reg.id = AARCH64_CORE_REG(regs.sp);
242 reg.addr = (uintptr_t) &env->sp_el[0];
243 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
244 if (ret) {
245 return ret;
248 reg.id = AARCH64_CORE_REG(sp_el1);
249 reg.addr = (uintptr_t) &env->sp_el[1];
250 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
251 if (ret) {
252 return ret;
255 reg.id = AARCH64_CORE_REG(regs.pstate);
256 reg.addr = (uintptr_t) &val;
257 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
258 if (ret) {
259 return ret;
262 env->aarch64 = ((val & PSTATE_nRW) == 0);
263 if (is_a64(env)) {
264 pstate_write(env, val);
265 } else {
266 env->uncached_cpsr = val & CPSR_M;
267 cpsr_write(env, val, 0xffffffff);
270 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
271 * QEMU side we keep the current SP in xregs[31] as well.
273 aarch64_restore_sp(env, 1);
275 reg.id = AARCH64_CORE_REG(regs.pc);
276 reg.addr = (uintptr_t) &env->pc;
277 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
278 if (ret) {
279 return ret;
282 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
283 * incoming AArch64 regs received from 64-bit KVM.
284 * We must perform this after all of the registers have been acquired from
285 * the kernel.
287 if (!is_a64(env)) {
288 aarch64_sync_64_to_32(env);
291 reg.id = AARCH64_CORE_REG(elr_el1);
292 reg.addr = (uintptr_t) &env->elr_el[1];
293 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
294 if (ret) {
295 return ret;
298 for (i = 0; i < KVM_NR_SPSR; i++) {
299 reg.id = AARCH64_CORE_REG(spsr[i]);
300 reg.addr = (uintptr_t) &env->banked_spsr[i - 1];
301 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
302 if (ret) {
303 return ret;
307 if (!write_kvmstate_to_list(cpu)) {
308 return EINVAL;
310 /* Note that it's OK to have registers which aren't in CPUState,
311 * so we can ignore a failure return here.
313 write_list_to_cpustate(cpu);
315 kvm_arm_sync_mpstate_to_qemu(cpu);
317 /* TODO: other registers */
318 return ret;