Add device save and reset methods to FDC and M48T59
[qemu/qemu_0_9_1_stable.git] / cpu-exec.c
blob284cb92ae83a2a36e05137d3532106ff85167364
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44 defined(TARGET_ALPHA)
45 /* XXX: unify with i386 target */
46 void cpu_loop_exit(void)
48 longjmp(env->jmp_env, 1);
50 #endif
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52 #define reg_T2
53 #endif
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62 #endif
64 env = env1;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
73 #endif
74 longjmp(env->jmp_env, 1);
78 static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 unsigned int flags)
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
88 spin_lock(&tb_lock);
90 tb_invalidated_flag = 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
119 ptb1 = &tb->phys_hash_next;
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
145 tb_link_phys(tb, phys_pc, phys_page2);
147 found:
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
154 static inline TranslationBlock *tb_find_fast(void)
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 unsigned int flags;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163 #if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168 #elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 flags |= (1 << 6);
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174 flags |= (1 << 7);
175 cs_base = 0;
176 pc = env->regs[15];
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182 #else
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185 | env->psrs;
186 #endif
187 cs_base = env->npc;
188 pc = env->pc;
189 #elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
192 cs_base = 0;
193 pc = env->nip;
194 #elif defined(TARGET_MIPS)
195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196 cs_base = 0;
197 pc = env->PC;
198 #elif defined(TARGET_M68K)
199 flags = env->fpcr & M68K_FPCR_PREC;
200 cs_base = 0;
201 pc = env->pc;
202 #elif defined(TARGET_SH4)
203 flags = env->sr & (SR_MD | SR_RB);
204 cs_base = 0; /* XXXXX */
205 pc = env->pc;
206 #elif defined(TARGET_ALPHA)
207 flags = env->ps;
208 cs_base = 0;
209 pc = env->pc;
210 #else
211 #error unsupported CPU
212 #endif
213 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
214 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
215 tb->flags != flags, 0)) {
216 tb = tb_find_slow(pc, cs_base, flags);
217 /* Note: we do it here to avoid a gcc bug on Mac OS X when
218 doing it in tb_find_slow */
219 if (tb_invalidated_flag) {
220 /* as some TB could have been invalidated because
221 of memory exceptions while generating the code, we
222 must recompute the hash index here */
223 T0 = 0;
226 return tb;
230 /* main execution loop */
232 int cpu_exec(CPUState *env1)
234 #define DECLARE_HOST_REGS 1
235 #include "hostregs_helper.h"
236 #if defined(TARGET_SPARC)
237 #if defined(reg_REGWPTR)
238 uint32_t *saved_regwptr;
239 #endif
240 #endif
241 #if defined(__sparc__) && !defined(HOST_SOLARIS)
242 int saved_i7;
243 target_ulong tmp_T0;
244 #endif
245 int ret, interrupt_request;
246 void (*gen_func)(void);
247 TranslationBlock *tb;
248 uint8_t *tc_ptr;
250 #if defined(TARGET_I386)
251 /* handle exit of HALTED state */
252 if (env1->hflags & HF_HALTED_MASK) {
253 /* disable halt condition */
254 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
255 (env1->eflags & IF_MASK)) {
256 env1->hflags &= ~HF_HALTED_MASK;
257 } else {
258 return EXCP_HALTED;
261 #elif defined(TARGET_PPC)
262 if (env1->halted) {
263 if (env1->msr[MSR_EE] &&
264 (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
265 env1->halted = 0;
266 } else {
267 return EXCP_HALTED;
270 #elif defined(TARGET_SPARC)
271 if (env1->halted) {
272 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273 (env1->psret != 0)) {
274 env1->halted = 0;
275 } else {
276 return EXCP_HALTED;
279 #elif defined(TARGET_ARM)
280 if (env1->halted) {
281 /* An interrupt wakes the CPU even if the I and F CPSR bits are
282 set. */
283 if (env1->interrupt_request
284 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
285 env1->halted = 0;
286 } else {
287 return EXCP_HALTED;
290 #elif defined(TARGET_MIPS)
291 if (env1->halted) {
292 if (env1->interrupt_request &
293 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
294 env1->halted = 0;
295 } else {
296 return EXCP_HALTED;
299 #elif defined(TARGET_ALPHA)
300 if (env1->halted) {
301 if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
302 env1->halted = 0;
303 } else {
304 return EXCP_HALTED;
307 #endif
309 cpu_single_env = env1;
311 /* first we save global registers */
312 #define SAVE_HOST_REGS 1
313 #include "hostregs_helper.h"
314 env = env1;
315 #if defined(__sparc__) && !defined(HOST_SOLARIS)
316 /* we also save i7 because longjmp may not restore it */
317 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
318 #endif
320 #if defined(TARGET_I386)
321 env_to_regs();
322 /* put eflags in CPU temporary format */
323 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324 DF = 1 - (2 * ((env->eflags >> 10) & 1));
325 CC_OP = CC_OP_EFLAGS;
326 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327 #elif defined(TARGET_ARM)
328 #elif defined(TARGET_SPARC)
329 #if defined(reg_REGWPTR)
330 saved_regwptr = REGWPTR;
331 #endif
332 #elif defined(TARGET_PPC)
333 #elif defined(TARGET_M68K)
334 env->cc_op = CC_OP_FLAGS;
335 env->cc_dest = env->sr & 0xf;
336 env->cc_x = (env->sr >> 4) & 1;
337 #elif defined(TARGET_MIPS)
338 #elif defined(TARGET_SH4)
339 /* XXXXX */
340 #elif defined(TARGET_ALPHA)
341 env_to_regs();
342 #else
343 #error unsupported target CPU
344 #endif
345 env->exception_index = -1;
347 /* prepare setjmp context for exception handling */
348 for(;;) {
349 if (setjmp(env->jmp_env) == 0) {
350 env->current_tb = NULL;
351 /* if an exception is pending, we execute it here */
352 if (env->exception_index >= 0) {
353 if (env->exception_index >= EXCP_INTERRUPT) {
354 /* exit request from the cpu execution loop */
355 ret = env->exception_index;
356 break;
357 } else if (env->user_mode_only) {
358 /* if user mode only, we simulate a fake exception
359 which will be handled outside the cpu execution
360 loop */
361 #if defined(TARGET_I386)
362 do_interrupt_user(env->exception_index,
363 env->exception_is_int,
364 env->error_code,
365 env->exception_next_eip);
366 #endif
367 ret = env->exception_index;
368 break;
369 } else {
370 #if defined(TARGET_I386)
371 /* simulate a real cpu exception. On i386, it can
372 trigger new exceptions, but we do not handle
373 double or triple faults yet. */
374 do_interrupt(env->exception_index,
375 env->exception_is_int,
376 env->error_code,
377 env->exception_next_eip, 0);
378 /* successfully delivered */
379 env->old_exception = -1;
380 #elif defined(TARGET_PPC)
381 do_interrupt(env);
382 #elif defined(TARGET_MIPS)
383 do_interrupt(env);
384 #elif defined(TARGET_SPARC)
385 do_interrupt(env->exception_index);
386 #elif defined(TARGET_ARM)
387 do_interrupt(env);
388 #elif defined(TARGET_SH4)
389 do_interrupt(env);
390 #elif defined(TARGET_ALPHA)
391 do_interrupt(env);
392 #endif
394 env->exception_index = -1;
396 #ifdef USE_KQEMU
397 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
398 int ret;
399 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
400 ret = kqemu_cpu_exec(env);
401 /* put eflags in CPU temporary format */
402 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
403 DF = 1 - (2 * ((env->eflags >> 10) & 1));
404 CC_OP = CC_OP_EFLAGS;
405 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
406 if (ret == 1) {
407 /* exception */
408 longjmp(env->jmp_env, 1);
409 } else if (ret == 2) {
410 /* softmmu execution needed */
411 } else {
412 if (env->interrupt_request != 0) {
413 /* hardware interrupt will be executed just after */
414 } else {
415 /* otherwise, we restart */
416 longjmp(env->jmp_env, 1);
420 #endif
422 T0 = 0; /* force lookup of first TB */
423 for(;;) {
424 #if defined(__sparc__) && !defined(HOST_SOLARIS)
425 /* g1 can be modified by some libc? functions */
426 tmp_T0 = T0;
427 #endif
428 interrupt_request = env->interrupt_request;
429 if (__builtin_expect(interrupt_request, 0)) {
430 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
431 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
432 env->exception_index = EXCP_DEBUG;
433 cpu_loop_exit();
435 #if defined(TARGET_I386)
436 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
437 !(env->hflags & HF_SMM_MASK)) {
438 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
439 do_smm_enter();
440 #if defined(__sparc__) && !defined(HOST_SOLARIS)
441 tmp_T0 = 0;
442 #else
443 T0 = 0;
444 #endif
445 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
446 (env->eflags & IF_MASK) &&
447 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
448 int intno;
449 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
450 intno = cpu_get_pic_interrupt(env);
451 if (loglevel & CPU_LOG_TB_IN_ASM) {
452 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
454 do_interrupt(intno, 0, 0, 0, 1);
455 /* ensure that no TB jump will be modified as
456 the program flow was changed */
457 #if defined(__sparc__) && !defined(HOST_SOLARIS)
458 tmp_T0 = 0;
459 #else
460 T0 = 0;
461 #endif
463 #elif defined(TARGET_PPC)
464 #if 0
465 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
466 cpu_ppc_reset(env);
468 #endif
469 if (interrupt_request & CPU_INTERRUPT_HARD) {
470 ppc_hw_interrupt(env);
471 if (env->pending_interrupts == 0)
472 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
473 #if defined(__sparc__) && !defined(HOST_SOLARIS)
474 tmp_T0 = 0;
475 #else
476 T0 = 0;
477 #endif
479 #elif defined(TARGET_MIPS)
480 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
481 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
482 (env->CP0_Status & (1 << CP0St_IE)) &&
483 !(env->CP0_Status & (1 << CP0St_EXL)) &&
484 !(env->CP0_Status & (1 << CP0St_ERL)) &&
485 !(env->hflags & MIPS_HFLAG_DM)) {
486 /* Raise it */
487 env->exception_index = EXCP_EXT_INTERRUPT;
488 env->error_code = 0;
489 do_interrupt(env);
490 #if defined(__sparc__) && !defined(HOST_SOLARIS)
491 tmp_T0 = 0;
492 #else
493 T0 = 0;
494 #endif
496 #elif defined(TARGET_SPARC)
497 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
498 (env->psret != 0)) {
499 int pil = env->interrupt_index & 15;
500 int type = env->interrupt_index & 0xf0;
502 if (((type == TT_EXTINT) &&
503 (pil == 15 || pil > env->psrpil)) ||
504 type != TT_EXTINT) {
505 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
506 do_interrupt(env->interrupt_index);
507 env->interrupt_index = 0;
508 #if defined(__sparc__) && !defined(HOST_SOLARIS)
509 tmp_T0 = 0;
510 #else
511 T0 = 0;
512 #endif
514 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
515 //do_interrupt(0, 0, 0, 0, 0);
516 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
517 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
518 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
519 env->halted = 1;
520 env->exception_index = EXCP_HLT;
521 cpu_loop_exit();
523 #elif defined(TARGET_ARM)
524 if (interrupt_request & CPU_INTERRUPT_FIQ
525 && !(env->uncached_cpsr & CPSR_F)) {
526 env->exception_index = EXCP_FIQ;
527 do_interrupt(env);
529 if (interrupt_request & CPU_INTERRUPT_HARD
530 && !(env->uncached_cpsr & CPSR_I)) {
531 env->exception_index = EXCP_IRQ;
532 do_interrupt(env);
534 #elif defined(TARGET_SH4)
535 /* XXXXX */
536 #elif defined(TARGET_ALPHA)
537 if (interrupt_request & CPU_INTERRUPT_HARD) {
538 do_interrupt(env);
540 #endif
541 /* Don't use the cached interupt_request value,
542 do_interrupt may have updated the EXITTB flag. */
543 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
544 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
545 /* ensure that no TB jump will be modified as
546 the program flow was changed */
547 #if defined(__sparc__) && !defined(HOST_SOLARIS)
548 tmp_T0 = 0;
549 #else
550 T0 = 0;
551 #endif
553 if (interrupt_request & CPU_INTERRUPT_EXIT) {
554 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
555 env->exception_index = EXCP_INTERRUPT;
556 cpu_loop_exit();
559 #ifdef DEBUG_EXEC
560 if ((loglevel & CPU_LOG_TB_CPU)) {
561 #if defined(TARGET_I386)
562 /* restore flags in standard format */
563 #ifdef reg_EAX
564 env->regs[R_EAX] = EAX;
565 #endif
566 #ifdef reg_EBX
567 env->regs[R_EBX] = EBX;
568 #endif
569 #ifdef reg_ECX
570 env->regs[R_ECX] = ECX;
571 #endif
572 #ifdef reg_EDX
573 env->regs[R_EDX] = EDX;
574 #endif
575 #ifdef reg_ESI
576 env->regs[R_ESI] = ESI;
577 #endif
578 #ifdef reg_EDI
579 env->regs[R_EDI] = EDI;
580 #endif
581 #ifdef reg_EBP
582 env->regs[R_EBP] = EBP;
583 #endif
584 #ifdef reg_ESP
585 env->regs[R_ESP] = ESP;
586 #endif
587 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
588 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
589 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
590 #elif defined(TARGET_ARM)
591 cpu_dump_state(env, logfile, fprintf, 0);
592 #elif defined(TARGET_SPARC)
593 REGWPTR = env->regbase + (env->cwp * 16);
594 env->regwptr = REGWPTR;
595 cpu_dump_state(env, logfile, fprintf, 0);
596 #elif defined(TARGET_PPC)
597 cpu_dump_state(env, logfile, fprintf, 0);
598 #elif defined(TARGET_M68K)
599 cpu_m68k_flush_flags(env, env->cc_op);
600 env->cc_op = CC_OP_FLAGS;
601 env->sr = (env->sr & 0xffe0)
602 | env->cc_dest | (env->cc_x << 4);
603 cpu_dump_state(env, logfile, fprintf, 0);
604 #elif defined(TARGET_MIPS)
605 cpu_dump_state(env, logfile, fprintf, 0);
606 #elif defined(TARGET_SH4)
607 cpu_dump_state(env, logfile, fprintf, 0);
608 #elif defined(TARGET_ALPHA)
609 cpu_dump_state(env, logfile, fprintf, 0);
610 #else
611 #error unsupported target CPU
612 #endif
614 #endif
615 tb = tb_find_fast();
616 #ifdef DEBUG_EXEC
617 if ((loglevel & CPU_LOG_EXEC)) {
618 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
619 (long)tb->tc_ptr, tb->pc,
620 lookup_symbol(tb->pc));
622 #endif
623 #if defined(__sparc__) && !defined(HOST_SOLARIS)
624 T0 = tmp_T0;
625 #endif
626 /* see if we can patch the calling TB. When the TB
627 spans two pages, we cannot safely do a direct
628 jump. */
630 if (T0 != 0 &&
631 #if USE_KQEMU
632 (env->kqemu_enabled != 2) &&
633 #endif
634 tb->page_addr[1] == -1
635 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
636 && (tb->cflags & CF_CODE_COPY) ==
637 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
638 #endif
640 spin_lock(&tb_lock);
641 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
642 #if defined(USE_CODE_COPY)
643 /* propagates the FP use info */
644 ((TranslationBlock *)(T0 & ~3))->cflags |=
645 (tb->cflags & CF_FP_USED);
646 #endif
647 spin_unlock(&tb_lock);
650 tc_ptr = tb->tc_ptr;
651 env->current_tb = tb;
652 /* execute the generated code */
653 gen_func = (void *)tc_ptr;
654 #if defined(__sparc__)
655 __asm__ __volatile__("call %0\n\t"
656 "mov %%o7,%%i0"
657 : /* no outputs */
658 : "r" (gen_func)
659 : "i0", "i1", "i2", "i3", "i4", "i5",
660 "o0", "o1", "o2", "o3", "o4", "o5",
661 "l0", "l1", "l2", "l3", "l4", "l5",
662 "l6", "l7");
663 #elif defined(__arm__)
664 asm volatile ("mov pc, %0\n\t"
665 ".global exec_loop\n\t"
666 "exec_loop:\n\t"
667 : /* no outputs */
668 : "r" (gen_func)
669 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
670 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
672 if (!(tb->cflags & CF_CODE_COPY)) {
673 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
674 save_native_fp_state(env);
676 gen_func();
677 } else {
678 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
679 restore_native_fp_state(env);
681 /* we work with native eflags */
682 CC_SRC = cc_table[CC_OP].compute_all();
683 CC_OP = CC_OP_EFLAGS;
684 asm(".globl exec_loop\n"
685 "\n"
686 "debug1:\n"
687 " pushl %%ebp\n"
688 " fs movl %10, %9\n"
689 " fs movl %11, %%eax\n"
690 " andl $0x400, %%eax\n"
691 " fs orl %8, %%eax\n"
692 " pushl %%eax\n"
693 " popf\n"
694 " fs movl %%esp, %12\n"
695 " fs movl %0, %%eax\n"
696 " fs movl %1, %%ecx\n"
697 " fs movl %2, %%edx\n"
698 " fs movl %3, %%ebx\n"
699 " fs movl %4, %%esp\n"
700 " fs movl %5, %%ebp\n"
701 " fs movl %6, %%esi\n"
702 " fs movl %7, %%edi\n"
703 " fs jmp *%9\n"
704 "exec_loop:\n"
705 " fs movl %%esp, %4\n"
706 " fs movl %12, %%esp\n"
707 " fs movl %%eax, %0\n"
708 " fs movl %%ecx, %1\n"
709 " fs movl %%edx, %2\n"
710 " fs movl %%ebx, %3\n"
711 " fs movl %%ebp, %5\n"
712 " fs movl %%esi, %6\n"
713 " fs movl %%edi, %7\n"
714 " pushf\n"
715 " popl %%eax\n"
716 " movl %%eax, %%ecx\n"
717 " andl $0x400, %%ecx\n"
718 " shrl $9, %%ecx\n"
719 " andl $0x8d5, %%eax\n"
720 " fs movl %%eax, %8\n"
721 " movl $1, %%eax\n"
722 " subl %%ecx, %%eax\n"
723 " fs movl %%eax, %11\n"
724 " fs movl %9, %%ebx\n" /* get T0 value */
725 " popl %%ebp\n"
727 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
728 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
729 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
730 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
731 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
732 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
733 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
734 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
735 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
736 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
737 "a" (gen_func),
738 "m" (*(uint8_t *)offsetof(CPUState, df)),
739 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
740 : "%ecx", "%edx"
744 #elif defined(__ia64)
745 struct fptr {
746 void *ip;
747 void *gp;
748 } fp;
750 fp.ip = tc_ptr;
751 fp.gp = code_gen_buffer + 2 * (1 << 20);
752 (*(void (*)(void)) &fp)();
753 #else
754 gen_func();
755 #endif
756 env->current_tb = NULL;
757 /* reset soft MMU for next block (it can currently
758 only be set by a memory fault) */
759 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
760 if (env->hflags & HF_SOFTMMU_MASK) {
761 env->hflags &= ~HF_SOFTMMU_MASK;
762 /* do not allow linking to another block */
763 T0 = 0;
765 #endif
766 #if defined(USE_KQEMU)
767 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
768 if (kqemu_is_ok(env) &&
769 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
770 cpu_loop_exit();
772 #endif
774 } else {
775 env_to_regs();
777 } /* for(;;) */
780 #if defined(TARGET_I386)
781 #if defined(USE_CODE_COPY)
782 if (env->native_fp_regs) {
783 save_native_fp_state(env);
785 #endif
786 /* restore flags in standard format */
787 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
788 #elif defined(TARGET_ARM)
789 /* XXX: Save/restore host fpu exception state?. */
790 #elif defined(TARGET_SPARC)
791 #if defined(reg_REGWPTR)
792 REGWPTR = saved_regwptr;
793 #endif
794 #elif defined(TARGET_PPC)
795 #elif defined(TARGET_M68K)
796 cpu_m68k_flush_flags(env, env->cc_op);
797 env->cc_op = CC_OP_FLAGS;
798 env->sr = (env->sr & 0xffe0)
799 | env->cc_dest | (env->cc_x << 4);
800 #elif defined(TARGET_MIPS)
801 #elif defined(TARGET_SH4)
802 #elif defined(TARGET_ALPHA)
803 /* XXXXX */
804 #else
805 #error unsupported target CPU
806 #endif
808 /* restore global registers */
809 #if defined(__sparc__) && !defined(HOST_SOLARIS)
810 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
811 #endif
812 #include "hostregs_helper.h"
814 /* fail safe : never use cpu_single_env outside cpu_exec() */
815 cpu_single_env = NULL;
816 return ret;
819 /* must only be called from the generated code as an exception can be
820 generated */
821 void tb_invalidate_page_range(target_ulong start, target_ulong end)
823 /* XXX: cannot enable it yet because it yields to MMU exception
824 where NIP != read address on PowerPC */
825 #if 0
826 target_ulong phys_addr;
827 phys_addr = get_phys_addr_code(env, start);
828 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
829 #endif
832 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
834 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
836 CPUX86State *saved_env;
838 saved_env = env;
839 env = s;
840 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
841 selector &= 0xffff;
842 cpu_x86_load_seg_cache(env, seg_reg, selector,
843 (selector << 4), 0xffff, 0);
844 } else {
845 load_seg(seg_reg, selector);
847 env = saved_env;
850 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
852 CPUX86State *saved_env;
854 saved_env = env;
855 env = s;
857 helper_fsave((target_ulong)ptr, data32);
859 env = saved_env;
862 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
864 CPUX86State *saved_env;
866 saved_env = env;
867 env = s;
869 helper_frstor((target_ulong)ptr, data32);
871 env = saved_env;
874 #endif /* TARGET_I386 */
876 #if !defined(CONFIG_SOFTMMU)
878 #if defined(TARGET_I386)
880 /* 'pc' is the host PC at which the exception was raised. 'address' is
881 the effective address of the memory exception. 'is_write' is 1 if a
882 write caused the exception and otherwise 0'. 'old_set' is the
883 signal set which should be restored */
884 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
885 int is_write, sigset_t *old_set,
886 void *puc)
888 TranslationBlock *tb;
889 int ret;
891 if (cpu_single_env)
892 env = cpu_single_env; /* XXX: find a correct solution for multithread */
893 #if defined(DEBUG_SIGNAL)
894 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
895 pc, address, is_write, *(unsigned long *)old_set);
896 #endif
897 /* XXX: locking issue */
898 if (is_write && page_unprotect(h2g(address), pc, puc)) {
899 return 1;
902 /* see if it is an MMU fault */
903 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
904 ((env->hflags & HF_CPL_MASK) == 3), 0);
905 if (ret < 0)
906 return 0; /* not an MMU fault */
907 if (ret == 0)
908 return 1; /* the MMU fault was handled without causing real CPU fault */
909 /* now we have a real cpu fault */
910 tb = tb_find_pc(pc);
911 if (tb) {
912 /* the PC is inside the translated code. It means that we have
913 a virtual CPU fault */
914 cpu_restore_state(tb, env, pc, puc);
916 if (ret == 1) {
917 #if 0
918 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
919 env->eip, env->cr[2], env->error_code);
920 #endif
921 /* we restore the process signal mask as the sigreturn should
922 do it (XXX: use sigsetjmp) */
923 sigprocmask(SIG_SETMASK, old_set, NULL);
924 raise_exception_err(env->exception_index, env->error_code);
925 } else {
926 /* activate soft MMU for this block */
927 env->hflags |= HF_SOFTMMU_MASK;
928 cpu_resume_from_signal(env, puc);
930 /* never comes here */
931 return 1;
934 #elif defined(TARGET_ARM)
935 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
936 int is_write, sigset_t *old_set,
937 void *puc)
939 TranslationBlock *tb;
940 int ret;
942 if (cpu_single_env)
943 env = cpu_single_env; /* XXX: find a correct solution for multithread */
944 #if defined(DEBUG_SIGNAL)
945 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
946 pc, address, is_write, *(unsigned long *)old_set);
947 #endif
948 /* XXX: locking issue */
949 if (is_write && page_unprotect(h2g(address), pc, puc)) {
950 return 1;
952 /* see if it is an MMU fault */
953 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
954 if (ret < 0)
955 return 0; /* not an MMU fault */
956 if (ret == 0)
957 return 1; /* the MMU fault was handled without causing real CPU fault */
958 /* now we have a real cpu fault */
959 tb = tb_find_pc(pc);
960 if (tb) {
961 /* the PC is inside the translated code. It means that we have
962 a virtual CPU fault */
963 cpu_restore_state(tb, env, pc, puc);
965 /* we restore the process signal mask as the sigreturn should
966 do it (XXX: use sigsetjmp) */
967 sigprocmask(SIG_SETMASK, old_set, NULL);
968 cpu_loop_exit();
970 #elif defined(TARGET_SPARC)
971 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
972 int is_write, sigset_t *old_set,
973 void *puc)
975 TranslationBlock *tb;
976 int ret;
978 if (cpu_single_env)
979 env = cpu_single_env; /* XXX: find a correct solution for multithread */
980 #if defined(DEBUG_SIGNAL)
981 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
982 pc, address, is_write, *(unsigned long *)old_set);
983 #endif
984 /* XXX: locking issue */
985 if (is_write && page_unprotect(h2g(address), pc, puc)) {
986 return 1;
988 /* see if it is an MMU fault */
989 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
990 if (ret < 0)
991 return 0; /* not an MMU fault */
992 if (ret == 0)
993 return 1; /* the MMU fault was handled without causing real CPU fault */
994 /* now we have a real cpu fault */
995 tb = tb_find_pc(pc);
996 if (tb) {
997 /* the PC is inside the translated code. It means that we have
998 a virtual CPU fault */
999 cpu_restore_state(tb, env, pc, puc);
1001 /* we restore the process signal mask as the sigreturn should
1002 do it (XXX: use sigsetjmp) */
1003 sigprocmask(SIG_SETMASK, old_set, NULL);
1004 cpu_loop_exit();
1006 #elif defined (TARGET_PPC)
1007 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1008 int is_write, sigset_t *old_set,
1009 void *puc)
1011 TranslationBlock *tb;
1012 int ret;
1014 if (cpu_single_env)
1015 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1016 #if defined(DEBUG_SIGNAL)
1017 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1018 pc, address, is_write, *(unsigned long *)old_set);
1019 #endif
1020 /* XXX: locking issue */
1021 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1022 return 1;
1025 /* see if it is an MMU fault */
1026 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1027 if (ret < 0)
1028 return 0; /* not an MMU fault */
1029 if (ret == 0)
1030 return 1; /* the MMU fault was handled without causing real CPU fault */
1032 /* now we have a real cpu fault */
1033 tb = tb_find_pc(pc);
1034 if (tb) {
1035 /* the PC is inside the translated code. It means that we have
1036 a virtual CPU fault */
1037 cpu_restore_state(tb, env, pc, puc);
1039 if (ret == 1) {
1040 #if 0
1041 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1042 env->nip, env->error_code, tb);
1043 #endif
1044 /* we restore the process signal mask as the sigreturn should
1045 do it (XXX: use sigsetjmp) */
1046 sigprocmask(SIG_SETMASK, old_set, NULL);
1047 do_raise_exception_err(env->exception_index, env->error_code);
1048 } else {
1049 /* activate soft MMU for this block */
1050 cpu_resume_from_signal(env, puc);
1052 /* never comes here */
1053 return 1;
1056 #elif defined(TARGET_M68K)
1057 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1058 int is_write, sigset_t *old_set,
1059 void *puc)
1061 TranslationBlock *tb;
1062 int ret;
1064 if (cpu_single_env)
1065 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1066 #if defined(DEBUG_SIGNAL)
1067 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1068 pc, address, is_write, *(unsigned long *)old_set);
1069 #endif
1070 /* XXX: locking issue */
1071 if (is_write && page_unprotect(address, pc, puc)) {
1072 return 1;
1074 /* see if it is an MMU fault */
1075 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1076 if (ret < 0)
1077 return 0; /* not an MMU fault */
1078 if (ret == 0)
1079 return 1; /* the MMU fault was handled without causing real CPU fault */
1080 /* now we have a real cpu fault */
1081 tb = tb_find_pc(pc);
1082 if (tb) {
1083 /* the PC is inside the translated code. It means that we have
1084 a virtual CPU fault */
1085 cpu_restore_state(tb, env, pc, puc);
1087 /* we restore the process signal mask as the sigreturn should
1088 do it (XXX: use sigsetjmp) */
1089 sigprocmask(SIG_SETMASK, old_set, NULL);
1090 cpu_loop_exit();
1091 /* never comes here */
1092 return 1;
1095 #elif defined (TARGET_MIPS)
1096 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1097 int is_write, sigset_t *old_set,
1098 void *puc)
1100 TranslationBlock *tb;
1101 int ret;
1103 if (cpu_single_env)
1104 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1105 #if defined(DEBUG_SIGNAL)
1106 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1107 pc, address, is_write, *(unsigned long *)old_set);
1108 #endif
1109 /* XXX: locking issue */
1110 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1111 return 1;
1114 /* see if it is an MMU fault */
1115 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1116 if (ret < 0)
1117 return 0; /* not an MMU fault */
1118 if (ret == 0)
1119 return 1; /* the MMU fault was handled without causing real CPU fault */
1121 /* now we have a real cpu fault */
1122 tb = tb_find_pc(pc);
1123 if (tb) {
1124 /* the PC is inside the translated code. It means that we have
1125 a virtual CPU fault */
1126 cpu_restore_state(tb, env, pc, puc);
1128 if (ret == 1) {
1129 #if 0
1130 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1131 env->nip, env->error_code, tb);
1132 #endif
1133 /* we restore the process signal mask as the sigreturn should
1134 do it (XXX: use sigsetjmp) */
1135 sigprocmask(SIG_SETMASK, old_set, NULL);
1136 do_raise_exception_err(env->exception_index, env->error_code);
1137 } else {
1138 /* activate soft MMU for this block */
1139 cpu_resume_from_signal(env, puc);
1141 /* never comes here */
1142 return 1;
1145 #elif defined (TARGET_SH4)
1146 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1147 int is_write, sigset_t *old_set,
1148 void *puc)
1150 TranslationBlock *tb;
1151 int ret;
1153 if (cpu_single_env)
1154 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1155 #if defined(DEBUG_SIGNAL)
1156 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1157 pc, address, is_write, *(unsigned long *)old_set);
1158 #endif
1159 /* XXX: locking issue */
1160 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1161 return 1;
1164 /* see if it is an MMU fault */
1165 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1166 if (ret < 0)
1167 return 0; /* not an MMU fault */
1168 if (ret == 0)
1169 return 1; /* the MMU fault was handled without causing real CPU fault */
1171 /* now we have a real cpu fault */
1172 tb = tb_find_pc(pc);
1173 if (tb) {
1174 /* the PC is inside the translated code. It means that we have
1175 a virtual CPU fault */
1176 cpu_restore_state(tb, env, pc, puc);
1178 #if 0
1179 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1180 env->nip, env->error_code, tb);
1181 #endif
1182 /* we restore the process signal mask as the sigreturn should
1183 do it (XXX: use sigsetjmp) */
1184 sigprocmask(SIG_SETMASK, old_set, NULL);
1185 cpu_loop_exit();
1186 /* never comes here */
1187 return 1;
1190 #elif defined (TARGET_ALPHA)
1191 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1192 int is_write, sigset_t *old_set,
1193 void *puc)
1195 TranslationBlock *tb;
1196 int ret;
1198 if (cpu_single_env)
1199 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1200 #if defined(DEBUG_SIGNAL)
1201 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1202 pc, address, is_write, *(unsigned long *)old_set);
1203 #endif
1204 /* XXX: locking issue */
1205 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1206 return 1;
1209 /* see if it is an MMU fault */
1210 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1211 if (ret < 0)
1212 return 0; /* not an MMU fault */
1213 if (ret == 0)
1214 return 1; /* the MMU fault was handled without causing real CPU fault */
1216 /* now we have a real cpu fault */
1217 tb = tb_find_pc(pc);
1218 if (tb) {
1219 /* the PC is inside the translated code. It means that we have
1220 a virtual CPU fault */
1221 cpu_restore_state(tb, env, pc, puc);
1223 #if 0
1224 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1225 env->nip, env->error_code, tb);
1226 #endif
1227 /* we restore the process signal mask as the sigreturn should
1228 do it (XXX: use sigsetjmp) */
1229 sigprocmask(SIG_SETMASK, old_set, NULL);
1230 cpu_loop_exit();
1231 /* never comes here */
1232 return 1;
1234 #else
1235 #error unsupported target CPU
1236 #endif
1238 #if defined(__i386__)
1240 #if defined(__APPLE__)
1241 # include <sys/ucontext.h>
1243 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1244 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1245 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1246 #else
1247 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1248 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1249 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1250 #endif
1252 #if defined(USE_CODE_COPY)
1253 static void cpu_send_trap(unsigned long pc, int trap,
1254 struct ucontext *uc)
1256 TranslationBlock *tb;
1258 if (cpu_single_env)
1259 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1260 /* now we have a real cpu fault */
1261 tb = tb_find_pc(pc);
1262 if (tb) {
1263 /* the PC is inside the translated code. It means that we have
1264 a virtual CPU fault */
1265 cpu_restore_state(tb, env, pc, uc);
1267 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1268 raise_exception_err(trap, env->error_code);
1270 #endif
1272 int cpu_signal_handler(int host_signum, void *pinfo,
1273 void *puc)
1275 siginfo_t *info = pinfo;
1276 struct ucontext *uc = puc;
1277 unsigned long pc;
1278 int trapno;
1280 #ifndef REG_EIP
1281 /* for glibc 2.1 */
1282 #define REG_EIP EIP
1283 #define REG_ERR ERR
1284 #define REG_TRAPNO TRAPNO
1285 #endif
1286 pc = EIP_sig(uc);
1287 trapno = TRAP_sig(uc);
1288 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1289 if (trapno == 0x00 || trapno == 0x05) {
1290 /* send division by zero or bound exception */
1291 cpu_send_trap(pc, trapno, uc);
1292 return 1;
1293 } else
1294 #endif
1295 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1296 trapno == 0xe ?
1297 (ERROR_sig(uc) >> 1) & 1 : 0,
1298 &uc->uc_sigmask, puc);
1301 #elif defined(__x86_64__)
1303 int cpu_signal_handler(int host_signum, void *pinfo,
1304 void *puc)
1306 siginfo_t *info = pinfo;
1307 struct ucontext *uc = puc;
1308 unsigned long pc;
1310 pc = uc->uc_mcontext.gregs[REG_RIP];
1311 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1312 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1313 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1314 &uc->uc_sigmask, puc);
1317 #elif defined(__powerpc__)
1319 /***********************************************************************
1320 * signal context platform-specific definitions
1321 * From Wine
1323 #ifdef linux
1324 /* All Registers access - only for local access */
1325 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1326 /* Gpr Registers access */
1327 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1328 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1329 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1330 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1331 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1332 # define LR_sig(context) REG_sig(link, context) /* Link register */
1333 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1334 /* Float Registers access */
1335 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1336 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1337 /* Exception Registers access */
1338 # define DAR_sig(context) REG_sig(dar, context)
1339 # define DSISR_sig(context) REG_sig(dsisr, context)
1340 # define TRAP_sig(context) REG_sig(trap, context)
1341 #endif /* linux */
1343 #ifdef __APPLE__
1344 # include <sys/ucontext.h>
1345 typedef struct ucontext SIGCONTEXT;
1346 /* All Registers access - only for local access */
1347 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1348 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1349 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1350 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1351 /* Gpr Registers access */
1352 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1353 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1354 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1355 # define CTR_sig(context) REG_sig(ctr, context)
1356 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1357 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1358 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1359 /* Float Registers access */
1360 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1361 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1362 /* Exception Registers access */
1363 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1364 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1365 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1366 #endif /* __APPLE__ */
1368 int cpu_signal_handler(int host_signum, void *pinfo,
1369 void *puc)
1371 siginfo_t *info = pinfo;
1372 struct ucontext *uc = puc;
1373 unsigned long pc;
1374 int is_write;
1376 pc = IAR_sig(uc);
1377 is_write = 0;
1378 #if 0
1379 /* ppc 4xx case */
1380 if (DSISR_sig(uc) & 0x00800000)
1381 is_write = 1;
1382 #else
1383 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1384 is_write = 1;
1385 #endif
1386 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1387 is_write, &uc->uc_sigmask, puc);
1390 #elif defined(__alpha__)
1392 int cpu_signal_handler(int host_signum, void *pinfo,
1393 void *puc)
1395 siginfo_t *info = pinfo;
1396 struct ucontext *uc = puc;
1397 uint32_t *pc = uc->uc_mcontext.sc_pc;
1398 uint32_t insn = *pc;
1399 int is_write = 0;
1401 /* XXX: need kernel patch to get write flag faster */
1402 switch (insn >> 26) {
1403 case 0x0d: // stw
1404 case 0x0e: // stb
1405 case 0x0f: // stq_u
1406 case 0x24: // stf
1407 case 0x25: // stg
1408 case 0x26: // sts
1409 case 0x27: // stt
1410 case 0x2c: // stl
1411 case 0x2d: // stq
1412 case 0x2e: // stl_c
1413 case 0x2f: // stq_c
1414 is_write = 1;
1417 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1418 is_write, &uc->uc_sigmask, puc);
1420 #elif defined(__sparc__)
1422 int cpu_signal_handler(int host_signum, void *pinfo,
1423 void *puc)
1425 siginfo_t *info = pinfo;
1426 uint32_t *regs = (uint32_t *)(info + 1);
1427 void *sigmask = (regs + 20);
1428 unsigned long pc;
1429 int is_write;
1430 uint32_t insn;
1432 /* XXX: is there a standard glibc define ? */
1433 pc = regs[1];
1434 /* XXX: need kernel patch to get write flag faster */
1435 is_write = 0;
1436 insn = *(uint32_t *)pc;
1437 if ((insn >> 30) == 3) {
1438 switch((insn >> 19) & 0x3f) {
1439 case 0x05: // stb
1440 case 0x06: // sth
1441 case 0x04: // st
1442 case 0x07: // std
1443 case 0x24: // stf
1444 case 0x27: // stdf
1445 case 0x25: // stfsr
1446 is_write = 1;
1447 break;
1450 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1451 is_write, sigmask, NULL);
1454 #elif defined(__arm__)
1456 int cpu_signal_handler(int host_signum, void *pinfo,
1457 void *puc)
1459 siginfo_t *info = pinfo;
1460 struct ucontext *uc = puc;
1461 unsigned long pc;
1462 int is_write;
1464 pc = uc->uc_mcontext.gregs[R15];
1465 /* XXX: compute is_write */
1466 is_write = 0;
1467 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1468 is_write,
1469 &uc->uc_sigmask, puc);
1472 #elif defined(__mc68000)
1474 int cpu_signal_handler(int host_signum, void *pinfo,
1475 void *puc)
1477 siginfo_t *info = pinfo;
1478 struct ucontext *uc = puc;
1479 unsigned long pc;
1480 int is_write;
1482 pc = uc->uc_mcontext.gregs[16];
1483 /* XXX: compute is_write */
1484 is_write = 0;
1485 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1486 is_write,
1487 &uc->uc_sigmask, puc);
1490 #elif defined(__ia64)
1492 #ifndef __ISR_VALID
1493 /* This ought to be in <bits/siginfo.h>... */
1494 # define __ISR_VALID 1
1495 #endif
1497 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1499 siginfo_t *info = pinfo;
1500 struct ucontext *uc = puc;
1501 unsigned long ip;
1502 int is_write = 0;
1504 ip = uc->uc_mcontext.sc_ip;
1505 switch (host_signum) {
1506 case SIGILL:
1507 case SIGFPE:
1508 case SIGSEGV:
1509 case SIGBUS:
1510 case SIGTRAP:
1511 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1512 /* ISR.W (write-access) is bit 33: */
1513 is_write = (info->si_isr >> 33) & 1;
1514 break;
1516 default:
1517 break;
1519 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1520 is_write,
1521 &uc->uc_sigmask, puc);
1524 #elif defined(__s390__)
1526 int cpu_signal_handler(int host_signum, void *pinfo,
1527 void *puc)
1529 siginfo_t *info = pinfo;
1530 struct ucontext *uc = puc;
1531 unsigned long pc;
1532 int is_write;
1534 pc = uc->uc_mcontext.psw.addr;
1535 /* XXX: compute is_write */
1536 is_write = 0;
1537 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1538 is_write,
1539 &uc->uc_sigmask, puc);
1542 #else
1544 #error host CPU specific signal handler needed
1546 #endif
1548 #endif /* !defined(CONFIG_SOFTMMU) */