s390x/kvm: Fix switch/case indentation for handle_diag
[qemu/qmp-unstable.git] / cpus.c
blobb9e5685e160755e110fcab98286e000f7ad7368b
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor/monitor.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/dma.h"
32 #include "sysemu/kvm.h"
33 #include "qmp-commands.h"
35 #include "qemu/thread.h"
36 #include "sysemu/cpus.h"
37 #include "sysemu/qtest.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/bitmap.h"
41 #ifndef _WIN32
42 #include "qemu/compatfd.h"
43 #endif
45 #ifdef CONFIG_LINUX
47 #include <sys/prctl.h>
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
61 #endif /* CONFIG_LINUX */
63 static CPUState *next_cpu;
65 bool cpu_is_stopped(CPUState *cpu)
67 return cpu->stopped || !runstate_is_running();
70 static bool cpu_thread_is_idle(CPUState *cpu)
72 if (cpu->stop || cpu->queued_work_first) {
73 return false;
75 if (cpu_is_stopped(cpu)) {
76 return true;
78 if (!cpu->halted || qemu_cpu_has_work(cpu) ||
79 kvm_halt_in_kernel()) {
80 return false;
82 return true;
85 static bool all_cpu_threads_idle(void)
87 CPUState *cpu;
89 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
90 if (!cpu_thread_is_idle(cpu)) {
91 return false;
94 return true;
97 /***********************************************************/
98 /* guest cycle counter */
100 /* Conversion factor from emulated instructions to virtual clock ticks. */
101 static int icount_time_shift;
102 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
103 #define MAX_ICOUNT_SHIFT 10
104 /* Compensate for varying guest execution speed. */
105 static int64_t qemu_icount_bias;
106 static QEMUTimer *icount_rt_timer;
107 static QEMUTimer *icount_vm_timer;
108 static QEMUTimer *icount_warp_timer;
109 static int64_t vm_clock_warp_start;
110 static int64_t qemu_icount;
112 typedef struct TimersState {
113 int64_t cpu_ticks_prev;
114 int64_t cpu_ticks_offset;
115 int64_t cpu_clock_offset;
116 int32_t cpu_ticks_enabled;
117 int64_t dummy;
118 } TimersState;
120 static TimersState timers_state;
122 /* Return the virtual CPU time, based on the instruction counter. */
123 int64_t cpu_get_icount(void)
125 int64_t icount;
126 CPUState *cpu = current_cpu;
128 icount = qemu_icount;
129 if (cpu) {
130 CPUArchState *env = cpu->env_ptr;
131 if (!can_do_io(env)) {
132 fprintf(stderr, "Bad clock read\n");
134 icount -= (env->icount_decr.u16.low + env->icount_extra);
136 return qemu_icount_bias + (icount << icount_time_shift);
139 /* return the host CPU cycle counter and handle stop/restart */
140 int64_t cpu_get_ticks(void)
142 if (use_icount) {
143 return cpu_get_icount();
145 if (!timers_state.cpu_ticks_enabled) {
146 return timers_state.cpu_ticks_offset;
147 } else {
148 int64_t ticks;
149 ticks = cpu_get_real_ticks();
150 if (timers_state.cpu_ticks_prev > ticks) {
151 /* Note: non increasing ticks may happen if the host uses
152 software suspend */
153 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
155 timers_state.cpu_ticks_prev = ticks;
156 return ticks + timers_state.cpu_ticks_offset;
160 /* return the host CPU monotonic timer and handle stop/restart */
161 int64_t cpu_get_clock(void)
163 int64_t ti;
164 if (!timers_state.cpu_ticks_enabled) {
165 return timers_state.cpu_clock_offset;
166 } else {
167 ti = get_clock();
168 return ti + timers_state.cpu_clock_offset;
172 /* enable cpu_get_ticks() */
173 void cpu_enable_ticks(void)
175 if (!timers_state.cpu_ticks_enabled) {
176 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
177 timers_state.cpu_clock_offset -= get_clock();
178 timers_state.cpu_ticks_enabled = 1;
182 /* disable cpu_get_ticks() : the clock is stopped. You must not call
183 cpu_get_ticks() after that. */
184 void cpu_disable_ticks(void)
186 if (timers_state.cpu_ticks_enabled) {
187 timers_state.cpu_ticks_offset = cpu_get_ticks();
188 timers_state.cpu_clock_offset = cpu_get_clock();
189 timers_state.cpu_ticks_enabled = 0;
193 /* Correlation between real and virtual time is always going to be
194 fairly approximate, so ignore small variation.
195 When the guest is idle real and virtual time will be aligned in
196 the IO wait loop. */
197 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
199 static void icount_adjust(void)
201 int64_t cur_time;
202 int64_t cur_icount;
203 int64_t delta;
204 static int64_t last_delta;
205 /* If the VM is not running, then do nothing. */
206 if (!runstate_is_running()) {
207 return;
209 cur_time = cpu_get_clock();
210 cur_icount = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
211 delta = cur_icount - cur_time;
212 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
213 if (delta > 0
214 && last_delta + ICOUNT_WOBBLE < delta * 2
215 && icount_time_shift > 0) {
216 /* The guest is getting too far ahead. Slow time down. */
217 icount_time_shift--;
219 if (delta < 0
220 && last_delta - ICOUNT_WOBBLE > delta * 2
221 && icount_time_shift < MAX_ICOUNT_SHIFT) {
222 /* The guest is getting too far behind. Speed time up. */
223 icount_time_shift++;
225 last_delta = delta;
226 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
229 static void icount_adjust_rt(void *opaque)
231 timer_mod(icount_rt_timer,
232 qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000);
233 icount_adjust();
236 static void icount_adjust_vm(void *opaque)
238 timer_mod(icount_vm_timer,
239 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
240 get_ticks_per_sec() / 10);
241 icount_adjust();
244 static int64_t qemu_icount_round(int64_t count)
246 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
249 static void icount_warp_rt(void *opaque)
251 if (vm_clock_warp_start == -1) {
252 return;
255 if (runstate_is_running()) {
256 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
257 int64_t warp_delta = clock - vm_clock_warp_start;
258 if (use_icount == 1) {
259 qemu_icount_bias += warp_delta;
260 } else {
262 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
263 * far ahead of real time.
265 int64_t cur_time = cpu_get_clock();
266 int64_t cur_icount = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
267 int64_t delta = cur_time - cur_icount;
268 qemu_icount_bias += MIN(warp_delta, delta);
270 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
271 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
274 vm_clock_warp_start = -1;
277 void qtest_clock_warp(int64_t dest)
279 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
280 assert(qtest_enabled());
281 while (clock < dest) {
282 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
283 int64_t warp = MIN(dest - clock, deadline);
284 qemu_icount_bias += warp;
285 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
286 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
288 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
291 void qemu_clock_warp(QEMUClockType type)
293 int64_t deadline;
296 * There are too many global variables to make the "warp" behavior
297 * applicable to other clocks. But a clock argument removes the
298 * need for if statements all over the place.
300 if (type != QEMU_CLOCK_VIRTUAL || !use_icount) {
301 return;
305 * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now.
306 * This ensures that the deadline for the timer is computed correctly below.
307 * This also makes sure that the insn counter is synchronized before the
308 * CPU starts running, in case the CPU is woken by an event other than
309 * the earliest QEMU_CLOCK_VIRTUAL timer.
311 icount_warp_rt(NULL);
312 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(QEMU_CLOCK_VIRTUAL)) {
313 timer_del(icount_warp_timer);
314 return;
317 if (qtest_enabled()) {
318 /* When testing, qtest commands advance icount. */
319 return;
322 vm_clock_warp_start = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
323 /* We want to use the earliest deadline from ALL vm_clocks */
324 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
326 /* Maintain prior (possibly buggy) behaviour where if no deadline
327 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
328 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
329 * nanoseconds.
331 if ((deadline < 0) || (deadline > INT32_MAX)) {
332 deadline = INT32_MAX;
335 if (deadline > 0) {
337 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
338 * sleep. Otherwise, the CPU might be waiting for a future timer
339 * interrupt to wake it up, but the interrupt never comes because
340 * the vCPU isn't running any insns and thus doesn't advance the
341 * QEMU_CLOCK_VIRTUAL.
343 * An extreme solution for this problem would be to never let VCPUs
344 * sleep in icount mode if there is a pending QEMU_CLOCK_VIRTUAL
345 * timer; rather time could just advance to the next QEMU_CLOCK_VIRTUAL
346 * event. Instead, we do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL
347 * after some e"real" time, (related to the time left until the next
348 * event) has passed. The QEMU_CLOCK_REALTIME timer will do this.
349 * This avoids that the warps are visible externally; for example,
350 * you will not be sending network packets continuously instead of
351 * every 100ms.
353 timer_mod(icount_warp_timer, vm_clock_warp_start + deadline);
354 } else if (deadline == 0) {
355 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
359 static const VMStateDescription vmstate_timers = {
360 .name = "timer",
361 .version_id = 2,
362 .minimum_version_id = 1,
363 .minimum_version_id_old = 1,
364 .fields = (VMStateField[]) {
365 VMSTATE_INT64(cpu_ticks_offset, TimersState),
366 VMSTATE_INT64(dummy, TimersState),
367 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
368 VMSTATE_END_OF_LIST()
372 void configure_icount(const char *option)
374 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
375 if (!option) {
376 return;
379 icount_warp_timer = timer_new_ns(QEMU_CLOCK_REALTIME,
380 icount_warp_rt, NULL);
381 if (strcmp(option, "auto") != 0) {
382 icount_time_shift = strtol(option, NULL, 0);
383 use_icount = 1;
384 return;
387 use_icount = 2;
389 /* 125MIPS seems a reasonable initial guess at the guest speed.
390 It will be corrected fairly quickly anyway. */
391 icount_time_shift = 3;
393 /* Have both realtime and virtual time triggers for speed adjustment.
394 The realtime trigger catches emulated time passing too slowly,
395 the virtual time trigger catches emulated time passing too fast.
396 Realtime triggers occur even when idle, so use them less frequently
397 than VM triggers. */
398 icount_rt_timer = timer_new_ms(QEMU_CLOCK_REALTIME,
399 icount_adjust_rt, NULL);
400 timer_mod(icount_rt_timer,
401 qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000);
402 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
403 icount_adjust_vm, NULL);
404 timer_mod(icount_vm_timer,
405 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
406 get_ticks_per_sec() / 10);
409 /***********************************************************/
410 void hw_error(const char *fmt, ...)
412 va_list ap;
413 CPUState *cpu;
415 va_start(ap, fmt);
416 fprintf(stderr, "qemu: hardware error: ");
417 vfprintf(stderr, fmt, ap);
418 fprintf(stderr, "\n");
419 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
420 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
421 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
423 va_end(ap);
424 abort();
427 void cpu_synchronize_all_states(void)
429 CPUState *cpu;
431 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
432 cpu_synchronize_state(cpu);
436 void cpu_synchronize_all_post_reset(void)
438 CPUState *cpu;
440 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
441 cpu_synchronize_post_reset(cpu);
445 void cpu_synchronize_all_post_init(void)
447 CPUState *cpu;
449 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
450 cpu_synchronize_post_init(cpu);
454 static int do_vm_stop(RunState state)
456 int ret = 0;
458 if (runstate_is_running()) {
459 cpu_disable_ticks();
460 pause_all_vcpus();
461 runstate_set(state);
462 vm_state_notify(0, state);
463 monitor_protocol_event(QEVENT_STOP, NULL);
466 bdrv_drain_all();
467 ret = bdrv_flush_all();
469 return ret;
472 static bool cpu_can_run(CPUState *cpu)
474 if (cpu->stop) {
475 return false;
477 if (cpu_is_stopped(cpu)) {
478 return false;
480 return true;
483 static void cpu_handle_guest_debug(CPUState *cpu)
485 gdb_set_stop_cpu(cpu);
486 qemu_system_debug_request();
487 cpu->stopped = true;
490 static void cpu_signal(int sig)
492 if (current_cpu) {
493 cpu_exit(current_cpu);
495 exit_request = 1;
498 #ifdef CONFIG_LINUX
499 static void sigbus_reraise(void)
501 sigset_t set;
502 struct sigaction action;
504 memset(&action, 0, sizeof(action));
505 action.sa_handler = SIG_DFL;
506 if (!sigaction(SIGBUS, &action, NULL)) {
507 raise(SIGBUS);
508 sigemptyset(&set);
509 sigaddset(&set, SIGBUS);
510 sigprocmask(SIG_UNBLOCK, &set, NULL);
512 perror("Failed to re-raise SIGBUS!\n");
513 abort();
516 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
517 void *ctx)
519 if (kvm_on_sigbus(siginfo->ssi_code,
520 (void *)(intptr_t)siginfo->ssi_addr)) {
521 sigbus_reraise();
525 static void qemu_init_sigbus(void)
527 struct sigaction action;
529 memset(&action, 0, sizeof(action));
530 action.sa_flags = SA_SIGINFO;
531 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
532 sigaction(SIGBUS, &action, NULL);
534 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
537 static void qemu_kvm_eat_signals(CPUState *cpu)
539 struct timespec ts = { 0, 0 };
540 siginfo_t siginfo;
541 sigset_t waitset;
542 sigset_t chkset;
543 int r;
545 sigemptyset(&waitset);
546 sigaddset(&waitset, SIG_IPI);
547 sigaddset(&waitset, SIGBUS);
549 do {
550 r = sigtimedwait(&waitset, &siginfo, &ts);
551 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
552 perror("sigtimedwait");
553 exit(1);
556 switch (r) {
557 case SIGBUS:
558 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
559 sigbus_reraise();
561 break;
562 default:
563 break;
566 r = sigpending(&chkset);
567 if (r == -1) {
568 perror("sigpending");
569 exit(1);
571 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
574 #else /* !CONFIG_LINUX */
576 static void qemu_init_sigbus(void)
580 static void qemu_kvm_eat_signals(CPUState *cpu)
583 #endif /* !CONFIG_LINUX */
585 #ifndef _WIN32
586 static void dummy_signal(int sig)
590 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
592 int r;
593 sigset_t set;
594 struct sigaction sigact;
596 memset(&sigact, 0, sizeof(sigact));
597 sigact.sa_handler = dummy_signal;
598 sigaction(SIG_IPI, &sigact, NULL);
600 pthread_sigmask(SIG_BLOCK, NULL, &set);
601 sigdelset(&set, SIG_IPI);
602 sigdelset(&set, SIGBUS);
603 r = kvm_set_signal_mask(cpu, &set);
604 if (r) {
605 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
606 exit(1);
610 static void qemu_tcg_init_cpu_signals(void)
612 sigset_t set;
613 struct sigaction sigact;
615 memset(&sigact, 0, sizeof(sigact));
616 sigact.sa_handler = cpu_signal;
617 sigaction(SIG_IPI, &sigact, NULL);
619 sigemptyset(&set);
620 sigaddset(&set, SIG_IPI);
621 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
624 #else /* _WIN32 */
625 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
627 abort();
630 static void qemu_tcg_init_cpu_signals(void)
633 #endif /* _WIN32 */
635 static QemuMutex qemu_global_mutex;
636 static QemuCond qemu_io_proceeded_cond;
637 static bool iothread_requesting_mutex;
639 static QemuThread io_thread;
641 static QemuThread *tcg_cpu_thread;
642 static QemuCond *tcg_halt_cond;
644 /* cpu creation */
645 static QemuCond qemu_cpu_cond;
646 /* system init */
647 static QemuCond qemu_pause_cond;
648 static QemuCond qemu_work_cond;
650 void qemu_init_cpu_loop(void)
652 qemu_init_sigbus();
653 qemu_cond_init(&qemu_cpu_cond);
654 qemu_cond_init(&qemu_pause_cond);
655 qemu_cond_init(&qemu_work_cond);
656 qemu_cond_init(&qemu_io_proceeded_cond);
657 qemu_mutex_init(&qemu_global_mutex);
659 qemu_thread_get_self(&io_thread);
662 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
664 struct qemu_work_item wi;
666 if (qemu_cpu_is_self(cpu)) {
667 func(data);
668 return;
671 wi.func = func;
672 wi.data = data;
673 wi.free = false;
674 if (cpu->queued_work_first == NULL) {
675 cpu->queued_work_first = &wi;
676 } else {
677 cpu->queued_work_last->next = &wi;
679 cpu->queued_work_last = &wi;
680 wi.next = NULL;
681 wi.done = false;
683 qemu_cpu_kick(cpu);
684 while (!wi.done) {
685 CPUState *self_cpu = current_cpu;
687 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
688 current_cpu = self_cpu;
692 void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
694 struct qemu_work_item *wi;
696 if (qemu_cpu_is_self(cpu)) {
697 func(data);
698 return;
701 wi = g_malloc0(sizeof(struct qemu_work_item));
702 wi->func = func;
703 wi->data = data;
704 wi->free = true;
705 if (cpu->queued_work_first == NULL) {
706 cpu->queued_work_first = wi;
707 } else {
708 cpu->queued_work_last->next = wi;
710 cpu->queued_work_last = wi;
711 wi->next = NULL;
712 wi->done = false;
714 qemu_cpu_kick(cpu);
717 static void flush_queued_work(CPUState *cpu)
719 struct qemu_work_item *wi;
721 if (cpu->queued_work_first == NULL) {
722 return;
725 while ((wi = cpu->queued_work_first)) {
726 cpu->queued_work_first = wi->next;
727 wi->func(wi->data);
728 wi->done = true;
729 if (wi->free) {
730 g_free(wi);
733 cpu->queued_work_last = NULL;
734 qemu_cond_broadcast(&qemu_work_cond);
737 static void qemu_wait_io_event_common(CPUState *cpu)
739 if (cpu->stop) {
740 cpu->stop = false;
741 cpu->stopped = true;
742 qemu_cond_signal(&qemu_pause_cond);
744 flush_queued_work(cpu);
745 cpu->thread_kicked = false;
748 static void qemu_tcg_wait_io_event(void)
750 CPUState *cpu;
752 while (all_cpu_threads_idle()) {
753 /* Start accounting real time to the virtual clock if the CPUs
754 are idle. */
755 qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
756 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
759 while (iothread_requesting_mutex) {
760 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
763 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
764 qemu_wait_io_event_common(cpu);
768 static void qemu_kvm_wait_io_event(CPUState *cpu)
770 while (cpu_thread_is_idle(cpu)) {
771 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
774 qemu_kvm_eat_signals(cpu);
775 qemu_wait_io_event_common(cpu);
778 static void *qemu_kvm_cpu_thread_fn(void *arg)
780 CPUState *cpu = arg;
781 int r;
783 qemu_mutex_lock(&qemu_global_mutex);
784 qemu_thread_get_self(cpu->thread);
785 cpu->thread_id = qemu_get_thread_id();
786 current_cpu = cpu;
788 r = kvm_init_vcpu(cpu);
789 if (r < 0) {
790 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
791 exit(1);
794 qemu_kvm_init_cpu_signals(cpu);
796 /* signal CPU creation */
797 cpu->created = true;
798 qemu_cond_signal(&qemu_cpu_cond);
800 while (1) {
801 if (cpu_can_run(cpu)) {
802 r = kvm_cpu_exec(cpu);
803 if (r == EXCP_DEBUG) {
804 cpu_handle_guest_debug(cpu);
807 qemu_kvm_wait_io_event(cpu);
810 return NULL;
813 static void *qemu_dummy_cpu_thread_fn(void *arg)
815 #ifdef _WIN32
816 fprintf(stderr, "qtest is not supported under Windows\n");
817 exit(1);
818 #else
819 CPUState *cpu = arg;
820 sigset_t waitset;
821 int r;
823 qemu_mutex_lock_iothread();
824 qemu_thread_get_self(cpu->thread);
825 cpu->thread_id = qemu_get_thread_id();
827 sigemptyset(&waitset);
828 sigaddset(&waitset, SIG_IPI);
830 /* signal CPU creation */
831 cpu->created = true;
832 qemu_cond_signal(&qemu_cpu_cond);
834 current_cpu = cpu;
835 while (1) {
836 current_cpu = NULL;
837 qemu_mutex_unlock_iothread();
838 do {
839 int sig;
840 r = sigwait(&waitset, &sig);
841 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
842 if (r == -1) {
843 perror("sigwait");
844 exit(1);
846 qemu_mutex_lock_iothread();
847 current_cpu = cpu;
848 qemu_wait_io_event_common(cpu);
851 return NULL;
852 #endif
855 static void tcg_exec_all(void);
857 static void tcg_signal_cpu_creation(CPUState *cpu, void *data)
859 cpu->thread_id = qemu_get_thread_id();
860 cpu->created = true;
863 static void *qemu_tcg_cpu_thread_fn(void *arg)
865 CPUState *cpu = arg;
867 qemu_tcg_init_cpu_signals();
868 qemu_thread_get_self(cpu->thread);
870 qemu_mutex_lock(&qemu_global_mutex);
871 qemu_for_each_cpu(tcg_signal_cpu_creation, NULL);
872 qemu_cond_signal(&qemu_cpu_cond);
874 /* wait for initial kick-off after machine start */
875 while (first_cpu->stopped) {
876 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
878 /* process any pending work */
879 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
880 qemu_wait_io_event_common(cpu);
884 while (1) {
885 tcg_exec_all();
887 if (use_icount) {
888 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
890 if (deadline == 0) {
891 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
894 qemu_tcg_wait_io_event();
897 return NULL;
900 static void qemu_cpu_kick_thread(CPUState *cpu)
902 #ifndef _WIN32
903 int err;
905 err = pthread_kill(cpu->thread->thread, SIG_IPI);
906 if (err) {
907 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
908 exit(1);
910 #else /* _WIN32 */
911 if (!qemu_cpu_is_self(cpu)) {
912 CONTEXT tcgContext;
914 if (SuspendThread(cpu->hThread) == (DWORD)-1) {
915 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
916 GetLastError());
917 exit(1);
920 /* On multi-core systems, we are not sure that the thread is actually
921 * suspended until we can get the context.
923 tcgContext.ContextFlags = CONTEXT_CONTROL;
924 while (GetThreadContext(cpu->hThread, &tcgContext) != 0) {
925 continue;
928 cpu_signal(0);
930 if (ResumeThread(cpu->hThread) == (DWORD)-1) {
931 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
932 GetLastError());
933 exit(1);
936 #endif
939 void qemu_cpu_kick(CPUState *cpu)
941 qemu_cond_broadcast(cpu->halt_cond);
942 if (!tcg_enabled() && !cpu->thread_kicked) {
943 qemu_cpu_kick_thread(cpu);
944 cpu->thread_kicked = true;
948 void qemu_cpu_kick_self(void)
950 #ifndef _WIN32
951 assert(current_cpu);
953 if (!current_cpu->thread_kicked) {
954 qemu_cpu_kick_thread(current_cpu);
955 current_cpu->thread_kicked = true;
957 #else
958 abort();
959 #endif
962 bool qemu_cpu_is_self(CPUState *cpu)
964 return qemu_thread_is_self(cpu->thread);
967 static bool qemu_in_vcpu_thread(void)
969 return current_cpu && qemu_cpu_is_self(current_cpu);
972 void qemu_mutex_lock_iothread(void)
974 if (!tcg_enabled()) {
975 qemu_mutex_lock(&qemu_global_mutex);
976 } else {
977 iothread_requesting_mutex = true;
978 if (qemu_mutex_trylock(&qemu_global_mutex)) {
979 qemu_cpu_kick_thread(first_cpu);
980 qemu_mutex_lock(&qemu_global_mutex);
982 iothread_requesting_mutex = false;
983 qemu_cond_broadcast(&qemu_io_proceeded_cond);
987 void qemu_mutex_unlock_iothread(void)
989 qemu_mutex_unlock(&qemu_global_mutex);
992 static int all_vcpus_paused(void)
994 CPUState *cpu = first_cpu;
996 while (cpu) {
997 if (!cpu->stopped) {
998 return 0;
1000 cpu = cpu->next_cpu;
1003 return 1;
1006 void pause_all_vcpus(void)
1008 CPUState *cpu = first_cpu;
1010 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1011 while (cpu) {
1012 cpu->stop = true;
1013 qemu_cpu_kick(cpu);
1014 cpu = cpu->next_cpu;
1017 if (qemu_in_vcpu_thread()) {
1018 cpu_stop_current();
1019 if (!kvm_enabled()) {
1020 cpu = first_cpu;
1021 while (cpu) {
1022 cpu->stop = false;
1023 cpu->stopped = true;
1024 cpu = cpu->next_cpu;
1026 return;
1030 while (!all_vcpus_paused()) {
1031 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1032 cpu = first_cpu;
1033 while (cpu) {
1034 qemu_cpu_kick(cpu);
1035 cpu = cpu->next_cpu;
1040 void cpu_resume(CPUState *cpu)
1042 cpu->stop = false;
1043 cpu->stopped = false;
1044 qemu_cpu_kick(cpu);
1047 void resume_all_vcpus(void)
1049 CPUState *cpu = first_cpu;
1051 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1052 while (cpu) {
1053 cpu_resume(cpu);
1054 cpu = cpu->next_cpu;
1058 static void qemu_tcg_init_vcpu(CPUState *cpu)
1060 /* share a single thread for all cpus with TCG */
1061 if (!tcg_cpu_thread) {
1062 cpu->thread = g_malloc0(sizeof(QemuThread));
1063 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1064 qemu_cond_init(cpu->halt_cond);
1065 tcg_halt_cond = cpu->halt_cond;
1066 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu,
1067 QEMU_THREAD_JOINABLE);
1068 #ifdef _WIN32
1069 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1070 #endif
1071 while (!cpu->created) {
1072 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1074 tcg_cpu_thread = cpu->thread;
1075 } else {
1076 cpu->thread = tcg_cpu_thread;
1077 cpu->halt_cond = tcg_halt_cond;
1081 static void qemu_kvm_start_vcpu(CPUState *cpu)
1083 cpu->thread = g_malloc0(sizeof(QemuThread));
1084 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1085 qemu_cond_init(cpu->halt_cond);
1086 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, cpu,
1087 QEMU_THREAD_JOINABLE);
1088 while (!cpu->created) {
1089 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1093 static void qemu_dummy_start_vcpu(CPUState *cpu)
1095 cpu->thread = g_malloc0(sizeof(QemuThread));
1096 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1097 qemu_cond_init(cpu->halt_cond);
1098 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, cpu,
1099 QEMU_THREAD_JOINABLE);
1100 while (!cpu->created) {
1101 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1105 void qemu_init_vcpu(CPUState *cpu)
1107 cpu->nr_cores = smp_cores;
1108 cpu->nr_threads = smp_threads;
1109 cpu->stopped = true;
1110 if (kvm_enabled()) {
1111 qemu_kvm_start_vcpu(cpu);
1112 } else if (tcg_enabled()) {
1113 qemu_tcg_init_vcpu(cpu);
1114 } else {
1115 qemu_dummy_start_vcpu(cpu);
1119 void cpu_stop_current(void)
1121 if (current_cpu) {
1122 current_cpu->stop = false;
1123 current_cpu->stopped = true;
1124 cpu_exit(current_cpu);
1125 qemu_cond_signal(&qemu_pause_cond);
1129 int vm_stop(RunState state)
1131 if (qemu_in_vcpu_thread()) {
1132 qemu_system_vmstop_request(state);
1134 * FIXME: should not return to device code in case
1135 * vm_stop() has been requested.
1137 cpu_stop_current();
1138 return 0;
1141 return do_vm_stop(state);
1144 /* does a state transition even if the VM is already stopped,
1145 current state is forgotten forever */
1146 int vm_stop_force_state(RunState state)
1148 if (runstate_is_running()) {
1149 return vm_stop(state);
1150 } else {
1151 runstate_set(state);
1152 /* Make sure to return an error if the flush in a previous vm_stop()
1153 * failed. */
1154 return bdrv_flush_all();
1158 static int tcg_cpu_exec(CPUArchState *env)
1160 int ret;
1161 #ifdef CONFIG_PROFILER
1162 int64_t ti;
1163 #endif
1165 #ifdef CONFIG_PROFILER
1166 ti = profile_getclock();
1167 #endif
1168 if (use_icount) {
1169 int64_t count;
1170 int64_t deadline;
1171 int decr;
1172 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1173 env->icount_decr.u16.low = 0;
1174 env->icount_extra = 0;
1175 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1177 /* Maintain prior (possibly buggy) behaviour where if no deadline
1178 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1179 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1180 * nanoseconds.
1182 if ((deadline < 0) || (deadline > INT32_MAX)) {
1183 deadline = INT32_MAX;
1186 count = qemu_icount_round(deadline);
1187 qemu_icount += count;
1188 decr = (count > 0xffff) ? 0xffff : count;
1189 count -= decr;
1190 env->icount_decr.u16.low = decr;
1191 env->icount_extra = count;
1193 ret = cpu_exec(env);
1194 #ifdef CONFIG_PROFILER
1195 qemu_time += profile_getclock() - ti;
1196 #endif
1197 if (use_icount) {
1198 /* Fold pending instructions back into the
1199 instruction counter, and clear the interrupt flag. */
1200 qemu_icount -= (env->icount_decr.u16.low
1201 + env->icount_extra);
1202 env->icount_decr.u32 = 0;
1203 env->icount_extra = 0;
1205 return ret;
1208 static void tcg_exec_all(void)
1210 int r;
1212 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1213 qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
1215 if (next_cpu == NULL) {
1216 next_cpu = first_cpu;
1218 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1219 CPUState *cpu = next_cpu;
1220 CPUArchState *env = cpu->env_ptr;
1222 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1223 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1225 if (cpu_can_run(cpu)) {
1226 r = tcg_cpu_exec(env);
1227 if (r == EXCP_DEBUG) {
1228 cpu_handle_guest_debug(cpu);
1229 break;
1231 } else if (cpu->stop || cpu->stopped) {
1232 break;
1235 exit_request = 0;
1238 void set_numa_modes(void)
1240 CPUState *cpu;
1241 int i;
1243 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1244 for (i = 0; i < nb_numa_nodes; i++) {
1245 if (test_bit(cpu->cpu_index, node_cpumask[i])) {
1246 cpu->numa_node = i;
1252 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1254 /* XXX: implement xxx_cpu_list for targets that still miss it */
1255 #if defined(cpu_list)
1256 cpu_list(f, cpu_fprintf);
1257 #endif
1260 CpuInfoList *qmp_query_cpus(Error **errp)
1262 CpuInfoList *head = NULL, *cur_item = NULL;
1263 CPUState *cpu;
1265 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1266 CpuInfoList *info;
1267 #if defined(TARGET_I386)
1268 X86CPU *x86_cpu = X86_CPU(cpu);
1269 CPUX86State *env = &x86_cpu->env;
1270 #elif defined(TARGET_PPC)
1271 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1272 CPUPPCState *env = &ppc_cpu->env;
1273 #elif defined(TARGET_SPARC)
1274 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1275 CPUSPARCState *env = &sparc_cpu->env;
1276 #elif defined(TARGET_MIPS)
1277 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1278 CPUMIPSState *env = &mips_cpu->env;
1279 #endif
1281 cpu_synchronize_state(cpu);
1283 info = g_malloc0(sizeof(*info));
1284 info->value = g_malloc0(sizeof(*info->value));
1285 info->value->CPU = cpu->cpu_index;
1286 info->value->current = (cpu == first_cpu);
1287 info->value->halted = cpu->halted;
1288 info->value->thread_id = cpu->thread_id;
1289 #if defined(TARGET_I386)
1290 info->value->has_pc = true;
1291 info->value->pc = env->eip + env->segs[R_CS].base;
1292 #elif defined(TARGET_PPC)
1293 info->value->has_nip = true;
1294 info->value->nip = env->nip;
1295 #elif defined(TARGET_SPARC)
1296 info->value->has_pc = true;
1297 info->value->pc = env->pc;
1298 info->value->has_npc = true;
1299 info->value->npc = env->npc;
1300 #elif defined(TARGET_MIPS)
1301 info->value->has_PC = true;
1302 info->value->PC = env->active_tc.PC;
1303 #endif
1305 /* XXX: waiting for the qapi to support GSList */
1306 if (!cur_item) {
1307 head = cur_item = info;
1308 } else {
1309 cur_item->next = info;
1310 cur_item = info;
1314 return head;
1317 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1318 bool has_cpu, int64_t cpu_index, Error **errp)
1320 FILE *f;
1321 uint32_t l;
1322 CPUState *cpu;
1323 uint8_t buf[1024];
1325 if (!has_cpu) {
1326 cpu_index = 0;
1329 cpu = qemu_get_cpu(cpu_index);
1330 if (cpu == NULL) {
1331 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1332 "a CPU number");
1333 return;
1336 f = fopen(filename, "wb");
1337 if (!f) {
1338 error_setg_file_open(errp, errno, filename);
1339 return;
1342 while (size != 0) {
1343 l = sizeof(buf);
1344 if (l > size)
1345 l = size;
1346 cpu_memory_rw_debug(cpu, addr, buf, l, 0);
1347 if (fwrite(buf, 1, l, f) != l) {
1348 error_set(errp, QERR_IO_ERROR);
1349 goto exit;
1351 addr += l;
1352 size -= l;
1355 exit:
1356 fclose(f);
1359 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1360 Error **errp)
1362 FILE *f;
1363 uint32_t l;
1364 uint8_t buf[1024];
1366 f = fopen(filename, "wb");
1367 if (!f) {
1368 error_setg_file_open(errp, errno, filename);
1369 return;
1372 while (size != 0) {
1373 l = sizeof(buf);
1374 if (l > size)
1375 l = size;
1376 cpu_physical_memory_rw(addr, buf, l, 0);
1377 if (fwrite(buf, 1, l, f) != l) {
1378 error_set(errp, QERR_IO_ERROR);
1379 goto exit;
1381 addr += l;
1382 size -= l;
1385 exit:
1386 fclose(f);
1389 void qmp_inject_nmi(Error **errp)
1391 #if defined(TARGET_I386)
1392 CPUState *cs;
1394 for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
1395 X86CPU *cpu = X86_CPU(cs);
1396 CPUX86State *env = &cpu->env;
1398 if (!env->apic_state) {
1399 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
1400 } else {
1401 apic_deliver_nmi(env->apic_state);
1404 #else
1405 error_set(errp, QERR_UNSUPPORTED);
1406 #endif