2 * QEMU M48T59 NVRAM emulation for PPC PREP platform
4 * Copyright (c) 2003-2004 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #if defined(DEBUG_NVRAM)
30 #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
32 #define NVRAM_PRINTF(fmt, args...) do { } while (0)
36 /* Hardware parameters */
45 /* Alarm & watchdog */
47 struct QEMUTimer
*alrm_timer
;
48 struct QEMUTimer
*wd_timer
;
55 /* Fake timer functions */
56 /* Generic helpers for BCD */
57 static inline uint8_t toBCD (uint8_t value
)
59 return (((value
/ 10) % 10) << 4) | (value
% 10);
62 static inline uint8_t fromBCD (uint8_t BCD
)
64 return ((BCD
>> 4) * 10) + (BCD
& 0x0F);
67 /* RTC management helpers */
68 static void get_time (m48t59_t
*NVRAM
, struct tm
*tm
)
72 t
= time(NULL
) + NVRAM
->time_offset
;
74 memcpy(tm
,localtime(&t
),sizeof(*tm
));
76 localtime_r (&t
, tm
) ;
80 static void set_time (m48t59_t
*NVRAM
, struct tm
*tm
)
84 new_time
= mktime(tm
);
86 NVRAM
->time_offset
= new_time
- now
;
89 /* Alarm management */
90 static void alarm_cb (void *opaque
)
94 m48t59_t
*NVRAM
= opaque
;
96 pic_set_irq(NVRAM
->IRQ
, 1);
97 if ((NVRAM
->buffer
[0x1FF5] & 0x80) == 0 &&
98 (NVRAM
->buffer
[0x1FF4] & 0x80) == 0 &&
99 (NVRAM
->buffer
[0x1FF3] & 0x80) == 0 &&
100 (NVRAM
->buffer
[0x1FF2] & 0x80) == 0) {
101 /* Repeat once a month */
102 get_time(NVRAM
, &tm_now
);
103 memcpy(&tm
, &tm_now
, sizeof(struct tm
));
105 if (tm
.tm_mon
== 13) {
109 next_time
= mktime(&tm
);
110 } else if ((NVRAM
->buffer
[0x1FF5] & 0x80) != 0 &&
111 (NVRAM
->buffer
[0x1FF4] & 0x80) == 0 &&
112 (NVRAM
->buffer
[0x1FF3] & 0x80) == 0 &&
113 (NVRAM
->buffer
[0x1FF2] & 0x80) == 0) {
114 /* Repeat once a day */
115 next_time
= 24 * 60 * 60 + mktime(&tm_now
);
116 } else if ((NVRAM
->buffer
[0x1FF5] & 0x80) != 0 &&
117 (NVRAM
->buffer
[0x1FF4] & 0x80) != 0 &&
118 (NVRAM
->buffer
[0x1FF3] & 0x80) == 0 &&
119 (NVRAM
->buffer
[0x1FF2] & 0x80) == 0) {
120 /* Repeat once an hour */
121 next_time
= 60 * 60 + mktime(&tm_now
);
122 } else if ((NVRAM
->buffer
[0x1FF5] & 0x80) != 0 &&
123 (NVRAM
->buffer
[0x1FF4] & 0x80) != 0 &&
124 (NVRAM
->buffer
[0x1FF3] & 0x80) != 0 &&
125 (NVRAM
->buffer
[0x1FF2] & 0x80) == 0) {
126 /* Repeat once a minute */
127 next_time
= 60 + mktime(&tm_now
);
129 /* Repeat once a second */
130 next_time
= 1 + mktime(&tm_now
);
132 qemu_mod_timer(NVRAM
->alrm_timer
, next_time
* 1000);
133 pic_set_irq(NVRAM
->IRQ
, 0);
137 static void get_alarm (m48t59_t
*NVRAM
, struct tm
*tm
)
140 memcpy(tm
,localtime(&NVRAM
->alarm
),sizeof(*tm
));
142 localtime_r (&NVRAM
->alarm
, tm
);
146 static void set_alarm (m48t59_t
*NVRAM
, struct tm
*tm
)
148 NVRAM
->alarm
= mktime(tm
);
149 if (NVRAM
->alrm_timer
!= NULL
) {
150 qemu_del_timer(NVRAM
->alrm_timer
);
151 NVRAM
->alrm_timer
= NULL
;
153 if (NVRAM
->alarm
- time(NULL
) > 0)
154 qemu_mod_timer(NVRAM
->alrm_timer
, NVRAM
->alarm
* 1000);
157 /* Watchdog management */
158 static void watchdog_cb (void *opaque
)
160 m48t59_t
*NVRAM
= opaque
;
162 NVRAM
->buffer
[0x1FF0] |= 0x80;
163 if (NVRAM
->buffer
[0x1FF7] & 0x80) {
164 NVRAM
->buffer
[0x1FF7] = 0x00;
165 NVRAM
->buffer
[0x1FFC] &= ~0x40;
166 /* May it be a hw CPU Reset instead ? */
167 qemu_system_reset_request();
169 pic_set_irq(NVRAM
->IRQ
, 1);
170 pic_set_irq(NVRAM
->IRQ
, 0);
174 static void set_up_watchdog (m48t59_t
*NVRAM
, uint8_t value
)
176 uint64_t interval
; /* in 1/16 seconds */
178 if (NVRAM
->wd_timer
!= NULL
) {
179 qemu_del_timer(NVRAM
->wd_timer
);
180 NVRAM
->wd_timer
= NULL
;
182 NVRAM
->buffer
[0x1FF0] &= ~0x80;
184 interval
= (1 << (2 * (value
& 0x03))) * ((value
>> 2) & 0x1F);
185 qemu_mod_timer(NVRAM
->wd_timer
, ((uint64_t)time(NULL
) * 1000) +
186 ((interval
* 1000) >> 4));
190 /* Direct access to NVRAM */
191 void m48t59_write (m48t59_t
*NVRAM
, uint32_t val
)
196 if (NVRAM
->addr
> 0x1FF8 && NVRAM
->addr
< 0x2000)
197 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__
, NVRAM
->addr
, val
);
198 switch (NVRAM
->addr
) {
200 /* flags register : read-only */
207 tmp
= fromBCD(val
& 0x7F);
208 if (tmp
>= 0 && tmp
<= 59) {
209 get_alarm(NVRAM
, &tm
);
211 NVRAM
->buffer
[0x1FF2] = val
;
212 set_alarm(NVRAM
, &tm
);
217 tmp
= fromBCD(val
& 0x7F);
218 if (tmp
>= 0 && tmp
<= 59) {
219 get_alarm(NVRAM
, &tm
);
221 NVRAM
->buffer
[0x1FF3] = val
;
222 set_alarm(NVRAM
, &tm
);
227 tmp
= fromBCD(val
& 0x3F);
228 if (tmp
>= 0 && tmp
<= 23) {
229 get_alarm(NVRAM
, &tm
);
231 NVRAM
->buffer
[0x1FF4] = val
;
232 set_alarm(NVRAM
, &tm
);
237 tmp
= fromBCD(val
& 0x1F);
239 get_alarm(NVRAM
, &tm
);
241 NVRAM
->buffer
[0x1FF5] = val
;
242 set_alarm(NVRAM
, &tm
);
247 NVRAM
->buffer
[0x1FF6] = val
;
251 NVRAM
->buffer
[0x1FF7] = val
;
252 set_up_watchdog(NVRAM
, val
);
256 NVRAM
->buffer
[0x1FF8] = (val
& ~0xA0) | 0x90;
260 tmp
= fromBCD(val
& 0x7F);
261 if (tmp
>= 0 && tmp
<= 59) {
262 get_time(NVRAM
, &tm
);
264 set_time(NVRAM
, &tm
);
266 if ((val
& 0x80) ^ (NVRAM
->buffer
[0x1FF9] & 0x80)) {
268 NVRAM
->stop_time
= time(NULL
);
270 NVRAM
->time_offset
+= NVRAM
->stop_time
- time(NULL
);
271 NVRAM
->stop_time
= 0;
274 NVRAM
->buffer
[0x1FF9] = val
& 0x80;
278 tmp
= fromBCD(val
& 0x7F);
279 if (tmp
>= 0 && tmp
<= 59) {
280 get_time(NVRAM
, &tm
);
282 set_time(NVRAM
, &tm
);
287 tmp
= fromBCD(val
& 0x3F);
288 if (tmp
>= 0 && tmp
<= 23) {
289 get_time(NVRAM
, &tm
);
291 set_time(NVRAM
, &tm
);
295 /* day of the week / century */
296 tmp
= fromBCD(val
& 0x07);
297 get_time(NVRAM
, &tm
);
299 set_time(NVRAM
, &tm
);
300 NVRAM
->buffer
[0x1FFC] = val
& 0x40;
304 tmp
= fromBCD(val
& 0x1F);
306 get_time(NVRAM
, &tm
);
308 set_time(NVRAM
, &tm
);
313 tmp
= fromBCD(val
& 0x1F);
314 if (tmp
>= 1 && tmp
<= 12) {
315 get_time(NVRAM
, &tm
);
317 set_time(NVRAM
, &tm
);
323 if (tmp
>= 0 && tmp
<= 99) {
324 get_time(NVRAM
, &tm
);
325 tm
.tm_year
= fromBCD(val
);
326 set_time(NVRAM
, &tm
);
330 /* Check lock registers state */
331 if (NVRAM
->addr
>= 0x20 && NVRAM
->addr
<= 0x2F && (NVRAM
->lock
& 1))
333 if (NVRAM
->addr
>= 0x30 && NVRAM
->addr
<= 0x3F && (NVRAM
->lock
& 2))
335 if (NVRAM
->addr
< 0x1FF0 ||
336 (NVRAM
->addr
> 0x1FFF && NVRAM
->addr
< NVRAM
->size
)) {
337 NVRAM
->buffer
[NVRAM
->addr
] = val
& 0xFF;
343 uint32_t m48t59_read (m48t59_t
*NVRAM
)
346 uint32_t retval
= 0xFF;
348 switch (NVRAM
->addr
) {
372 /* A read resets the watchdog */
373 set_up_watchdog(NVRAM
, NVRAM
->buffer
[0x1FF7]);
380 get_time(NVRAM
, &tm
);
381 retval
= (NVRAM
->buffer
[0x1FF9] & 0x80) | toBCD(tm
.tm_sec
);
385 get_time(NVRAM
, &tm
);
386 retval
= toBCD(tm
.tm_min
);
390 get_time(NVRAM
, &tm
);
391 retval
= toBCD(tm
.tm_hour
);
394 /* day of the week / century */
395 get_time(NVRAM
, &tm
);
396 retval
= NVRAM
->buffer
[0x1FFC] | tm
.tm_wday
;
400 get_time(NVRAM
, &tm
);
401 retval
= toBCD(tm
.tm_mday
);
405 get_time(NVRAM
, &tm
);
406 retval
= toBCD(tm
.tm_mon
+ 1);
410 get_time(NVRAM
, &tm
);
411 retval
= toBCD(tm
.tm_year
);
414 /* Check lock registers state */
415 if (NVRAM
->addr
>= 0x20 && NVRAM
->addr
<= 0x2F && (NVRAM
->lock
& 1))
417 if (NVRAM
->addr
>= 0x30 && NVRAM
->addr
<= 0x3F && (NVRAM
->lock
& 2))
419 if (NVRAM
->addr
< 0x1FF0 ||
420 (NVRAM
->addr
> 0x1FFF && NVRAM
->addr
< NVRAM
->size
)) {
422 retval
= NVRAM
->buffer
[NVRAM
->addr
];
426 if (NVRAM
->addr
> 0x1FF9 && NVRAM
->addr
< 0x2000)
427 NVRAM_PRINTF("0x%08x <= 0x%08x\n", NVRAM
->addr
, retval
);
432 void m48t59_set_addr (m48t59_t
*NVRAM
, uint32_t addr
)
437 void m48t59_toggle_lock (m48t59_t
*NVRAM
, int lock
)
439 NVRAM
->lock
^= 1 << lock
;
442 /* IO access to NVRAM */
443 static void NVRAM_writeb (void *opaque
, uint32_t addr
, uint32_t val
)
445 m48t59_t
*NVRAM
= opaque
;
447 addr
-= NVRAM
->io_base
;
448 NVRAM_PRINTF("0x%08x => 0x%08x\n", addr
, val
);
451 NVRAM
->addr
&= ~0x00FF;
455 NVRAM
->addr
&= ~0xFF00;
456 NVRAM
->addr
|= val
<< 8;
459 m48t59_write(NVRAM
, val
);
460 NVRAM
->addr
= 0x0000;
467 static uint32_t NVRAM_readb (void *opaque
, uint32_t addr
)
469 m48t59_t
*NVRAM
= opaque
;
472 addr
-= NVRAM
->io_base
;
475 retval
= m48t59_read(NVRAM
);
481 NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr
, retval
);
486 static void nvram_writeb (void *opaque
, target_phys_addr_t addr
, uint32_t value
)
488 m48t59_t
*NVRAM
= opaque
;
490 addr
-= NVRAM
->mem_base
;
492 NVRAM
->buffer
[addr
] = value
;
495 static void nvram_writew (void *opaque
, target_phys_addr_t addr
, uint32_t value
)
497 m48t59_t
*NVRAM
= opaque
;
499 addr
-= NVRAM
->mem_base
;
501 NVRAM
->buffer
[addr
] = value
>> 8;
502 NVRAM
->buffer
[addr
+ 1] = value
;
506 static void nvram_writel (void *opaque
, target_phys_addr_t addr
, uint32_t value
)
508 m48t59_t
*NVRAM
= opaque
;
510 addr
-= NVRAM
->mem_base
;
512 NVRAM
->buffer
[addr
] = value
>> 24;
513 NVRAM
->buffer
[addr
+ 1] = value
>> 16;
514 NVRAM
->buffer
[addr
+ 2] = value
>> 8;
515 NVRAM
->buffer
[addr
+ 3] = value
;
519 static uint32_t nvram_readb (void *opaque
, target_phys_addr_t addr
)
521 m48t59_t
*NVRAM
= opaque
;
524 addr
-= NVRAM
->mem_base
;
526 retval
= NVRAM
->buffer
[addr
];
531 static uint32_t nvram_readw (void *opaque
, target_phys_addr_t addr
)
533 m48t59_t
*NVRAM
= opaque
;
536 addr
-= NVRAM
->mem_base
;
538 retval
= NVRAM
->buffer
[addr
] << 8;
539 retval
|= NVRAM
->buffer
[addr
+ 1];
545 static uint32_t nvram_readl (void *opaque
, target_phys_addr_t addr
)
547 m48t59_t
*NVRAM
= opaque
;
550 addr
-= NVRAM
->mem_base
;
552 retval
= NVRAM
->buffer
[addr
] << 24;
553 retval
|= NVRAM
->buffer
[addr
+ 1] << 16;
554 retval
|= NVRAM
->buffer
[addr
+ 2] << 8;
555 retval
|= NVRAM
->buffer
[addr
+ 3];
561 static CPUWriteMemoryFunc
*nvram_write
[] = {
567 static CPUReadMemoryFunc
*nvram_read
[] = {
572 /* Initialisation routine */
573 m48t59_t
*m48t59_init (int IRQ
, uint32_t mem_base
,
574 uint32_t io_base
, uint16_t size
)
578 s
= qemu_mallocz(sizeof(m48t59_t
));
581 s
->buffer
= qemu_mallocz(size
);
588 s
->mem_base
= mem_base
;
589 s
->io_base
= io_base
;
591 register_ioport_read(io_base
, 0x04, 1, NVRAM_readb
, s
);
592 register_ioport_write(io_base
, 0x04, 1, NVRAM_writeb
, s
);
594 s
->mem_index
= cpu_register_io_memory(0, nvram_read
, nvram_write
, s
);
595 cpu_register_physical_memory(mem_base
, 0x4000, s
->mem_index
);
597 s
->alrm_timer
= qemu_new_timer(vm_clock
, &alarm_cb
, s
);
598 s
->wd_timer
= qemu_new_timer(vm_clock
, &watchdog_cb
, s
);