async: aio_context_new(): Handle event_notifier_init failure
[qemu/qmp-unstable.git] / kvm-all.c
blob8b9e66d42dfbd0b47cf24e21eccb253a7d2d1386
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
38 #include "trace.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
43 #ifdef CONFIG_EVENTFD
44 #include <sys/eventfd.h>
45 #endif
47 #ifdef CONFIG_VALGRIND_H
48 #include <valgrind/memcheck.h>
49 #endif
51 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
52 #define PAGE_SIZE TARGET_PAGE_SIZE
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #define KVM_MSI_HASHTAB_SIZE 256
66 typedef struct KVMSlot
68 hwaddr start_addr;
69 ram_addr_t memory_size;
70 void *ram;
71 int slot;
72 int flags;
73 } KVMSlot;
75 typedef struct kvm_dirty_log KVMDirtyLog;
77 struct KVMState
79 KVMSlot *slots;
80 int nr_slots;
81 int fd;
82 int vmfd;
83 int coalesced_mmio;
84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85 bool coalesced_flush_in_progress;
86 int broken_set_mem_region;
87 int migration_log;
88 int vcpu_events;
89 int robust_singlestep;
90 int debugregs;
91 #ifdef KVM_CAP_SET_GUEST_DEBUG
92 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
93 #endif
94 int pit_state2;
95 int xsave, xcrs;
96 int many_ioeventfds;
97 int intx_set_mask;
98 /* The man page (and posix) say ioctl numbers are signed int, but
99 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
100 * unsigned, and treating them as signed here can break things */
101 unsigned irq_set_ioctl;
102 unsigned int sigmask_len;
103 #ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing *irq_routes;
105 int nr_allocated_irq_routes;
106 uint32_t *used_gsi_bitmap;
107 unsigned int gsi_count;
108 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109 bool direct_msi;
110 #endif
113 KVMState *kvm_state;
114 bool kvm_kernel_irqchip;
115 bool kvm_async_interrupts_allowed;
116 bool kvm_halt_in_kernel_allowed;
117 bool kvm_eventfds_allowed;
118 bool kvm_irqfds_allowed;
119 bool kvm_msi_via_irqfd_allowed;
120 bool kvm_gsi_routing_allowed;
121 bool kvm_gsi_direct_mapping;
122 bool kvm_allowed;
123 bool kvm_readonly_mem_allowed;
125 static const KVMCapabilityInfo kvm_required_capabilites[] = {
126 KVM_CAP_INFO(USER_MEMORY),
127 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
128 KVM_CAP_LAST_INFO
131 static KVMSlot *kvm_alloc_slot(KVMState *s)
133 int i;
135 for (i = 0; i < s->nr_slots; i++) {
136 if (s->slots[i].memory_size == 0) {
137 return &s->slots[i];
141 fprintf(stderr, "%s: no free slot available\n", __func__);
142 abort();
145 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
146 hwaddr start_addr,
147 hwaddr end_addr)
149 int i;
151 for (i = 0; i < s->nr_slots; i++) {
152 KVMSlot *mem = &s->slots[i];
154 if (start_addr == mem->start_addr &&
155 end_addr == mem->start_addr + mem->memory_size) {
156 return mem;
160 return NULL;
164 * Find overlapping slot with lowest start address
166 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
167 hwaddr start_addr,
168 hwaddr end_addr)
170 KVMSlot *found = NULL;
171 int i;
173 for (i = 0; i < s->nr_slots; i++) {
174 KVMSlot *mem = &s->slots[i];
176 if (mem->memory_size == 0 ||
177 (found && found->start_addr < mem->start_addr)) {
178 continue;
181 if (end_addr > mem->start_addr &&
182 start_addr < mem->start_addr + mem->memory_size) {
183 found = mem;
187 return found;
190 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
191 hwaddr *phys_addr)
193 int i;
195 for (i = 0; i < s->nr_slots; i++) {
196 KVMSlot *mem = &s->slots[i];
198 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
199 *phys_addr = mem->start_addr + (ram - mem->ram);
200 return 1;
204 return 0;
207 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
209 struct kvm_userspace_memory_region mem;
211 mem.slot = slot->slot;
212 mem.guest_phys_addr = slot->start_addr;
213 mem.userspace_addr = (unsigned long)slot->ram;
214 mem.flags = slot->flags;
215 if (s->migration_log) {
216 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
219 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
220 /* Set the slot size to 0 before setting the slot to the desired
221 * value. This is needed based on KVM commit 75d61fbc. */
222 mem.memory_size = 0;
223 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
225 mem.memory_size = slot->memory_size;
226 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
229 int kvm_init_vcpu(CPUState *cpu)
231 KVMState *s = kvm_state;
232 long mmap_size;
233 int ret;
235 DPRINTF("kvm_init_vcpu\n");
237 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
238 if (ret < 0) {
239 DPRINTF("kvm_create_vcpu failed\n");
240 goto err;
243 cpu->kvm_fd = ret;
244 cpu->kvm_state = s;
245 cpu->kvm_vcpu_dirty = true;
247 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
248 if (mmap_size < 0) {
249 ret = mmap_size;
250 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
251 goto err;
254 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
255 cpu->kvm_fd, 0);
256 if (cpu->kvm_run == MAP_FAILED) {
257 ret = -errno;
258 DPRINTF("mmap'ing vcpu state failed\n");
259 goto err;
262 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
263 s->coalesced_mmio_ring =
264 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
267 ret = kvm_arch_init_vcpu(cpu);
268 err:
269 return ret;
273 * dirty pages logging control
276 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
278 int flags = 0;
279 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
280 if (readonly && kvm_readonly_mem_allowed) {
281 flags |= KVM_MEM_READONLY;
283 return flags;
286 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
288 KVMState *s = kvm_state;
289 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
290 int old_flags;
292 old_flags = mem->flags;
294 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
295 mem->flags = flags;
297 /* If nothing changed effectively, no need to issue ioctl */
298 if (s->migration_log) {
299 flags |= KVM_MEM_LOG_DIRTY_PAGES;
302 if (flags == old_flags) {
303 return 0;
306 return kvm_set_user_memory_region(s, mem);
309 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
310 ram_addr_t size, bool log_dirty)
312 KVMState *s = kvm_state;
313 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
315 if (mem == NULL) {
316 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
317 TARGET_FMT_plx "\n", __func__, phys_addr,
318 (hwaddr)(phys_addr + size - 1));
319 return -EINVAL;
321 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
324 static void kvm_log_start(MemoryListener *listener,
325 MemoryRegionSection *section)
327 int r;
329 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
330 int128_get64(section->size), true);
331 if (r < 0) {
332 abort();
336 static void kvm_log_stop(MemoryListener *listener,
337 MemoryRegionSection *section)
339 int r;
341 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
342 int128_get64(section->size), false);
343 if (r < 0) {
344 abort();
348 static int kvm_set_migration_log(int enable)
350 KVMState *s = kvm_state;
351 KVMSlot *mem;
352 int i, err;
354 s->migration_log = enable;
356 for (i = 0; i < s->nr_slots; i++) {
357 mem = &s->slots[i];
359 if (!mem->memory_size) {
360 continue;
362 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
363 continue;
365 err = kvm_set_user_memory_region(s, mem);
366 if (err) {
367 return err;
370 return 0;
373 /* get kvm's dirty pages bitmap and update qemu's */
374 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
375 unsigned long *bitmap)
377 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
378 ram_addr_t pages = int128_get64(section->size) / getpagesize();
380 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
381 return 0;
384 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
387 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
388 * This function updates qemu's dirty bitmap using
389 * memory_region_set_dirty(). This means all bits are set
390 * to dirty.
392 * @start_add: start of logged region.
393 * @end_addr: end of logged region.
395 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
397 KVMState *s = kvm_state;
398 unsigned long size, allocated_size = 0;
399 KVMDirtyLog d;
400 KVMSlot *mem;
401 int ret = 0;
402 hwaddr start_addr = section->offset_within_address_space;
403 hwaddr end_addr = start_addr + int128_get64(section->size);
405 d.dirty_bitmap = NULL;
406 while (start_addr < end_addr) {
407 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
408 if (mem == NULL) {
409 break;
412 /* XXX bad kernel interface alert
413 * For dirty bitmap, kernel allocates array of size aligned to
414 * bits-per-long. But for case when the kernel is 64bits and
415 * the userspace is 32bits, userspace can't align to the same
416 * bits-per-long, since sizeof(long) is different between kernel
417 * and user space. This way, userspace will provide buffer which
418 * may be 4 bytes less than the kernel will use, resulting in
419 * userspace memory corruption (which is not detectable by valgrind
420 * too, in most cases).
421 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
422 * a hope that sizeof(long) wont become >8 any time soon.
424 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
425 /*HOST_LONG_BITS*/ 64) / 8;
426 if (!d.dirty_bitmap) {
427 d.dirty_bitmap = g_malloc(size);
428 } else if (size > allocated_size) {
429 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
431 allocated_size = size;
432 memset(d.dirty_bitmap, 0, allocated_size);
434 d.slot = mem->slot;
436 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
437 DPRINTF("ioctl failed %d\n", errno);
438 ret = -1;
439 break;
442 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
443 start_addr = mem->start_addr + mem->memory_size;
445 g_free(d.dirty_bitmap);
447 return ret;
450 static void kvm_coalesce_mmio_region(MemoryListener *listener,
451 MemoryRegionSection *secion,
452 hwaddr start, hwaddr size)
454 KVMState *s = kvm_state;
456 if (s->coalesced_mmio) {
457 struct kvm_coalesced_mmio_zone zone;
459 zone.addr = start;
460 zone.size = size;
461 zone.pad = 0;
463 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
467 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
468 MemoryRegionSection *secion,
469 hwaddr start, hwaddr size)
471 KVMState *s = kvm_state;
473 if (s->coalesced_mmio) {
474 struct kvm_coalesced_mmio_zone zone;
476 zone.addr = start;
477 zone.size = size;
478 zone.pad = 0;
480 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
484 int kvm_check_extension(KVMState *s, unsigned int extension)
486 int ret;
488 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
489 if (ret < 0) {
490 ret = 0;
493 return ret;
496 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
498 int ret;
500 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
501 if (ret < 0) {
502 /* VM wide version not implemented, use global one instead */
503 ret = kvm_check_extension(s, extension);
506 return ret;
509 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
510 bool assign, uint32_t size, bool datamatch)
512 int ret;
513 struct kvm_ioeventfd iofd;
515 iofd.datamatch = datamatch ? val : 0;
516 iofd.addr = addr;
517 iofd.len = size;
518 iofd.flags = 0;
519 iofd.fd = fd;
521 if (!kvm_enabled()) {
522 return -ENOSYS;
525 if (datamatch) {
526 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
528 if (!assign) {
529 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
532 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
534 if (ret < 0) {
535 return -errno;
538 return 0;
541 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
542 bool assign, uint32_t size, bool datamatch)
544 struct kvm_ioeventfd kick = {
545 .datamatch = datamatch ? val : 0,
546 .addr = addr,
547 .flags = KVM_IOEVENTFD_FLAG_PIO,
548 .len = size,
549 .fd = fd,
551 int r;
552 if (!kvm_enabled()) {
553 return -ENOSYS;
555 if (datamatch) {
556 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
558 if (!assign) {
559 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
561 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
562 if (r < 0) {
563 return r;
565 return 0;
569 static int kvm_check_many_ioeventfds(void)
571 /* Userspace can use ioeventfd for io notification. This requires a host
572 * that supports eventfd(2) and an I/O thread; since eventfd does not
573 * support SIGIO it cannot interrupt the vcpu.
575 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
576 * can avoid creating too many ioeventfds.
578 #if defined(CONFIG_EVENTFD)
579 int ioeventfds[7];
580 int i, ret = 0;
581 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
582 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
583 if (ioeventfds[i] < 0) {
584 break;
586 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
587 if (ret < 0) {
588 close(ioeventfds[i]);
589 break;
593 /* Decide whether many devices are supported or not */
594 ret = i == ARRAY_SIZE(ioeventfds);
596 while (i-- > 0) {
597 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
598 close(ioeventfds[i]);
600 return ret;
601 #else
602 return 0;
603 #endif
606 static const KVMCapabilityInfo *
607 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
609 while (list->name) {
610 if (!kvm_check_extension(s, list->value)) {
611 return list;
613 list++;
615 return NULL;
618 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
620 KVMState *s = kvm_state;
621 KVMSlot *mem, old;
622 int err;
623 MemoryRegion *mr = section->mr;
624 bool log_dirty = memory_region_is_logging(mr);
625 bool writeable = !mr->readonly && !mr->rom_device;
626 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
627 hwaddr start_addr = section->offset_within_address_space;
628 ram_addr_t size = int128_get64(section->size);
629 void *ram = NULL;
630 unsigned delta;
632 /* kvm works in page size chunks, but the function may be called
633 with sub-page size and unaligned start address. */
634 delta = TARGET_PAGE_ALIGN(size) - size;
635 if (delta > size) {
636 return;
638 start_addr += delta;
639 size -= delta;
640 size &= TARGET_PAGE_MASK;
641 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
642 return;
645 if (!memory_region_is_ram(mr)) {
646 if (writeable || !kvm_readonly_mem_allowed) {
647 return;
648 } else if (!mr->romd_mode) {
649 /* If the memory device is not in romd_mode, then we actually want
650 * to remove the kvm memory slot so all accesses will trap. */
651 add = false;
655 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
657 while (1) {
658 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
659 if (!mem) {
660 break;
663 if (add && start_addr >= mem->start_addr &&
664 (start_addr + size <= mem->start_addr + mem->memory_size) &&
665 (ram - start_addr == mem->ram - mem->start_addr)) {
666 /* The new slot fits into the existing one and comes with
667 * identical parameters - update flags and done. */
668 kvm_slot_dirty_pages_log_change(mem, log_dirty);
669 return;
672 old = *mem;
674 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
675 kvm_physical_sync_dirty_bitmap(section);
678 /* unregister the overlapping slot */
679 mem->memory_size = 0;
680 err = kvm_set_user_memory_region(s, mem);
681 if (err) {
682 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
683 __func__, strerror(-err));
684 abort();
687 /* Workaround for older KVM versions: we can't join slots, even not by
688 * unregistering the previous ones and then registering the larger
689 * slot. We have to maintain the existing fragmentation. Sigh.
691 * This workaround assumes that the new slot starts at the same
692 * address as the first existing one. If not or if some overlapping
693 * slot comes around later, we will fail (not seen in practice so far)
694 * - and actually require a recent KVM version. */
695 if (s->broken_set_mem_region &&
696 old.start_addr == start_addr && old.memory_size < size && add) {
697 mem = kvm_alloc_slot(s);
698 mem->memory_size = old.memory_size;
699 mem->start_addr = old.start_addr;
700 mem->ram = old.ram;
701 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
703 err = kvm_set_user_memory_region(s, mem);
704 if (err) {
705 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
706 strerror(-err));
707 abort();
710 start_addr += old.memory_size;
711 ram += old.memory_size;
712 size -= old.memory_size;
713 continue;
716 /* register prefix slot */
717 if (old.start_addr < start_addr) {
718 mem = kvm_alloc_slot(s);
719 mem->memory_size = start_addr - old.start_addr;
720 mem->start_addr = old.start_addr;
721 mem->ram = old.ram;
722 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
724 err = kvm_set_user_memory_region(s, mem);
725 if (err) {
726 fprintf(stderr, "%s: error registering prefix slot: %s\n",
727 __func__, strerror(-err));
728 #ifdef TARGET_PPC
729 fprintf(stderr, "%s: This is probably because your kernel's " \
730 "PAGE_SIZE is too big. Please try to use 4k " \
731 "PAGE_SIZE!\n", __func__);
732 #endif
733 abort();
737 /* register suffix slot */
738 if (old.start_addr + old.memory_size > start_addr + size) {
739 ram_addr_t size_delta;
741 mem = kvm_alloc_slot(s);
742 mem->start_addr = start_addr + size;
743 size_delta = mem->start_addr - old.start_addr;
744 mem->memory_size = old.memory_size - size_delta;
745 mem->ram = old.ram + size_delta;
746 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
748 err = kvm_set_user_memory_region(s, mem);
749 if (err) {
750 fprintf(stderr, "%s: error registering suffix slot: %s\n",
751 __func__, strerror(-err));
752 abort();
757 /* in case the KVM bug workaround already "consumed" the new slot */
758 if (!size) {
759 return;
761 if (!add) {
762 return;
764 mem = kvm_alloc_slot(s);
765 mem->memory_size = size;
766 mem->start_addr = start_addr;
767 mem->ram = ram;
768 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
770 err = kvm_set_user_memory_region(s, mem);
771 if (err) {
772 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
773 strerror(-err));
774 abort();
778 static void kvm_region_add(MemoryListener *listener,
779 MemoryRegionSection *section)
781 memory_region_ref(section->mr);
782 kvm_set_phys_mem(section, true);
785 static void kvm_region_del(MemoryListener *listener,
786 MemoryRegionSection *section)
788 kvm_set_phys_mem(section, false);
789 memory_region_unref(section->mr);
792 static void kvm_log_sync(MemoryListener *listener,
793 MemoryRegionSection *section)
795 int r;
797 r = kvm_physical_sync_dirty_bitmap(section);
798 if (r < 0) {
799 abort();
803 static void kvm_log_global_start(struct MemoryListener *listener)
805 int r;
807 r = kvm_set_migration_log(1);
808 assert(r >= 0);
811 static void kvm_log_global_stop(struct MemoryListener *listener)
813 int r;
815 r = kvm_set_migration_log(0);
816 assert(r >= 0);
819 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
820 MemoryRegionSection *section,
821 bool match_data, uint64_t data,
822 EventNotifier *e)
824 int fd = event_notifier_get_fd(e);
825 int r;
827 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
828 data, true, int128_get64(section->size),
829 match_data);
830 if (r < 0) {
831 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
832 __func__, strerror(-r));
833 abort();
837 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
838 MemoryRegionSection *section,
839 bool match_data, uint64_t data,
840 EventNotifier *e)
842 int fd = event_notifier_get_fd(e);
843 int r;
845 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
846 data, false, int128_get64(section->size),
847 match_data);
848 if (r < 0) {
849 abort();
853 static void kvm_io_ioeventfd_add(MemoryListener *listener,
854 MemoryRegionSection *section,
855 bool match_data, uint64_t data,
856 EventNotifier *e)
858 int fd = event_notifier_get_fd(e);
859 int r;
861 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
862 data, true, int128_get64(section->size),
863 match_data);
864 if (r < 0) {
865 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
866 __func__, strerror(-r));
867 abort();
871 static void kvm_io_ioeventfd_del(MemoryListener *listener,
872 MemoryRegionSection *section,
873 bool match_data, uint64_t data,
874 EventNotifier *e)
877 int fd = event_notifier_get_fd(e);
878 int r;
880 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
881 data, false, int128_get64(section->size),
882 match_data);
883 if (r < 0) {
884 abort();
888 static MemoryListener kvm_memory_listener = {
889 .region_add = kvm_region_add,
890 .region_del = kvm_region_del,
891 .log_start = kvm_log_start,
892 .log_stop = kvm_log_stop,
893 .log_sync = kvm_log_sync,
894 .log_global_start = kvm_log_global_start,
895 .log_global_stop = kvm_log_global_stop,
896 .eventfd_add = kvm_mem_ioeventfd_add,
897 .eventfd_del = kvm_mem_ioeventfd_del,
898 .coalesced_mmio_add = kvm_coalesce_mmio_region,
899 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
900 .priority = 10,
903 static MemoryListener kvm_io_listener = {
904 .eventfd_add = kvm_io_ioeventfd_add,
905 .eventfd_del = kvm_io_ioeventfd_del,
906 .priority = 10,
909 static void kvm_handle_interrupt(CPUState *cpu, int mask)
911 cpu->interrupt_request |= mask;
913 if (!qemu_cpu_is_self(cpu)) {
914 qemu_cpu_kick(cpu);
918 int kvm_set_irq(KVMState *s, int irq, int level)
920 struct kvm_irq_level event;
921 int ret;
923 assert(kvm_async_interrupts_enabled());
925 event.level = level;
926 event.irq = irq;
927 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
928 if (ret < 0) {
929 perror("kvm_set_irq");
930 abort();
933 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
936 #ifdef KVM_CAP_IRQ_ROUTING
937 typedef struct KVMMSIRoute {
938 struct kvm_irq_routing_entry kroute;
939 QTAILQ_ENTRY(KVMMSIRoute) entry;
940 } KVMMSIRoute;
942 static void set_gsi(KVMState *s, unsigned int gsi)
944 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
947 static void clear_gsi(KVMState *s, unsigned int gsi)
949 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
952 void kvm_init_irq_routing(KVMState *s)
954 int gsi_count, i;
956 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
957 if (gsi_count > 0) {
958 unsigned int gsi_bits, i;
960 /* Round up so we can search ints using ffs */
961 gsi_bits = ALIGN(gsi_count, 32);
962 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
963 s->gsi_count = gsi_count;
965 /* Mark any over-allocated bits as already in use */
966 for (i = gsi_count; i < gsi_bits; i++) {
967 set_gsi(s, i);
971 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
972 s->nr_allocated_irq_routes = 0;
974 if (!s->direct_msi) {
975 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
976 QTAILQ_INIT(&s->msi_hashtab[i]);
980 kvm_arch_init_irq_routing(s);
983 void kvm_irqchip_commit_routes(KVMState *s)
985 int ret;
987 s->irq_routes->flags = 0;
988 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
989 assert(ret == 0);
992 static void kvm_add_routing_entry(KVMState *s,
993 struct kvm_irq_routing_entry *entry)
995 struct kvm_irq_routing_entry *new;
996 int n, size;
998 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
999 n = s->nr_allocated_irq_routes * 2;
1000 if (n < 64) {
1001 n = 64;
1003 size = sizeof(struct kvm_irq_routing);
1004 size += n * sizeof(*new);
1005 s->irq_routes = g_realloc(s->irq_routes, size);
1006 s->nr_allocated_irq_routes = n;
1008 n = s->irq_routes->nr++;
1009 new = &s->irq_routes->entries[n];
1011 *new = *entry;
1013 set_gsi(s, entry->gsi);
1016 static int kvm_update_routing_entry(KVMState *s,
1017 struct kvm_irq_routing_entry *new_entry)
1019 struct kvm_irq_routing_entry *entry;
1020 int n;
1022 for (n = 0; n < s->irq_routes->nr; n++) {
1023 entry = &s->irq_routes->entries[n];
1024 if (entry->gsi != new_entry->gsi) {
1025 continue;
1028 if(!memcmp(entry, new_entry, sizeof *entry)) {
1029 return 0;
1032 *entry = *new_entry;
1034 kvm_irqchip_commit_routes(s);
1036 return 0;
1039 return -ESRCH;
1042 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1044 struct kvm_irq_routing_entry e = {};
1046 assert(pin < s->gsi_count);
1048 e.gsi = irq;
1049 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1050 e.flags = 0;
1051 e.u.irqchip.irqchip = irqchip;
1052 e.u.irqchip.pin = pin;
1053 kvm_add_routing_entry(s, &e);
1056 void kvm_irqchip_release_virq(KVMState *s, int virq)
1058 struct kvm_irq_routing_entry *e;
1059 int i;
1061 if (kvm_gsi_direct_mapping()) {
1062 return;
1065 for (i = 0; i < s->irq_routes->nr; i++) {
1066 e = &s->irq_routes->entries[i];
1067 if (e->gsi == virq) {
1068 s->irq_routes->nr--;
1069 *e = s->irq_routes->entries[s->irq_routes->nr];
1072 clear_gsi(s, virq);
1075 static unsigned int kvm_hash_msi(uint32_t data)
1077 /* This is optimized for IA32 MSI layout. However, no other arch shall
1078 * repeat the mistake of not providing a direct MSI injection API. */
1079 return data & 0xff;
1082 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1084 KVMMSIRoute *route, *next;
1085 unsigned int hash;
1087 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1088 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1089 kvm_irqchip_release_virq(s, route->kroute.gsi);
1090 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1091 g_free(route);
1096 static int kvm_irqchip_get_virq(KVMState *s)
1098 uint32_t *word = s->used_gsi_bitmap;
1099 int max_words = ALIGN(s->gsi_count, 32) / 32;
1100 int i, bit;
1101 bool retry = true;
1103 again:
1104 /* Return the lowest unused GSI in the bitmap */
1105 for (i = 0; i < max_words; i++) {
1106 bit = ffs(~word[i]);
1107 if (!bit) {
1108 continue;
1111 return bit - 1 + i * 32;
1113 if (!s->direct_msi && retry) {
1114 retry = false;
1115 kvm_flush_dynamic_msi_routes(s);
1116 goto again;
1118 return -ENOSPC;
1122 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1124 unsigned int hash = kvm_hash_msi(msg.data);
1125 KVMMSIRoute *route;
1127 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1128 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1129 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1130 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1131 return route;
1134 return NULL;
1137 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1139 struct kvm_msi msi;
1140 KVMMSIRoute *route;
1142 if (s->direct_msi) {
1143 msi.address_lo = (uint32_t)msg.address;
1144 msi.address_hi = msg.address >> 32;
1145 msi.data = le32_to_cpu(msg.data);
1146 msi.flags = 0;
1147 memset(msi.pad, 0, sizeof(msi.pad));
1149 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1152 route = kvm_lookup_msi_route(s, msg);
1153 if (!route) {
1154 int virq;
1156 virq = kvm_irqchip_get_virq(s);
1157 if (virq < 0) {
1158 return virq;
1161 route = g_malloc0(sizeof(KVMMSIRoute));
1162 route->kroute.gsi = virq;
1163 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1164 route->kroute.flags = 0;
1165 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1166 route->kroute.u.msi.address_hi = msg.address >> 32;
1167 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1169 kvm_add_routing_entry(s, &route->kroute);
1170 kvm_irqchip_commit_routes(s);
1172 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1173 entry);
1176 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1178 return kvm_set_irq(s, route->kroute.gsi, 1);
1181 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1183 struct kvm_irq_routing_entry kroute = {};
1184 int virq;
1186 if (kvm_gsi_direct_mapping()) {
1187 return msg.data & 0xffff;
1190 if (!kvm_gsi_routing_enabled()) {
1191 return -ENOSYS;
1194 virq = kvm_irqchip_get_virq(s);
1195 if (virq < 0) {
1196 return virq;
1199 kroute.gsi = virq;
1200 kroute.type = KVM_IRQ_ROUTING_MSI;
1201 kroute.flags = 0;
1202 kroute.u.msi.address_lo = (uint32_t)msg.address;
1203 kroute.u.msi.address_hi = msg.address >> 32;
1204 kroute.u.msi.data = le32_to_cpu(msg.data);
1206 kvm_add_routing_entry(s, &kroute);
1207 kvm_irqchip_commit_routes(s);
1209 return virq;
1212 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1214 struct kvm_irq_routing_entry kroute = {};
1216 if (kvm_gsi_direct_mapping()) {
1217 return 0;
1220 if (!kvm_irqchip_in_kernel()) {
1221 return -ENOSYS;
1224 kroute.gsi = virq;
1225 kroute.type = KVM_IRQ_ROUTING_MSI;
1226 kroute.flags = 0;
1227 kroute.u.msi.address_lo = (uint32_t)msg.address;
1228 kroute.u.msi.address_hi = msg.address >> 32;
1229 kroute.u.msi.data = le32_to_cpu(msg.data);
1231 return kvm_update_routing_entry(s, &kroute);
1234 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1235 bool assign)
1237 struct kvm_irqfd irqfd = {
1238 .fd = fd,
1239 .gsi = virq,
1240 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1243 if (rfd != -1) {
1244 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1245 irqfd.resamplefd = rfd;
1248 if (!kvm_irqfds_enabled()) {
1249 return -ENOSYS;
1252 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1255 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1257 struct kvm_irq_routing_entry kroute;
1258 int virq;
1260 if (!kvm_gsi_routing_enabled()) {
1261 return -ENOSYS;
1264 virq = kvm_irqchip_get_virq(s);
1265 if (virq < 0) {
1266 return virq;
1269 kroute.gsi = virq;
1270 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1271 kroute.flags = 0;
1272 kroute.u.adapter.summary_addr = adapter->summary_addr;
1273 kroute.u.adapter.ind_addr = adapter->ind_addr;
1274 kroute.u.adapter.summary_offset = adapter->summary_offset;
1275 kroute.u.adapter.ind_offset = adapter->ind_offset;
1276 kroute.u.adapter.adapter_id = adapter->adapter_id;
1278 kvm_add_routing_entry(s, &kroute);
1279 kvm_irqchip_commit_routes(s);
1281 return virq;
1284 #else /* !KVM_CAP_IRQ_ROUTING */
1286 void kvm_init_irq_routing(KVMState *s)
1290 void kvm_irqchip_release_virq(KVMState *s, int virq)
1294 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1296 abort();
1299 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1301 return -ENOSYS;
1304 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1306 return -ENOSYS;
1309 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1311 abort();
1314 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1316 return -ENOSYS;
1318 #endif /* !KVM_CAP_IRQ_ROUTING */
1320 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1321 EventNotifier *rn, int virq)
1323 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1324 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1327 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1329 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1330 false);
1333 static int kvm_irqchip_create(KVMState *s)
1335 int ret;
1337 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1338 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1339 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1340 return 0;
1343 /* First probe and see if there's a arch-specific hook to create the
1344 * in-kernel irqchip for us */
1345 ret = kvm_arch_irqchip_create(s);
1346 if (ret < 0) {
1347 return ret;
1348 } else if (ret == 0) {
1349 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1350 if (ret < 0) {
1351 fprintf(stderr, "Create kernel irqchip failed\n");
1352 return ret;
1356 kvm_kernel_irqchip = true;
1357 /* If we have an in-kernel IRQ chip then we must have asynchronous
1358 * interrupt delivery (though the reverse is not necessarily true)
1360 kvm_async_interrupts_allowed = true;
1361 kvm_halt_in_kernel_allowed = true;
1363 kvm_init_irq_routing(s);
1365 return 0;
1368 /* Find number of supported CPUs using the recommended
1369 * procedure from the kernel API documentation to cope with
1370 * older kernels that may be missing capabilities.
1372 static int kvm_recommended_vcpus(KVMState *s)
1374 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1375 return (ret) ? ret : 4;
1378 static int kvm_max_vcpus(KVMState *s)
1380 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1381 return (ret) ? ret : kvm_recommended_vcpus(s);
1384 int kvm_init(MachineClass *mc)
1386 static const char upgrade_note[] =
1387 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1388 "(see http://sourceforge.net/projects/kvm).\n";
1389 struct {
1390 const char *name;
1391 int num;
1392 } num_cpus[] = {
1393 { "SMP", smp_cpus },
1394 { "hotpluggable", max_cpus },
1395 { NULL, }
1396 }, *nc = num_cpus;
1397 int soft_vcpus_limit, hard_vcpus_limit;
1398 KVMState *s;
1399 const KVMCapabilityInfo *missing_cap;
1400 int ret;
1401 int i, type = 0;
1402 const char *kvm_type;
1404 s = g_malloc0(sizeof(KVMState));
1407 * On systems where the kernel can support different base page
1408 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1409 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1410 * page size for the system though.
1412 assert(TARGET_PAGE_SIZE <= getpagesize());
1413 page_size_init();
1415 s->sigmask_len = 8;
1417 #ifdef KVM_CAP_SET_GUEST_DEBUG
1418 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1419 #endif
1420 s->vmfd = -1;
1421 s->fd = qemu_open("/dev/kvm", O_RDWR);
1422 if (s->fd == -1) {
1423 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1424 ret = -errno;
1425 goto err;
1428 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1429 if (ret < KVM_API_VERSION) {
1430 if (ret >= 0) {
1431 ret = -EINVAL;
1433 fprintf(stderr, "kvm version too old\n");
1434 goto err;
1437 if (ret > KVM_API_VERSION) {
1438 ret = -EINVAL;
1439 fprintf(stderr, "kvm version not supported\n");
1440 goto err;
1443 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1445 /* If unspecified, use the default value */
1446 if (!s->nr_slots) {
1447 s->nr_slots = 32;
1450 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1452 for (i = 0; i < s->nr_slots; i++) {
1453 s->slots[i].slot = i;
1456 /* check the vcpu limits */
1457 soft_vcpus_limit = kvm_recommended_vcpus(s);
1458 hard_vcpus_limit = kvm_max_vcpus(s);
1460 while (nc->name) {
1461 if (nc->num > soft_vcpus_limit) {
1462 fprintf(stderr,
1463 "Warning: Number of %s cpus requested (%d) exceeds "
1464 "the recommended cpus supported by KVM (%d)\n",
1465 nc->name, nc->num, soft_vcpus_limit);
1467 if (nc->num > hard_vcpus_limit) {
1468 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1469 "the maximum cpus supported by KVM (%d)\n",
1470 nc->name, nc->num, hard_vcpus_limit);
1471 exit(1);
1474 nc++;
1477 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1478 if (mc->kvm_type) {
1479 type = mc->kvm_type(kvm_type);
1480 } else if (kvm_type) {
1481 ret = -EINVAL;
1482 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1483 goto err;
1486 do {
1487 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1488 } while (ret == -EINTR);
1490 if (ret < 0) {
1491 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1492 strerror(-ret));
1494 #ifdef TARGET_S390X
1495 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1496 "your host kernel command line\n");
1497 #endif
1498 goto err;
1501 s->vmfd = ret;
1502 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1503 if (!missing_cap) {
1504 missing_cap =
1505 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1507 if (missing_cap) {
1508 ret = -EINVAL;
1509 fprintf(stderr, "kvm does not support %s\n%s",
1510 missing_cap->name, upgrade_note);
1511 goto err;
1514 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1516 s->broken_set_mem_region = 1;
1517 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1518 if (ret > 0) {
1519 s->broken_set_mem_region = 0;
1522 #ifdef KVM_CAP_VCPU_EVENTS
1523 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1524 #endif
1526 s->robust_singlestep =
1527 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1529 #ifdef KVM_CAP_DEBUGREGS
1530 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1531 #endif
1533 #ifdef KVM_CAP_XSAVE
1534 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1535 #endif
1537 #ifdef KVM_CAP_XCRS
1538 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1539 #endif
1541 #ifdef KVM_CAP_PIT_STATE2
1542 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1543 #endif
1545 #ifdef KVM_CAP_IRQ_ROUTING
1546 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1547 #endif
1549 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1551 s->irq_set_ioctl = KVM_IRQ_LINE;
1552 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1553 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1556 #ifdef KVM_CAP_READONLY_MEM
1557 kvm_readonly_mem_allowed =
1558 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1559 #endif
1561 kvm_eventfds_allowed =
1562 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1564 ret = kvm_arch_init(s);
1565 if (ret < 0) {
1566 goto err;
1569 ret = kvm_irqchip_create(s);
1570 if (ret < 0) {
1571 goto err;
1574 kvm_state = s;
1575 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1576 memory_listener_register(&kvm_io_listener, &address_space_io);
1578 s->many_ioeventfds = kvm_check_many_ioeventfds();
1580 cpu_interrupt_handler = kvm_handle_interrupt;
1582 return 0;
1584 err:
1585 assert(ret < 0);
1586 if (s->vmfd >= 0) {
1587 close(s->vmfd);
1589 if (s->fd != -1) {
1590 close(s->fd);
1592 g_free(s->slots);
1593 g_free(s);
1595 return ret;
1598 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1600 s->sigmask_len = sigmask_len;
1603 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1604 uint32_t count)
1606 int i;
1607 uint8_t *ptr = data;
1609 for (i = 0; i < count; i++) {
1610 address_space_rw(&address_space_io, port, ptr, size,
1611 direction == KVM_EXIT_IO_OUT);
1612 ptr += size;
1616 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1618 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1619 run->internal.suberror);
1621 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1622 int i;
1624 for (i = 0; i < run->internal.ndata; ++i) {
1625 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1626 i, (uint64_t)run->internal.data[i]);
1629 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1630 fprintf(stderr, "emulation failure\n");
1631 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1632 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1633 return EXCP_INTERRUPT;
1636 /* FIXME: Should trigger a qmp message to let management know
1637 * something went wrong.
1639 return -1;
1642 void kvm_flush_coalesced_mmio_buffer(void)
1644 KVMState *s = kvm_state;
1646 if (s->coalesced_flush_in_progress) {
1647 return;
1650 s->coalesced_flush_in_progress = true;
1652 if (s->coalesced_mmio_ring) {
1653 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1654 while (ring->first != ring->last) {
1655 struct kvm_coalesced_mmio *ent;
1657 ent = &ring->coalesced_mmio[ring->first];
1659 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1660 smp_wmb();
1661 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1665 s->coalesced_flush_in_progress = false;
1668 static void do_kvm_cpu_synchronize_state(void *arg)
1670 CPUState *cpu = arg;
1672 if (!cpu->kvm_vcpu_dirty) {
1673 kvm_arch_get_registers(cpu);
1674 cpu->kvm_vcpu_dirty = true;
1678 void kvm_cpu_synchronize_state(CPUState *cpu)
1680 if (!cpu->kvm_vcpu_dirty) {
1681 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1685 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1687 CPUState *cpu = arg;
1689 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1690 cpu->kvm_vcpu_dirty = false;
1693 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1695 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1698 static void do_kvm_cpu_synchronize_post_init(void *arg)
1700 CPUState *cpu = arg;
1702 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1703 cpu->kvm_vcpu_dirty = false;
1706 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1708 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1711 int kvm_cpu_exec(CPUState *cpu)
1713 struct kvm_run *run = cpu->kvm_run;
1714 int ret, run_ret;
1716 DPRINTF("kvm_cpu_exec()\n");
1718 if (kvm_arch_process_async_events(cpu)) {
1719 cpu->exit_request = 0;
1720 return EXCP_HLT;
1723 do {
1724 if (cpu->kvm_vcpu_dirty) {
1725 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1726 cpu->kvm_vcpu_dirty = false;
1729 kvm_arch_pre_run(cpu, run);
1730 if (cpu->exit_request) {
1731 DPRINTF("interrupt exit requested\n");
1733 * KVM requires us to reenter the kernel after IO exits to complete
1734 * instruction emulation. This self-signal will ensure that we
1735 * leave ASAP again.
1737 qemu_cpu_kick_self();
1739 qemu_mutex_unlock_iothread();
1741 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1743 qemu_mutex_lock_iothread();
1744 kvm_arch_post_run(cpu, run);
1746 if (run_ret < 0) {
1747 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1748 DPRINTF("io window exit\n");
1749 ret = EXCP_INTERRUPT;
1750 break;
1752 fprintf(stderr, "error: kvm run failed %s\n",
1753 strerror(-run_ret));
1754 ret = -1;
1755 break;
1758 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1759 switch (run->exit_reason) {
1760 case KVM_EXIT_IO:
1761 DPRINTF("handle_io\n");
1762 kvm_handle_io(run->io.port,
1763 (uint8_t *)run + run->io.data_offset,
1764 run->io.direction,
1765 run->io.size,
1766 run->io.count);
1767 ret = 0;
1768 break;
1769 case KVM_EXIT_MMIO:
1770 DPRINTF("handle_mmio\n");
1771 cpu_physical_memory_rw(run->mmio.phys_addr,
1772 run->mmio.data,
1773 run->mmio.len,
1774 run->mmio.is_write);
1775 ret = 0;
1776 break;
1777 case KVM_EXIT_IRQ_WINDOW_OPEN:
1778 DPRINTF("irq_window_open\n");
1779 ret = EXCP_INTERRUPT;
1780 break;
1781 case KVM_EXIT_SHUTDOWN:
1782 DPRINTF("shutdown\n");
1783 qemu_system_reset_request();
1784 ret = EXCP_INTERRUPT;
1785 break;
1786 case KVM_EXIT_UNKNOWN:
1787 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1788 (uint64_t)run->hw.hardware_exit_reason);
1789 ret = -1;
1790 break;
1791 case KVM_EXIT_INTERNAL_ERROR:
1792 ret = kvm_handle_internal_error(cpu, run);
1793 break;
1794 case KVM_EXIT_SYSTEM_EVENT:
1795 switch (run->system_event.type) {
1796 case KVM_SYSTEM_EVENT_SHUTDOWN:
1797 qemu_system_shutdown_request();
1798 ret = EXCP_INTERRUPT;
1799 break;
1800 case KVM_SYSTEM_EVENT_RESET:
1801 qemu_system_reset_request();
1802 ret = EXCP_INTERRUPT;
1803 break;
1804 default:
1805 DPRINTF("kvm_arch_handle_exit\n");
1806 ret = kvm_arch_handle_exit(cpu, run);
1807 break;
1809 break;
1810 default:
1811 DPRINTF("kvm_arch_handle_exit\n");
1812 ret = kvm_arch_handle_exit(cpu, run);
1813 break;
1815 } while (ret == 0);
1817 if (ret < 0) {
1818 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1819 vm_stop(RUN_STATE_INTERNAL_ERROR);
1822 cpu->exit_request = 0;
1823 return ret;
1826 int kvm_ioctl(KVMState *s, int type, ...)
1828 int ret;
1829 void *arg;
1830 va_list ap;
1832 va_start(ap, type);
1833 arg = va_arg(ap, void *);
1834 va_end(ap);
1836 trace_kvm_ioctl(type, arg);
1837 ret = ioctl(s->fd, type, arg);
1838 if (ret == -1) {
1839 ret = -errno;
1841 return ret;
1844 int kvm_vm_ioctl(KVMState *s, int type, ...)
1846 int ret;
1847 void *arg;
1848 va_list ap;
1850 va_start(ap, type);
1851 arg = va_arg(ap, void *);
1852 va_end(ap);
1854 trace_kvm_vm_ioctl(type, arg);
1855 ret = ioctl(s->vmfd, type, arg);
1856 if (ret == -1) {
1857 ret = -errno;
1859 return ret;
1862 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1864 int ret;
1865 void *arg;
1866 va_list ap;
1868 va_start(ap, type);
1869 arg = va_arg(ap, void *);
1870 va_end(ap);
1872 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1873 ret = ioctl(cpu->kvm_fd, type, arg);
1874 if (ret == -1) {
1875 ret = -errno;
1877 return ret;
1880 int kvm_device_ioctl(int fd, int type, ...)
1882 int ret;
1883 void *arg;
1884 va_list ap;
1886 va_start(ap, type);
1887 arg = va_arg(ap, void *);
1888 va_end(ap);
1890 trace_kvm_device_ioctl(fd, type, arg);
1891 ret = ioctl(fd, type, arg);
1892 if (ret == -1) {
1893 ret = -errno;
1895 return ret;
1898 int kvm_has_sync_mmu(void)
1900 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1903 int kvm_has_vcpu_events(void)
1905 return kvm_state->vcpu_events;
1908 int kvm_has_robust_singlestep(void)
1910 return kvm_state->robust_singlestep;
1913 int kvm_has_debugregs(void)
1915 return kvm_state->debugregs;
1918 int kvm_has_xsave(void)
1920 return kvm_state->xsave;
1923 int kvm_has_xcrs(void)
1925 return kvm_state->xcrs;
1928 int kvm_has_pit_state2(void)
1930 return kvm_state->pit_state2;
1933 int kvm_has_many_ioeventfds(void)
1935 if (!kvm_enabled()) {
1936 return 0;
1938 return kvm_state->many_ioeventfds;
1941 int kvm_has_gsi_routing(void)
1943 #ifdef KVM_CAP_IRQ_ROUTING
1944 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1945 #else
1946 return false;
1947 #endif
1950 int kvm_has_intx_set_mask(void)
1952 return kvm_state->intx_set_mask;
1955 void kvm_setup_guest_memory(void *start, size_t size)
1957 #ifdef CONFIG_VALGRIND_H
1958 VALGRIND_MAKE_MEM_DEFINED(start, size);
1959 #endif
1960 if (!kvm_has_sync_mmu()) {
1961 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1963 if (ret) {
1964 perror("qemu_madvise");
1965 fprintf(stderr,
1966 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1967 exit(1);
1972 #ifdef KVM_CAP_SET_GUEST_DEBUG
1973 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1974 target_ulong pc)
1976 struct kvm_sw_breakpoint *bp;
1978 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1979 if (bp->pc == pc) {
1980 return bp;
1983 return NULL;
1986 int kvm_sw_breakpoints_active(CPUState *cpu)
1988 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1991 struct kvm_set_guest_debug_data {
1992 struct kvm_guest_debug dbg;
1993 CPUState *cpu;
1994 int err;
1997 static void kvm_invoke_set_guest_debug(void *data)
1999 struct kvm_set_guest_debug_data *dbg_data = data;
2001 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2002 &dbg_data->dbg);
2005 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2007 struct kvm_set_guest_debug_data data;
2009 data.dbg.control = reinject_trap;
2011 if (cpu->singlestep_enabled) {
2012 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2014 kvm_arch_update_guest_debug(cpu, &data.dbg);
2015 data.cpu = cpu;
2017 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2018 return data.err;
2021 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2022 target_ulong len, int type)
2024 struct kvm_sw_breakpoint *bp;
2025 int err;
2027 if (type == GDB_BREAKPOINT_SW) {
2028 bp = kvm_find_sw_breakpoint(cpu, addr);
2029 if (bp) {
2030 bp->use_count++;
2031 return 0;
2034 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2035 if (!bp) {
2036 return -ENOMEM;
2039 bp->pc = addr;
2040 bp->use_count = 1;
2041 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2042 if (err) {
2043 g_free(bp);
2044 return err;
2047 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2048 } else {
2049 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2050 if (err) {
2051 return err;
2055 CPU_FOREACH(cpu) {
2056 err = kvm_update_guest_debug(cpu, 0);
2057 if (err) {
2058 return err;
2061 return 0;
2064 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2065 target_ulong len, int type)
2067 struct kvm_sw_breakpoint *bp;
2068 int err;
2070 if (type == GDB_BREAKPOINT_SW) {
2071 bp = kvm_find_sw_breakpoint(cpu, addr);
2072 if (!bp) {
2073 return -ENOENT;
2076 if (bp->use_count > 1) {
2077 bp->use_count--;
2078 return 0;
2081 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2082 if (err) {
2083 return err;
2086 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2087 g_free(bp);
2088 } else {
2089 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2090 if (err) {
2091 return err;
2095 CPU_FOREACH(cpu) {
2096 err = kvm_update_guest_debug(cpu, 0);
2097 if (err) {
2098 return err;
2101 return 0;
2104 void kvm_remove_all_breakpoints(CPUState *cpu)
2106 struct kvm_sw_breakpoint *bp, *next;
2107 KVMState *s = cpu->kvm_state;
2108 CPUState *tmpcpu;
2110 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2111 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2112 /* Try harder to find a CPU that currently sees the breakpoint. */
2113 CPU_FOREACH(tmpcpu) {
2114 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2115 break;
2119 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2120 g_free(bp);
2122 kvm_arch_remove_all_hw_breakpoints();
2124 CPU_FOREACH(cpu) {
2125 kvm_update_guest_debug(cpu, 0);
2129 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2131 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2133 return -EINVAL;
2136 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2137 target_ulong len, int type)
2139 return -EINVAL;
2142 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2143 target_ulong len, int type)
2145 return -EINVAL;
2148 void kvm_remove_all_breakpoints(CPUState *cpu)
2151 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2153 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2155 KVMState *s = kvm_state;
2156 struct kvm_signal_mask *sigmask;
2157 int r;
2159 if (!sigset) {
2160 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2163 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2165 sigmask->len = s->sigmask_len;
2166 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2167 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2168 g_free(sigmask);
2170 return r;
2172 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2174 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2177 int kvm_on_sigbus(int code, void *addr)
2179 return kvm_arch_on_sigbus(code, addr);
2182 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2184 int ret;
2185 struct kvm_create_device create_dev;
2187 create_dev.type = type;
2188 create_dev.fd = -1;
2189 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2191 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2192 return -ENOTSUP;
2195 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2196 if (ret) {
2197 return ret;
2200 return test ? 0 : create_dev.fd;
2203 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2205 struct kvm_one_reg reg;
2206 int r;
2208 reg.id = id;
2209 reg.addr = (uintptr_t) source;
2210 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2211 if (r) {
2212 trace_kvm_failed_reg_set(id, strerror(r));
2214 return r;
2217 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2219 struct kvm_one_reg reg;
2220 int r;
2222 reg.id = id;
2223 reg.addr = (uintptr_t) target;
2224 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2225 if (r) {
2226 trace_kvm_failed_reg_get(id, strerror(r));
2228 return r;