4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
39 #include "hw/boards.h"
41 /* This check must be after config-host.h is included */
43 #include <sys/eventfd.h>
46 #ifdef CONFIG_VALGRIND_H
47 #include <valgrind/memcheck.h>
50 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
51 #define PAGE_SIZE TARGET_PAGE_SIZE
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #define DPRINTF(fmt, ...) \
63 #define KVM_MSI_HASHTAB_SIZE 256
65 typedef struct KVMSlot
68 ram_addr_t memory_size
;
74 typedef struct kvm_dirty_log KVMDirtyLog
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
85 int broken_set_mem_region
;
88 int robust_singlestep
;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 #ifdef KVM_CAP_IRQ_ROUTING
102 struct kvm_irq_routing
*irq_routes
;
103 int nr_allocated_irq_routes
;
104 uint32_t *used_gsi_bitmap
;
105 unsigned int gsi_count
;
106 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
112 bool kvm_kernel_irqchip
;
113 bool kvm_async_interrupts_allowed
;
114 bool kvm_halt_in_kernel_allowed
;
115 bool kvm_irqfds_allowed
;
116 bool kvm_msi_via_irqfd_allowed
;
117 bool kvm_gsi_routing_allowed
;
118 bool kvm_gsi_direct_mapping
;
120 bool kvm_readonly_mem_allowed
;
122 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
123 KVM_CAP_INFO(USER_MEMORY
),
124 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
128 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
132 for (i
= 0; i
< s
->nr_slots
; i
++) {
133 if (s
->slots
[i
].memory_size
== 0) {
138 fprintf(stderr
, "%s: no free slot available\n", __func__
);
142 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
148 for (i
= 0; i
< s
->nr_slots
; i
++) {
149 KVMSlot
*mem
= &s
->slots
[i
];
151 if (start_addr
== mem
->start_addr
&&
152 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
161 * Find overlapping slot with lowest start address
163 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
167 KVMSlot
*found
= NULL
;
170 for (i
= 0; i
< s
->nr_slots
; i
++) {
171 KVMSlot
*mem
= &s
->slots
[i
];
173 if (mem
->memory_size
== 0 ||
174 (found
&& found
->start_addr
< mem
->start_addr
)) {
178 if (end_addr
> mem
->start_addr
&&
179 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
187 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
192 for (i
= 0; i
< s
->nr_slots
; i
++) {
193 KVMSlot
*mem
= &s
->slots
[i
];
195 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
196 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
204 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
206 struct kvm_userspace_memory_region mem
;
208 mem
.slot
= slot
->slot
;
209 mem
.guest_phys_addr
= slot
->start_addr
;
210 mem
.userspace_addr
= (unsigned long)slot
->ram
;
211 mem
.flags
= slot
->flags
;
212 if (s
->migration_log
) {
213 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
216 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
217 /* Set the slot size to 0 before setting the slot to the desired
218 * value. This is needed based on KVM commit 75d61fbc. */
220 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
222 mem
.memory_size
= slot
->memory_size
;
223 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
226 int kvm_init_vcpu(CPUState
*cpu
)
228 KVMState
*s
= kvm_state
;
232 DPRINTF("kvm_init_vcpu\n");
234 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
236 DPRINTF("kvm_create_vcpu failed\n");
242 cpu
->kvm_vcpu_dirty
= true;
244 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
247 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
251 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
253 if (cpu
->kvm_run
== MAP_FAILED
) {
255 DPRINTF("mmap'ing vcpu state failed\n");
259 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
260 s
->coalesced_mmio_ring
=
261 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
264 ret
= kvm_arch_init_vcpu(cpu
);
270 * dirty pages logging control
273 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
276 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
277 if (readonly
&& kvm_readonly_mem_allowed
) {
278 flags
|= KVM_MEM_READONLY
;
283 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
285 KVMState
*s
= kvm_state
;
286 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
289 old_flags
= mem
->flags
;
291 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
294 /* If nothing changed effectively, no need to issue ioctl */
295 if (s
->migration_log
) {
296 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
299 if (flags
== old_flags
) {
303 return kvm_set_user_memory_region(s
, mem
);
306 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
307 ram_addr_t size
, bool log_dirty
)
309 KVMState
*s
= kvm_state
;
310 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
313 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
314 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
315 (hwaddr
)(phys_addr
+ size
- 1));
318 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
321 static void kvm_log_start(MemoryListener
*listener
,
322 MemoryRegionSection
*section
)
326 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
327 int128_get64(section
->size
), true);
333 static void kvm_log_stop(MemoryListener
*listener
,
334 MemoryRegionSection
*section
)
338 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
339 int128_get64(section
->size
), false);
345 static int kvm_set_migration_log(int enable
)
347 KVMState
*s
= kvm_state
;
351 s
->migration_log
= enable
;
353 for (i
= 0; i
< s
->nr_slots
; i
++) {
356 if (!mem
->memory_size
) {
359 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
362 err
= kvm_set_user_memory_region(s
, mem
);
370 /* get kvm's dirty pages bitmap and update qemu's */
371 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
372 unsigned long *bitmap
)
374 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
375 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
377 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
381 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
384 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
385 * This function updates qemu's dirty bitmap using
386 * memory_region_set_dirty(). This means all bits are set
389 * @start_add: start of logged region.
390 * @end_addr: end of logged region.
392 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
394 KVMState
*s
= kvm_state
;
395 unsigned long size
, allocated_size
= 0;
399 hwaddr start_addr
= section
->offset_within_address_space
;
400 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
402 d
.dirty_bitmap
= NULL
;
403 while (start_addr
< end_addr
) {
404 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
409 /* XXX bad kernel interface alert
410 * For dirty bitmap, kernel allocates array of size aligned to
411 * bits-per-long. But for case when the kernel is 64bits and
412 * the userspace is 32bits, userspace can't align to the same
413 * bits-per-long, since sizeof(long) is different between kernel
414 * and user space. This way, userspace will provide buffer which
415 * may be 4 bytes less than the kernel will use, resulting in
416 * userspace memory corruption (which is not detectable by valgrind
417 * too, in most cases).
418 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
419 * a hope that sizeof(long) wont become >8 any time soon.
421 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
422 /*HOST_LONG_BITS*/ 64) / 8;
423 if (!d
.dirty_bitmap
) {
424 d
.dirty_bitmap
= g_malloc(size
);
425 } else if (size
> allocated_size
) {
426 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
428 allocated_size
= size
;
429 memset(d
.dirty_bitmap
, 0, allocated_size
);
433 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
434 DPRINTF("ioctl failed %d\n", errno
);
439 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
440 start_addr
= mem
->start_addr
+ mem
->memory_size
;
442 g_free(d
.dirty_bitmap
);
447 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
448 MemoryRegionSection
*secion
,
449 hwaddr start
, hwaddr size
)
451 KVMState
*s
= kvm_state
;
453 if (s
->coalesced_mmio
) {
454 struct kvm_coalesced_mmio_zone zone
;
460 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
464 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
465 MemoryRegionSection
*secion
,
466 hwaddr start
, hwaddr size
)
468 KVMState
*s
= kvm_state
;
470 if (s
->coalesced_mmio
) {
471 struct kvm_coalesced_mmio_zone zone
;
477 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
481 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
485 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
493 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
494 bool assign
, uint32_t size
, bool datamatch
)
497 struct kvm_ioeventfd iofd
;
499 iofd
.datamatch
= datamatch
? val
: 0;
505 if (!kvm_enabled()) {
510 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
513 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
516 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
525 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
526 bool assign
, uint32_t size
, bool datamatch
)
528 struct kvm_ioeventfd kick
= {
529 .datamatch
= datamatch
? val
: 0,
531 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
536 if (!kvm_enabled()) {
540 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
543 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
545 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
553 static int kvm_check_many_ioeventfds(void)
555 /* Userspace can use ioeventfd for io notification. This requires a host
556 * that supports eventfd(2) and an I/O thread; since eventfd does not
557 * support SIGIO it cannot interrupt the vcpu.
559 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
560 * can avoid creating too many ioeventfds.
562 #if defined(CONFIG_EVENTFD)
565 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
566 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
567 if (ioeventfds
[i
] < 0) {
570 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
572 close(ioeventfds
[i
]);
577 /* Decide whether many devices are supported or not */
578 ret
= i
== ARRAY_SIZE(ioeventfds
);
581 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
582 close(ioeventfds
[i
]);
590 static const KVMCapabilityInfo
*
591 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
594 if (!kvm_check_extension(s
, list
->value
)) {
602 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
604 KVMState
*s
= kvm_state
;
607 MemoryRegion
*mr
= section
->mr
;
608 bool log_dirty
= memory_region_is_logging(mr
);
609 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
610 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
611 hwaddr start_addr
= section
->offset_within_address_space
;
612 ram_addr_t size
= int128_get64(section
->size
);
616 /* kvm works in page size chunks, but the function may be called
617 with sub-page size and unaligned start address. */
618 delta
= TARGET_PAGE_ALIGN(size
) - size
;
624 size
&= TARGET_PAGE_MASK
;
625 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
629 if (!memory_region_is_ram(mr
)) {
630 if (writeable
|| !kvm_readonly_mem_allowed
) {
632 } else if (!mr
->romd_mode
) {
633 /* If the memory device is not in romd_mode, then we actually want
634 * to remove the kvm memory slot so all accesses will trap. */
639 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
642 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
647 if (add
&& start_addr
>= mem
->start_addr
&&
648 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
649 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
650 /* The new slot fits into the existing one and comes with
651 * identical parameters - update flags and done. */
652 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
658 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
659 kvm_physical_sync_dirty_bitmap(section
);
662 /* unregister the overlapping slot */
663 mem
->memory_size
= 0;
664 err
= kvm_set_user_memory_region(s
, mem
);
666 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
667 __func__
, strerror(-err
));
671 /* Workaround for older KVM versions: we can't join slots, even not by
672 * unregistering the previous ones and then registering the larger
673 * slot. We have to maintain the existing fragmentation. Sigh.
675 * This workaround assumes that the new slot starts at the same
676 * address as the first existing one. If not or if some overlapping
677 * slot comes around later, we will fail (not seen in practice so far)
678 * - and actually require a recent KVM version. */
679 if (s
->broken_set_mem_region
&&
680 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
681 mem
= kvm_alloc_slot(s
);
682 mem
->memory_size
= old
.memory_size
;
683 mem
->start_addr
= old
.start_addr
;
685 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
687 err
= kvm_set_user_memory_region(s
, mem
);
689 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
694 start_addr
+= old
.memory_size
;
695 ram
+= old
.memory_size
;
696 size
-= old
.memory_size
;
700 /* register prefix slot */
701 if (old
.start_addr
< start_addr
) {
702 mem
= kvm_alloc_slot(s
);
703 mem
->memory_size
= start_addr
- old
.start_addr
;
704 mem
->start_addr
= old
.start_addr
;
706 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
708 err
= kvm_set_user_memory_region(s
, mem
);
710 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
711 __func__
, strerror(-err
));
713 fprintf(stderr
, "%s: This is probably because your kernel's " \
714 "PAGE_SIZE is too big. Please try to use 4k " \
715 "PAGE_SIZE!\n", __func__
);
721 /* register suffix slot */
722 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
723 ram_addr_t size_delta
;
725 mem
= kvm_alloc_slot(s
);
726 mem
->start_addr
= start_addr
+ size
;
727 size_delta
= mem
->start_addr
- old
.start_addr
;
728 mem
->memory_size
= old
.memory_size
- size_delta
;
729 mem
->ram
= old
.ram
+ size_delta
;
730 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
732 err
= kvm_set_user_memory_region(s
, mem
);
734 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
735 __func__
, strerror(-err
));
741 /* in case the KVM bug workaround already "consumed" the new slot */
748 mem
= kvm_alloc_slot(s
);
749 mem
->memory_size
= size
;
750 mem
->start_addr
= start_addr
;
752 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
754 err
= kvm_set_user_memory_region(s
, mem
);
756 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
762 static void kvm_region_add(MemoryListener
*listener
,
763 MemoryRegionSection
*section
)
765 memory_region_ref(section
->mr
);
766 kvm_set_phys_mem(section
, true);
769 static void kvm_region_del(MemoryListener
*listener
,
770 MemoryRegionSection
*section
)
772 kvm_set_phys_mem(section
, false);
773 memory_region_unref(section
->mr
);
776 static void kvm_log_sync(MemoryListener
*listener
,
777 MemoryRegionSection
*section
)
781 r
= kvm_physical_sync_dirty_bitmap(section
);
787 static void kvm_log_global_start(struct MemoryListener
*listener
)
791 r
= kvm_set_migration_log(1);
795 static void kvm_log_global_stop(struct MemoryListener
*listener
)
799 r
= kvm_set_migration_log(0);
803 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
804 MemoryRegionSection
*section
,
805 bool match_data
, uint64_t data
,
808 int fd
= event_notifier_get_fd(e
);
811 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
812 data
, true, int128_get64(section
->size
),
815 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
816 __func__
, strerror(-r
));
821 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
822 MemoryRegionSection
*section
,
823 bool match_data
, uint64_t data
,
826 int fd
= event_notifier_get_fd(e
);
829 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
830 data
, false, int128_get64(section
->size
),
837 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
838 MemoryRegionSection
*section
,
839 bool match_data
, uint64_t data
,
842 int fd
= event_notifier_get_fd(e
);
845 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
846 data
, true, int128_get64(section
->size
),
849 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
850 __func__
, strerror(-r
));
855 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
856 MemoryRegionSection
*section
,
857 bool match_data
, uint64_t data
,
861 int fd
= event_notifier_get_fd(e
);
864 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
865 data
, false, int128_get64(section
->size
),
872 static MemoryListener kvm_memory_listener
= {
873 .region_add
= kvm_region_add
,
874 .region_del
= kvm_region_del
,
875 .log_start
= kvm_log_start
,
876 .log_stop
= kvm_log_stop
,
877 .log_sync
= kvm_log_sync
,
878 .log_global_start
= kvm_log_global_start
,
879 .log_global_stop
= kvm_log_global_stop
,
880 .eventfd_add
= kvm_mem_ioeventfd_add
,
881 .eventfd_del
= kvm_mem_ioeventfd_del
,
882 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
883 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
887 static MemoryListener kvm_io_listener
= {
888 .eventfd_add
= kvm_io_ioeventfd_add
,
889 .eventfd_del
= kvm_io_ioeventfd_del
,
893 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
895 cpu
->interrupt_request
|= mask
;
897 if (!qemu_cpu_is_self(cpu
)) {
902 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
904 struct kvm_irq_level event
;
907 assert(kvm_async_interrupts_enabled());
911 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
913 perror("kvm_set_irq");
917 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
920 #ifdef KVM_CAP_IRQ_ROUTING
921 typedef struct KVMMSIRoute
{
922 struct kvm_irq_routing_entry kroute
;
923 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
926 static void set_gsi(KVMState
*s
, unsigned int gsi
)
928 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
931 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
933 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
936 void kvm_init_irq_routing(KVMState
*s
)
940 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
942 unsigned int gsi_bits
, i
;
944 /* Round up so we can search ints using ffs */
945 gsi_bits
= ALIGN(gsi_count
, 32);
946 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
947 s
->gsi_count
= gsi_count
;
949 /* Mark any over-allocated bits as already in use */
950 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
955 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
956 s
->nr_allocated_irq_routes
= 0;
958 if (!s
->direct_msi
) {
959 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
960 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
964 kvm_arch_init_irq_routing(s
);
967 void kvm_irqchip_commit_routes(KVMState
*s
)
971 s
->irq_routes
->flags
= 0;
972 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
976 static void kvm_add_routing_entry(KVMState
*s
,
977 struct kvm_irq_routing_entry
*entry
)
979 struct kvm_irq_routing_entry
*new;
982 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
983 n
= s
->nr_allocated_irq_routes
* 2;
987 size
= sizeof(struct kvm_irq_routing
);
988 size
+= n
* sizeof(*new);
989 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
990 s
->nr_allocated_irq_routes
= n
;
992 n
= s
->irq_routes
->nr
++;
993 new = &s
->irq_routes
->entries
[n
];
997 set_gsi(s
, entry
->gsi
);
1000 static int kvm_update_routing_entry(KVMState
*s
,
1001 struct kvm_irq_routing_entry
*new_entry
)
1003 struct kvm_irq_routing_entry
*entry
;
1006 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1007 entry
= &s
->irq_routes
->entries
[n
];
1008 if (entry
->gsi
!= new_entry
->gsi
) {
1012 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1016 *entry
= *new_entry
;
1018 kvm_irqchip_commit_routes(s
);
1026 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1028 struct kvm_irq_routing_entry e
= {};
1030 assert(pin
< s
->gsi_count
);
1033 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1035 e
.u
.irqchip
.irqchip
= irqchip
;
1036 e
.u
.irqchip
.pin
= pin
;
1037 kvm_add_routing_entry(s
, &e
);
1040 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1042 struct kvm_irq_routing_entry
*e
;
1045 if (kvm_gsi_direct_mapping()) {
1049 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1050 e
= &s
->irq_routes
->entries
[i
];
1051 if (e
->gsi
== virq
) {
1052 s
->irq_routes
->nr
--;
1053 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1059 static unsigned int kvm_hash_msi(uint32_t data
)
1061 /* This is optimized for IA32 MSI layout. However, no other arch shall
1062 * repeat the mistake of not providing a direct MSI injection API. */
1066 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1068 KVMMSIRoute
*route
, *next
;
1071 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1072 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1073 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1074 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1080 static int kvm_irqchip_get_virq(KVMState
*s
)
1082 uint32_t *word
= s
->used_gsi_bitmap
;
1083 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1088 /* Return the lowest unused GSI in the bitmap */
1089 for (i
= 0; i
< max_words
; i
++) {
1090 bit
= ffs(~word
[i
]);
1095 return bit
- 1 + i
* 32;
1097 if (!s
->direct_msi
&& retry
) {
1099 kvm_flush_dynamic_msi_routes(s
);
1106 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1108 unsigned int hash
= kvm_hash_msi(msg
.data
);
1111 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1112 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1113 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1114 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1121 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1126 if (s
->direct_msi
) {
1127 msi
.address_lo
= (uint32_t)msg
.address
;
1128 msi
.address_hi
= msg
.address
>> 32;
1129 msi
.data
= le32_to_cpu(msg
.data
);
1131 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1133 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1136 route
= kvm_lookup_msi_route(s
, msg
);
1140 virq
= kvm_irqchip_get_virq(s
);
1145 route
= g_malloc0(sizeof(KVMMSIRoute
));
1146 route
->kroute
.gsi
= virq
;
1147 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1148 route
->kroute
.flags
= 0;
1149 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1150 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1151 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1153 kvm_add_routing_entry(s
, &route
->kroute
);
1154 kvm_irqchip_commit_routes(s
);
1156 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1160 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1162 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1165 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1167 struct kvm_irq_routing_entry kroute
= {};
1170 if (kvm_gsi_direct_mapping()) {
1171 return msg
.data
& 0xffff;
1174 if (!kvm_gsi_routing_enabled()) {
1178 virq
= kvm_irqchip_get_virq(s
);
1184 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1186 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1187 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1188 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1190 kvm_add_routing_entry(s
, &kroute
);
1191 kvm_irqchip_commit_routes(s
);
1196 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1198 struct kvm_irq_routing_entry kroute
= {};
1200 if (kvm_gsi_direct_mapping()) {
1204 if (!kvm_irqchip_in_kernel()) {
1209 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1211 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1212 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1213 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1215 return kvm_update_routing_entry(s
, &kroute
);
1218 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1221 struct kvm_irqfd irqfd
= {
1224 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1228 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1229 irqfd
.resamplefd
= rfd
;
1232 if (!kvm_irqfds_enabled()) {
1236 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1239 #else /* !KVM_CAP_IRQ_ROUTING */
1241 void kvm_init_irq_routing(KVMState
*s
)
1245 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1249 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1254 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1259 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1264 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1268 #endif /* !KVM_CAP_IRQ_ROUTING */
1270 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1271 EventNotifier
*rn
, int virq
)
1273 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1274 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1277 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1279 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1283 static int kvm_irqchip_create(KVMState
*s
)
1287 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1288 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1292 /* First probe and see if there's a arch-specific hook to create the
1293 * in-kernel irqchip for us */
1294 ret
= kvm_arch_irqchip_create(s
);
1297 } else if (ret
== 0) {
1298 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1300 fprintf(stderr
, "Create kernel irqchip failed\n");
1305 kvm_kernel_irqchip
= true;
1306 /* If we have an in-kernel IRQ chip then we must have asynchronous
1307 * interrupt delivery (though the reverse is not necessarily true)
1309 kvm_async_interrupts_allowed
= true;
1310 kvm_halt_in_kernel_allowed
= true;
1312 kvm_init_irq_routing(s
);
1317 /* Find number of supported CPUs using the recommended
1318 * procedure from the kernel API documentation to cope with
1319 * older kernels that may be missing capabilities.
1321 static int kvm_recommended_vcpus(KVMState
*s
)
1323 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1324 return (ret
) ? ret
: 4;
1327 static int kvm_max_vcpus(KVMState
*s
)
1329 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1330 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1333 int kvm_init(MachineClass
*mc
)
1335 static const char upgrade_note
[] =
1336 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1337 "(see http://sourceforge.net/projects/kvm).\n";
1342 { "SMP", smp_cpus
},
1343 { "hotpluggable", max_cpus
},
1346 int soft_vcpus_limit
, hard_vcpus_limit
;
1348 const KVMCapabilityInfo
*missing_cap
;
1351 const char *kvm_type
;
1353 s
= g_malloc0(sizeof(KVMState
));
1356 * On systems where the kernel can support different base page
1357 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1358 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1359 * page size for the system though.
1361 assert(TARGET_PAGE_SIZE
<= getpagesize());
1364 #ifdef KVM_CAP_SET_GUEST_DEBUG
1365 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1368 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1370 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1375 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1376 if (ret
< KVM_API_VERSION
) {
1380 fprintf(stderr
, "kvm version too old\n");
1384 if (ret
> KVM_API_VERSION
) {
1386 fprintf(stderr
, "kvm version not supported\n");
1390 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1392 /* If unspecified, use the default value */
1397 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1399 for (i
= 0; i
< s
->nr_slots
; i
++) {
1400 s
->slots
[i
].slot
= i
;
1403 /* check the vcpu limits */
1404 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1405 hard_vcpus_limit
= kvm_max_vcpus(s
);
1408 if (nc
->num
> soft_vcpus_limit
) {
1410 "Warning: Number of %s cpus requested (%d) exceeds "
1411 "the recommended cpus supported by KVM (%d)\n",
1412 nc
->name
, nc
->num
, soft_vcpus_limit
);
1414 if (nc
->num
> hard_vcpus_limit
) {
1415 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1416 "the maximum cpus supported by KVM (%d)\n",
1417 nc
->name
, nc
->num
, hard_vcpus_limit
);
1424 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1426 type
= mc
->kvm_type(kvm_type
);
1427 } else if (kvm_type
) {
1429 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1434 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1435 } while (ret
== -EINTR
);
1438 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1442 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1443 "your host kernel command line\n");
1449 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1452 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1456 fprintf(stderr
, "kvm does not support %s\n%s",
1457 missing_cap
->name
, upgrade_note
);
1461 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1463 s
->broken_set_mem_region
= 1;
1464 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1466 s
->broken_set_mem_region
= 0;
1469 #ifdef KVM_CAP_VCPU_EVENTS
1470 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1473 s
->robust_singlestep
=
1474 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1476 #ifdef KVM_CAP_DEBUGREGS
1477 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1480 #ifdef KVM_CAP_XSAVE
1481 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1485 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1488 #ifdef KVM_CAP_PIT_STATE2
1489 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1492 #ifdef KVM_CAP_IRQ_ROUTING
1493 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1496 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1498 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1499 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1500 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1503 #ifdef KVM_CAP_READONLY_MEM
1504 kvm_readonly_mem_allowed
=
1505 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1508 ret
= kvm_arch_init(s
);
1513 ret
= kvm_irqchip_create(s
);
1519 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1520 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1522 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1524 cpu_interrupt_handler
= kvm_handle_interrupt
;
1542 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1546 uint8_t *ptr
= data
;
1548 for (i
= 0; i
< count
; i
++) {
1549 address_space_rw(&address_space_io
, port
, ptr
, size
,
1550 direction
== KVM_EXIT_IO_OUT
);
1555 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1557 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1558 run
->internal
.suberror
);
1560 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1563 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1564 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1565 i
, (uint64_t)run
->internal
.data
[i
]);
1568 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1569 fprintf(stderr
, "emulation failure\n");
1570 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1571 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1572 return EXCP_INTERRUPT
;
1575 /* FIXME: Should trigger a qmp message to let management know
1576 * something went wrong.
1581 void kvm_flush_coalesced_mmio_buffer(void)
1583 KVMState
*s
= kvm_state
;
1585 if (s
->coalesced_flush_in_progress
) {
1589 s
->coalesced_flush_in_progress
= true;
1591 if (s
->coalesced_mmio_ring
) {
1592 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1593 while (ring
->first
!= ring
->last
) {
1594 struct kvm_coalesced_mmio
*ent
;
1596 ent
= &ring
->coalesced_mmio
[ring
->first
];
1598 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1600 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1604 s
->coalesced_flush_in_progress
= false;
1607 static void do_kvm_cpu_synchronize_state(void *arg
)
1609 CPUState
*cpu
= arg
;
1611 if (!cpu
->kvm_vcpu_dirty
) {
1612 kvm_arch_get_registers(cpu
);
1613 cpu
->kvm_vcpu_dirty
= true;
1617 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1619 if (!cpu
->kvm_vcpu_dirty
) {
1620 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1624 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1626 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1627 cpu
->kvm_vcpu_dirty
= false;
1630 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1632 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1633 cpu
->kvm_vcpu_dirty
= false;
1636 int kvm_cpu_exec(CPUState
*cpu
)
1638 struct kvm_run
*run
= cpu
->kvm_run
;
1641 DPRINTF("kvm_cpu_exec()\n");
1643 if (kvm_arch_process_async_events(cpu
)) {
1644 cpu
->exit_request
= 0;
1649 if (cpu
->kvm_vcpu_dirty
) {
1650 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1651 cpu
->kvm_vcpu_dirty
= false;
1654 kvm_arch_pre_run(cpu
, run
);
1655 if (cpu
->exit_request
) {
1656 DPRINTF("interrupt exit requested\n");
1658 * KVM requires us to reenter the kernel after IO exits to complete
1659 * instruction emulation. This self-signal will ensure that we
1662 qemu_cpu_kick_self();
1664 qemu_mutex_unlock_iothread();
1666 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1668 qemu_mutex_lock_iothread();
1669 kvm_arch_post_run(cpu
, run
);
1672 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1673 DPRINTF("io window exit\n");
1674 ret
= EXCP_INTERRUPT
;
1677 fprintf(stderr
, "error: kvm run failed %s\n",
1678 strerror(-run_ret
));
1682 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1683 switch (run
->exit_reason
) {
1685 DPRINTF("handle_io\n");
1686 kvm_handle_io(run
->io
.port
,
1687 (uint8_t *)run
+ run
->io
.data_offset
,
1694 DPRINTF("handle_mmio\n");
1695 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1698 run
->mmio
.is_write
);
1701 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1702 DPRINTF("irq_window_open\n");
1703 ret
= EXCP_INTERRUPT
;
1705 case KVM_EXIT_SHUTDOWN
:
1706 DPRINTF("shutdown\n");
1707 qemu_system_reset_request();
1708 ret
= EXCP_INTERRUPT
;
1710 case KVM_EXIT_UNKNOWN
:
1711 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1712 (uint64_t)run
->hw
.hardware_exit_reason
);
1715 case KVM_EXIT_INTERNAL_ERROR
:
1716 ret
= kvm_handle_internal_error(cpu
, run
);
1719 DPRINTF("kvm_arch_handle_exit\n");
1720 ret
= kvm_arch_handle_exit(cpu
, run
);
1726 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1727 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1730 cpu
->exit_request
= 0;
1734 int kvm_ioctl(KVMState
*s
, int type
, ...)
1741 arg
= va_arg(ap
, void *);
1744 trace_kvm_ioctl(type
, arg
);
1745 ret
= ioctl(s
->fd
, type
, arg
);
1752 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1759 arg
= va_arg(ap
, void *);
1762 trace_kvm_vm_ioctl(type
, arg
);
1763 ret
= ioctl(s
->vmfd
, type
, arg
);
1770 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1777 arg
= va_arg(ap
, void *);
1780 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1781 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1788 int kvm_device_ioctl(int fd
, int type
, ...)
1795 arg
= va_arg(ap
, void *);
1798 trace_kvm_device_ioctl(fd
, type
, arg
);
1799 ret
= ioctl(fd
, type
, arg
);
1806 int kvm_has_sync_mmu(void)
1808 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1811 int kvm_has_vcpu_events(void)
1813 return kvm_state
->vcpu_events
;
1816 int kvm_has_robust_singlestep(void)
1818 return kvm_state
->robust_singlestep
;
1821 int kvm_has_debugregs(void)
1823 return kvm_state
->debugregs
;
1826 int kvm_has_xsave(void)
1828 return kvm_state
->xsave
;
1831 int kvm_has_xcrs(void)
1833 return kvm_state
->xcrs
;
1836 int kvm_has_pit_state2(void)
1838 return kvm_state
->pit_state2
;
1841 int kvm_has_many_ioeventfds(void)
1843 if (!kvm_enabled()) {
1846 return kvm_state
->many_ioeventfds
;
1849 int kvm_has_gsi_routing(void)
1851 #ifdef KVM_CAP_IRQ_ROUTING
1852 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1858 int kvm_has_intx_set_mask(void)
1860 return kvm_state
->intx_set_mask
;
1863 void kvm_setup_guest_memory(void *start
, size_t size
)
1865 #ifdef CONFIG_VALGRIND_H
1866 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1868 if (!kvm_has_sync_mmu()) {
1869 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1872 perror("qemu_madvise");
1874 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1880 #ifdef KVM_CAP_SET_GUEST_DEBUG
1881 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1884 struct kvm_sw_breakpoint
*bp
;
1886 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1894 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1896 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1899 struct kvm_set_guest_debug_data
{
1900 struct kvm_guest_debug dbg
;
1905 static void kvm_invoke_set_guest_debug(void *data
)
1907 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1909 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1913 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
1915 struct kvm_set_guest_debug_data data
;
1917 data
.dbg
.control
= reinject_trap
;
1919 if (cpu
->singlestep_enabled
) {
1920 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1922 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1925 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1929 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
1930 target_ulong len
, int type
)
1932 struct kvm_sw_breakpoint
*bp
;
1935 if (type
== GDB_BREAKPOINT_SW
) {
1936 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1942 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1949 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
1955 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1957 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1964 err
= kvm_update_guest_debug(cpu
, 0);
1972 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
1973 target_ulong len
, int type
)
1975 struct kvm_sw_breakpoint
*bp
;
1978 if (type
== GDB_BREAKPOINT_SW
) {
1979 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1984 if (bp
->use_count
> 1) {
1989 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
1994 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1997 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2004 err
= kvm_update_guest_debug(cpu
, 0);
2012 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2014 struct kvm_sw_breakpoint
*bp
, *next
;
2015 KVMState
*s
= cpu
->kvm_state
;
2017 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2018 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2019 /* Try harder to find a CPU that currently sees the breakpoint. */
2021 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
2026 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2029 kvm_arch_remove_all_hw_breakpoints();
2032 kvm_update_guest_debug(cpu
, 0);
2036 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2038 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2043 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2044 target_ulong len
, int type
)
2049 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2050 target_ulong len
, int type
)
2055 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2058 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2060 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2062 struct kvm_signal_mask
*sigmask
;
2066 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2069 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2072 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2073 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2078 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2080 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2083 int kvm_on_sigbus(int code
, void *addr
)
2085 return kvm_arch_on_sigbus(code
, addr
);
2088 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2091 struct kvm_create_device create_dev
;
2093 create_dev
.type
= type
;
2095 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2097 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2101 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2106 return test
? 0 : create_dev
.fd
;
2109 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2111 struct kvm_one_reg reg
;
2115 reg
.addr
= (uintptr_t) source
;
2116 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2118 trace_kvm_failed_reg_set(id
, strerror(r
));
2123 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2125 struct kvm_one_reg reg
;
2129 reg
.addr
= (uintptr_t) target
;
2130 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2132 trace_kvm_failed_reg_get(id
, strerror(r
));