2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * This code is licensed under the GNU GPL v2.
17 /* FIXME: Pass block device as an argument. */
20 # define NAND_CMD_READ0 0x00
21 # define NAND_CMD_READ1 0x01
22 # define NAND_CMD_READ2 0x50
23 # define NAND_CMD_LPREAD2 0x30
24 # define NAND_CMD_NOSERIALREAD2 0x35
25 # define NAND_CMD_RANDOMREAD1 0x05
26 # define NAND_CMD_RANDOMREAD2 0xe0
27 # define NAND_CMD_READID 0x90
28 # define NAND_CMD_RESET 0xff
29 # define NAND_CMD_PAGEPROGRAM1 0x80
30 # define NAND_CMD_PAGEPROGRAM2 0x10
31 # define NAND_CMD_CACHEPROGRAM2 0x15
32 # define NAND_CMD_BLOCKERASE1 0x60
33 # define NAND_CMD_BLOCKERASE2 0xd0
34 # define NAND_CMD_READSTATUS 0x70
35 # define NAND_CMD_COPYBACKPRG1 0x85
37 # define NAND_IOSTATUS_ERROR (1 << 0)
38 # define NAND_IOSTATUS_PLANE0 (1 << 1)
39 # define NAND_IOSTATUS_PLANE1 (1 << 2)
40 # define NAND_IOSTATUS_PLANE2 (1 << 3)
41 # define NAND_IOSTATUS_PLANE3 (1 << 4)
42 # define NAND_IOSTATUS_BUSY (1 << 6)
43 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
45 # define MAX_PAGE 0x800
49 uint8_t manf_id
, chip_id
;
51 int page_shift
, oob_shift
, erase_shift
, addr_shift
;
53 BlockDriverState
*bdrv
;
56 int cle
, ale
, ce
, wp
, gnd
;
58 uint8_t io
[MAX_PAGE
+ MAX_OOB
+ 0x400];
67 void (*blk_write
)(struct nand_flash_s
*s
);
68 void (*blk_erase
)(struct nand_flash_s
*s
);
69 void (*blk_load
)(struct nand_flash_s
*s
, uint32_t addr
, int offset
);
72 # define NAND_NO_AUTOINCR 0x00000001
73 # define NAND_BUSWIDTH_16 0x00000002
74 # define NAND_NO_PADDING 0x00000004
75 # define NAND_CACHEPRG 0x00000008
76 # define NAND_COPYBACK 0x00000010
77 # define NAND_IS_AND 0x00000020
78 # define NAND_4PAGE_ARRAY 0x00000040
79 # define NAND_NO_READRDY 0x00000100
80 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
84 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
85 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
86 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
87 # define OOB_SHIFT (PAGE_SHIFT - 5)
88 # define OOB_SIZE (1 << OOB_SHIFT)
89 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
90 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
92 # define PAGE_SIZE 256
94 # define PAGE_SECTORS 1
97 # define PAGE_SIZE 512
99 # define PAGE_SECTORS 1
100 # define ADDR_SHIFT 8
102 # define PAGE_SIZE 2048
103 # define PAGE_SHIFT 11
104 # define PAGE_SECTORS 4
105 # define ADDR_SHIFT 16
108 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
115 } nand_flash_ids
[0x100] = {
116 [0 ... 0xff] = { 0 },
118 [0x6e] = { 1, 8, 8, 4, 0 },
119 [0x64] = { 2, 8, 8, 4, 0 },
120 [0x6b] = { 4, 8, 9, 4, 0 },
121 [0xe8] = { 1, 8, 8, 4, 0 },
122 [0xec] = { 1, 8, 8, 4, 0 },
123 [0xea] = { 2, 8, 8, 4, 0 },
124 [0xd5] = { 4, 8, 9, 4, 0 },
125 [0xe3] = { 4, 8, 9, 4, 0 },
126 [0xe5] = { 4, 8, 9, 4, 0 },
127 [0xd6] = { 8, 8, 9, 4, 0 },
129 [0x39] = { 8, 8, 9, 4, 0 },
130 [0xe6] = { 8, 8, 9, 4, 0 },
131 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16
},
132 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16
},
134 [0x33] = { 16, 8, 9, 5, 0 },
135 [0x73] = { 16, 8, 9, 5, 0 },
136 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16
},
137 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16
},
139 [0x35] = { 32, 8, 9, 5, 0 },
140 [0x75] = { 32, 8, 9, 5, 0 },
141 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16
},
142 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16
},
144 [0x36] = { 64, 8, 9, 5, 0 },
145 [0x76] = { 64, 8, 9, 5, 0 },
146 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16
},
147 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16
},
149 [0x78] = { 128, 8, 9, 5, 0 },
150 [0x39] = { 128, 8, 9, 5, 0 },
151 [0x79] = { 128, 8, 9, 5, 0 },
152 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
153 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
154 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
155 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16
},
157 [0x71] = { 256, 8, 9, 5, 0 },
160 * These are the new chips with large page size. The pagesize and the
161 * erasesize is determined from the extended id bytes
163 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
164 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
167 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS
},
168 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS
},
169 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16
},
170 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16
},
173 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS
},
174 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS
},
175 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16
},
176 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16
},
179 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS
},
180 [0xda] = { 256, 8, 0, 0, LP_OPTIONS
},
181 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16
},
182 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16
},
185 [0xac] = { 512, 8, 0, 0, LP_OPTIONS
},
186 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS
},
187 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16
},
188 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16
},
191 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS
},
192 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS
},
193 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16
},
194 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16
},
197 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS
},
198 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS
},
199 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16
},
200 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16
},
203 static void nand_reset(struct nand_flash_s
*s
)
205 s
->cmd
= NAND_CMD_READ0
;
210 s
->status
&= NAND_IOSTATUS_UNPROTCT
;
213 static void nand_command(struct nand_flash_s
*s
)
220 case NAND_CMD_READID
:
221 s
->io
[0] = s
->manf_id
;
222 s
->io
[1] = s
->chip_id
;
223 s
->io
[2] = 'Q'; /* Don't-care byte (often 0xa5) */
224 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
)
225 s
->io
[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
227 s
->io
[3] = 0xc0; /* Multi-plane */
232 case NAND_CMD_RANDOMREAD2
:
233 case NAND_CMD_NOSERIALREAD2
:
234 if (!(nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
))
237 s
->blk_load(s
, s
->addr
, s
->addr
& ((1 << s
->addr_shift
) - 1));
244 case NAND_CMD_PAGEPROGRAM1
:
249 case NAND_CMD_PAGEPROGRAM2
:
255 case NAND_CMD_BLOCKERASE1
:
258 case NAND_CMD_BLOCKERASE2
:
259 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
)
269 case NAND_CMD_READSTATUS
:
270 s
->io
[0] = s
->status
;
276 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__
, s
->cmd
);
280 static void nand_save(QEMUFile
*f
, void *opaque
)
282 struct nand_flash_s
*s
= (struct nand_flash_s
*) opaque
;
283 qemu_put_byte(f
, s
->cle
);
284 qemu_put_byte(f
, s
->ale
);
285 qemu_put_byte(f
, s
->ce
);
286 qemu_put_byte(f
, s
->wp
);
287 qemu_put_byte(f
, s
->gnd
);
288 qemu_put_buffer(f
, s
->io
, sizeof(s
->io
));
289 qemu_put_be32(f
, s
->ioaddr
- s
->io
);
290 qemu_put_be32(f
, s
->iolen
);
292 qemu_put_be32s(f
, &s
->cmd
);
293 qemu_put_be32s(f
, &s
->addr
);
294 qemu_put_be32(f
, s
->addrlen
);
295 qemu_put_be32(f
, s
->status
);
296 qemu_put_be32(f
, s
->offset
);
297 /* XXX: do we want to save s->storage too? */
300 static int nand_load(QEMUFile
*f
, void *opaque
, int version_id
)
302 struct nand_flash_s
*s
= (struct nand_flash_s
*) opaque
;
303 s
->cle
= qemu_get_byte(f
);
304 s
->ale
= qemu_get_byte(f
);
305 s
->ce
= qemu_get_byte(f
);
306 s
->wp
= qemu_get_byte(f
);
307 s
->gnd
= qemu_get_byte(f
);
308 qemu_get_buffer(f
, s
->io
, sizeof(s
->io
));
309 s
->ioaddr
= s
->io
+ qemu_get_be32(f
);
310 s
->iolen
= qemu_get_be32(f
);
311 if (s
->ioaddr
>= s
->io
+ sizeof(s
->io
) || s
->ioaddr
< s
->io
)
314 qemu_get_be32s(f
, &s
->cmd
);
315 qemu_get_be32s(f
, &s
->addr
);
316 s
->addrlen
= qemu_get_be32(f
);
317 s
->status
= qemu_get_be32(f
);
318 s
->offset
= qemu_get_be32(f
);
322 static int nand_iid
= 0;
325 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
326 * outputs are R/B and eight I/O pins.
328 * CE, WP and R/B are active low.
330 void nand_setpins(struct nand_flash_s
*s
,
331 int cle
, int ale
, int ce
, int wp
, int gnd
)
339 s
->status
|= NAND_IOSTATUS_UNPROTCT
;
341 s
->status
&= ~NAND_IOSTATUS_UNPROTCT
;
344 void nand_getpins(struct nand_flash_s
*s
, int *rb
)
349 void nand_setio(struct nand_flash_s
*s
, uint8_t value
)
351 if (!s
->ce
&& s
->cle
) {
352 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
353 if (s
->cmd
== NAND_CMD_READ0
&& value
== NAND_CMD_LPREAD2
)
355 if (value
== NAND_CMD_RANDOMREAD1
) {
356 s
->addr
&= ~((1 << s
->addr_shift
) - 1);
361 if (value
== NAND_CMD_READ0
)
363 else if (value
== NAND_CMD_READ1
) {
365 value
= NAND_CMD_READ0
;
367 else if (value
== NAND_CMD_READ2
) {
368 s
->offset
= 1 << s
->page_shift
;
369 value
= NAND_CMD_READ0
;
374 if (s
->cmd
== NAND_CMD_READSTATUS
||
375 s
->cmd
== NAND_CMD_PAGEPROGRAM2
||
376 s
->cmd
== NAND_CMD_BLOCKERASE1
||
377 s
->cmd
== NAND_CMD_BLOCKERASE2
||
378 s
->cmd
== NAND_CMD_NOSERIALREAD2
||
379 s
->cmd
== NAND_CMD_RANDOMREAD2
||
380 s
->cmd
== NAND_CMD_RESET
)
383 if (s
->cmd
!= NAND_CMD_RANDOMREAD2
) {
390 s
->addr
|= value
<< (s
->addrlen
* 8);
393 if (s
->addrlen
== 1 && s
->cmd
== NAND_CMD_READID
)
396 if (!(nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
398 s
->cmd
== NAND_CMD_READ0
||
399 s
->cmd
== NAND_CMD_PAGEPROGRAM1
))
401 if ((nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) &&
403 s
->cmd
== NAND_CMD_READ0
||
404 s
->cmd
== NAND_CMD_PAGEPROGRAM1
))
408 if (!s
->cle
&& !s
->ale
&& s
->cmd
== NAND_CMD_PAGEPROGRAM1
) {
409 if (s
->iolen
< (1 << s
->page_shift
) + (1 << s
->oob_shift
))
410 s
->io
[s
->iolen
++] = value
;
411 } else if (!s
->cle
&& !s
->ale
&& s
->cmd
== NAND_CMD_COPYBACKPRG1
) {
412 if ((s
->addr
& ((1 << s
->addr_shift
) - 1)) <
413 (1 << s
->page_shift
) + (1 << s
->oob_shift
)) {
414 s
->io
[s
->iolen
+ (s
->addr
& ((1 << s
->addr_shift
) - 1))] = value
;
420 uint8_t nand_getio(struct nand_flash_s
*s
)
424 /* Allow sequential reading */
425 if (!s
->iolen
&& s
->cmd
== NAND_CMD_READ0
) {
426 offset
= (s
->addr
& ((1 << s
->addr_shift
) - 1)) + s
->offset
;
429 s
->blk_load(s
, s
->addr
, offset
);
431 s
->iolen
= (1 << s
->page_shift
) - offset
;
433 s
->iolen
= (1 << s
->page_shift
) + (1 << s
->oob_shift
) - offset
;
436 if (s
->ce
|| s
->iolen
<= 0)
440 return *(s
->ioaddr
++);
443 struct nand_flash_s
*nand_init(int manf_id
, int chip_id
)
446 struct nand_flash_s
*s
;
449 if (nand_flash_ids
[chip_id
].size
== 0) {
450 cpu_abort(cpu_single_env
, "%s: Unsupported NAND chip ID.\n",
453 index
= drive_get_index(IF_MTD
, 0, 0);
455 cpu_abort(cpu_single_env
, "%s: missing MTD device\n",
459 s
= (struct nand_flash_s
*) qemu_mallocz(sizeof(struct nand_flash_s
));
460 s
->bdrv
= drives_table
[index
].bdrv
;
461 s
->manf_id
= manf_id
;
462 s
->chip_id
= chip_id
;
463 s
->size
= nand_flash_ids
[s
->chip_id
].size
<< 20;
464 if (nand_flash_ids
[s
->chip_id
].options
& NAND_SAMSUNG_LP
) {
468 s
->page_shift
= nand_flash_ids
[s
->chip_id
].page_shift
;
469 s
->erase_shift
= nand_flash_ids
[s
->chip_id
].erase_shift
;
472 switch (1 << s
->page_shift
) {
483 cpu_abort(cpu_single_env
, "%s: Unsupported NAND block size.\n",
487 pagesize
= 1 << s
->oob_shift
;
489 if (s
->bdrv
&& bdrv_getlength(s
->bdrv
) >=
490 (s
->pages
<< s
->page_shift
) + (s
->pages
<< s
->oob_shift
)) {
496 pagesize
+= 1 << s
->page_shift
;
498 s
->storage
= (uint8_t *) memset(qemu_malloc(s
->pages
* pagesize
),
499 0xff, s
->pages
* pagesize
);
501 register_savevm("nand", nand_iid
++, 0, nand_save
, nand_load
, s
);
506 void nand_done(struct nand_flash_s
*s
)
510 bdrv_delete(s
->bdrv
);
513 if (!s
->bdrv
|| s
->mem_oob
)
521 /* Program a single page */
522 static void glue(nand_blk_write_
, PAGE_SIZE
)(struct nand_flash_s
*s
)
524 uint32_t off
, page
, sector
, soff
;
525 uint8_t iobuf
[(PAGE_SECTORS
+ 2) * 0x200];
526 if (PAGE(s
->addr
) >= s
->pages
)
530 memcpy(s
->storage
+ PAGE_START(s
->addr
) + (s
->addr
& PAGE_MASK
) +
531 s
->offset
, s
->io
, s
->iolen
);
532 } else if (s
->mem_oob
) {
533 sector
= SECTOR(s
->addr
);
534 off
= (s
->addr
& PAGE_MASK
) + s
->offset
;
535 soff
= SECTOR_OFFSET(s
->addr
);
536 if (bdrv_read(s
->bdrv
, sector
, iobuf
, PAGE_SECTORS
) == -1) {
537 printf("%s: read error in sector %i\n", __FUNCTION__
, sector
);
541 memcpy(iobuf
+ (soff
| off
), s
->io
, MIN(s
->iolen
, PAGE_SIZE
- off
));
542 if (off
+ s
->iolen
> PAGE_SIZE
) {
543 page
= PAGE(s
->addr
);
544 memcpy(s
->storage
+ (page
<< OOB_SHIFT
), s
->io
+ PAGE_SIZE
- off
,
545 MIN(OOB_SIZE
, off
+ s
->iolen
- PAGE_SIZE
));
548 if (bdrv_write(s
->bdrv
, sector
, iobuf
, PAGE_SECTORS
) == -1)
549 printf("%s: write error in sector %i\n", __FUNCTION__
, sector
);
551 off
= PAGE_START(s
->addr
) + (s
->addr
& PAGE_MASK
) + s
->offset
;
554 if (bdrv_read(s
->bdrv
, sector
, iobuf
, PAGE_SECTORS
+ 2) == -1) {
555 printf("%s: read error in sector %i\n", __FUNCTION__
, sector
);
559 memcpy(iobuf
+ soff
, s
->io
, s
->iolen
);
561 if (bdrv_write(s
->bdrv
, sector
, iobuf
, PAGE_SECTORS
+ 2) == -1)
562 printf("%s: write error in sector %i\n", __FUNCTION__
, sector
);
567 /* Erase a single block */
568 static void glue(nand_blk_erase_
, PAGE_SIZE
)(struct nand_flash_s
*s
)
570 uint32_t i
, page
, addr
;
571 uint8_t iobuf
[0x200] = { [0 ... 0x1ff] = 0xff, };
572 addr
= s
->addr
& ~((1 << (ADDR_SHIFT
+ s
->erase_shift
)) - 1);
574 if (PAGE(addr
) >= s
->pages
)
578 memset(s
->storage
+ PAGE_START(addr
),
579 0xff, (PAGE_SIZE
+ OOB_SIZE
) << s
->erase_shift
);
580 } else if (s
->mem_oob
) {
581 memset(s
->storage
+ (PAGE(addr
) << OOB_SHIFT
),
582 0xff, OOB_SIZE
<< s
->erase_shift
);
584 page
= SECTOR(addr
+ (ADDR_SHIFT
+ s
->erase_shift
));
585 for (; i
< page
; i
++)
586 if (bdrv_write(s
->bdrv
, i
, iobuf
, 1) == -1)
587 printf("%s: write error in sector %i\n", __FUNCTION__
, i
);
589 addr
= PAGE_START(addr
);
591 if (bdrv_read(s
->bdrv
, page
, iobuf
, 1) == -1)
592 printf("%s: read error in sector %i\n", __FUNCTION__
, page
);
593 memset(iobuf
+ (addr
& 0x1ff), 0xff, (~addr
& 0x1ff) + 1);
594 if (bdrv_write(s
->bdrv
, page
, iobuf
, 1) == -1)
595 printf("%s: write error in sector %i\n", __FUNCTION__
, page
);
597 memset(iobuf
, 0xff, 0x200);
598 i
= (addr
& ~0x1ff) + 0x200;
599 for (addr
+= ((PAGE_SIZE
+ OOB_SIZE
) << s
->erase_shift
) - 0x200;
600 i
< addr
; i
+= 0x200)
601 if (bdrv_write(s
->bdrv
, i
>> 9, iobuf
, 1) == -1)
602 printf("%s: write error in sector %i\n", __FUNCTION__
, i
>> 9);
605 if (bdrv_read(s
->bdrv
, page
, iobuf
, 1) == -1)
606 printf("%s: read error in sector %i\n", __FUNCTION__
, page
);
607 memset(iobuf
, 0xff, ((addr
- 1) & 0x1ff) + 1);
608 if (bdrv_write(s
->bdrv
, page
, iobuf
, 1) == -1)
609 printf("%s: write error in sector %i\n", __FUNCTION__
, page
);
613 static void glue(nand_blk_load_
, PAGE_SIZE
)(struct nand_flash_s
*s
,
614 uint32_t addr
, int offset
)
616 if (PAGE(addr
) >= s
->pages
)
621 if (bdrv_read(s
->bdrv
, SECTOR(addr
), s
->io
, PAGE_SECTORS
) == -1)
622 printf("%s: read error in sector %i\n",
623 __FUNCTION__
, SECTOR(addr
));
624 memcpy(s
->io
+ SECTOR_OFFSET(s
->addr
) + PAGE_SIZE
,
625 s
->storage
+ (PAGE(s
->addr
) << OOB_SHIFT
),
627 s
->ioaddr
= s
->io
+ SECTOR_OFFSET(s
->addr
) + offset
;
629 if (bdrv_read(s
->bdrv
, PAGE_START(addr
) >> 9,
630 s
->io
, (PAGE_SECTORS
+ 2)) == -1)
631 printf("%s: read error in sector %i\n",
632 __FUNCTION__
, PAGE_START(addr
) >> 9);
633 s
->ioaddr
= s
->io
+ (PAGE_START(addr
) & 0x1ff) + offset
;
636 memcpy(s
->io
, s
->storage
+ PAGE_START(s
->addr
) +
637 offset
, PAGE_SIZE
+ OOB_SIZE
- offset
);
641 s
->addr
&= PAGE_SIZE
- 1;
642 s
->addr
+= PAGE_SIZE
;
645 static void glue(nand_init_
, PAGE_SIZE
)(struct nand_flash_s
*s
)
647 s
->oob_shift
= PAGE_SHIFT
- 5;
648 s
->pages
= s
->size
>> PAGE_SHIFT
;
649 s
->addr_shift
= ADDR_SHIFT
;
651 s
->blk_erase
= glue(nand_blk_erase_
, PAGE_SIZE
);
652 s
->blk_write
= glue(nand_blk_write_
, PAGE_SIZE
);
653 s
->blk_load
= glue(nand_blk_load_
, PAGE_SIZE
);