Use qemu_irq between interrupt controller and timers
[qemu/qemu_0_9_1_stable.git] / hw / slavio_intctl.c
blob279254f7f8264c9e353cfdd0a6e70e40e79bec11
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
25 //#define DEBUG_IRQ_COUNT
26 //#define DEBUG_IRQ
28 #ifdef DEBUG_IRQ
29 #define DPRINTF(fmt, args...) \
30 do { printf("IRQ: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
36 * Registers of interrupt controller in sun4m.
38 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * There is a system master controller and one for each cpu.
46 #define MAX_CPUS 16
48 typedef struct SLAVIO_INTCTLState {
49 uint32_t intreg_pending[MAX_CPUS];
50 uint32_t intregm_pending;
51 uint32_t intregm_disabled;
52 uint32_t target_cpu;
53 #ifdef DEBUG_IRQ_COUNT
54 uint64_t irq_count[32];
55 #endif
56 CPUState *cpu_envs[MAX_CPUS];
57 const uint32_t *intbit_to_level;
58 uint32_t cputimer_bit;
59 } SLAVIO_INTCTLState;
61 #define INTCTL_MAXADDR 0xf
62 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
63 #define INTCTLM_MAXADDR 0x13
64 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
65 #define INTCTLM_MASK 0x1f
66 static void slavio_check_interrupts(void *opaque);
68 // per-cpu interrupt controller
69 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
71 SLAVIO_INTCTLState *s = opaque;
72 uint32_t saddr;
73 int cpu;
75 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
76 saddr = (addr & INTCTL_MAXADDR) >> 2;
77 switch (saddr) {
78 case 0:
79 return s->intreg_pending[cpu];
80 default:
81 break;
83 return 0;
86 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
88 SLAVIO_INTCTLState *s = opaque;
89 uint32_t saddr;
90 int cpu;
92 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
93 saddr = (addr & INTCTL_MAXADDR) >> 2;
94 switch (saddr) {
95 case 1: // clear pending softints
96 if (val & 0x4000)
97 val |= 80000000;
98 val &= 0xfffe0000;
99 s->intreg_pending[cpu] &= ~val;
100 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
101 break;
102 case 2: // set softint
103 val &= 0xfffe0000;
104 s->intreg_pending[cpu] |= val;
105 slavio_check_interrupts(s);
106 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
107 break;
108 default:
109 break;
113 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
114 slavio_intctl_mem_readl,
115 slavio_intctl_mem_readl,
116 slavio_intctl_mem_readl,
119 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
120 slavio_intctl_mem_writel,
121 slavio_intctl_mem_writel,
122 slavio_intctl_mem_writel,
125 // master system interrupt controller
126 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
128 SLAVIO_INTCTLState *s = opaque;
129 uint32_t saddr;
131 saddr = (addr & INTCTLM_MAXADDR) >> 2;
132 switch (saddr) {
133 case 0:
134 return s->intregm_pending & 0x7fffffff;
135 case 1:
136 return s->intregm_disabled;
137 case 4:
138 return s->target_cpu;
139 default:
140 break;
142 return 0;
145 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
147 SLAVIO_INTCTLState *s = opaque;
148 uint32_t saddr;
150 saddr = (addr & INTCTLM_MASK) >> 2;
151 switch (saddr) {
152 case 2: // clear (enable)
153 // Force clear unused bits
154 val &= ~0x4fb2007f;
155 s->intregm_disabled &= ~val;
156 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
157 slavio_check_interrupts(s);
158 break;
159 case 3: // set (disable, clear pending)
160 // Force clear unused bits
161 val &= ~0x4fb2007f;
162 s->intregm_disabled |= val;
163 s->intregm_pending &= ~val;
164 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
165 break;
166 case 4:
167 s->target_cpu = val & (MAX_CPUS - 1);
168 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
169 break;
170 default:
171 break;
175 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
176 slavio_intctlm_mem_readl,
177 slavio_intctlm_mem_readl,
178 slavio_intctlm_mem_readl,
181 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
182 slavio_intctlm_mem_writel,
183 slavio_intctlm_mem_writel,
184 slavio_intctlm_mem_writel,
187 void slavio_pic_info(void *opaque)
189 SLAVIO_INTCTLState *s = opaque;
190 int i;
192 for (i = 0; i < MAX_CPUS; i++) {
193 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
195 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
198 void slavio_irq_info(void *opaque)
200 #ifndef DEBUG_IRQ_COUNT
201 term_printf("irq statistic code not compiled.\n");
202 #else
203 SLAVIO_INTCTLState *s = opaque;
204 int i;
205 int64_t count;
207 term_printf("IRQ statistics:\n");
208 for (i = 0; i < 32; i++) {
209 count = s->irq_count[i];
210 if (count > 0)
211 term_printf("%2d: %" PRId64 "\n", i, count);
213 #endif
216 static void slavio_check_interrupts(void *opaque)
218 CPUState *env;
219 SLAVIO_INTCTLState *s = opaque;
220 uint32_t pending = s->intregm_pending;
221 unsigned int i, j, max = 0;
223 pending &= ~s->intregm_disabled;
225 if (pending && !(s->intregm_disabled & 0x80000000)) {
226 for (i = 0; i < 32; i++) {
227 if (pending & (1 << i)) {
228 if (max < s->intbit_to_level[i])
229 max = s->intbit_to_level[i];
232 env = s->cpu_envs[s->target_cpu];
233 if (!env) {
234 DPRINTF("No CPU %d, not triggered (pending %x)\n", s->target_cpu, pending);
236 else {
237 if (env->halted)
238 env->halted = 0;
239 if (env->interrupt_index == 0) {
240 DPRINTF("Triggered CPU %d pil %d\n", s->target_cpu, max);
241 #ifdef DEBUG_IRQ_COUNT
242 s->irq_count[max]++;
243 #endif
244 env->interrupt_index = TT_EXTINT | max;
245 cpu_interrupt(env, CPU_INTERRUPT_HARD);
247 else
248 DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index);
251 else
252 DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
254 for (i = 0; i < MAX_CPUS; i++) {
255 max = 0;
256 env = s->cpu_envs[i];
257 if (!env)
258 continue;
259 for (j = 17; j < 32; j++) {
260 if (s->intreg_pending[i] & (1 << j)) {
261 if (max < j - 16)
262 max = j - 16;
265 if (max > 0) {
266 if (env->halted)
267 env->halted = 0;
268 if (env->interrupt_index == 0) {
269 DPRINTF("Triggered softint %d for cpu %d (pending %x)\n", max, i, pending);
270 #ifdef DEBUG_IRQ_COUNT
271 s->irq_count[max]++;
272 #endif
273 env->interrupt_index = TT_EXTINT | max;
274 cpu_interrupt(env, CPU_INTERRUPT_HARD);
281 * "irq" here is the bit number in the system interrupt register to
282 * separate serial and keyboard interrupts sharing a level.
284 static void slavio_set_irq(void *opaque, int irq, int level)
286 SLAVIO_INTCTLState *s = opaque;
288 DPRINTF("Set cpu %d irq %d level %d\n", s->target_cpu, irq, level);
289 if (irq < 32) {
290 uint32_t mask = 1 << irq;
291 uint32_t pil = s->intbit_to_level[irq];
292 if (pil > 0) {
293 if (level) {
294 s->intregm_pending |= mask;
295 s->intreg_pending[s->target_cpu] |= 1 << pil;
296 slavio_check_interrupts(s);
298 else {
299 s->intregm_pending &= ~mask;
300 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
306 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
308 SLAVIO_INTCTLState *s = opaque;
310 DPRINTF("Set cpu %d local level %d\n", cpu, level);
311 if (!s->cpu_envs[cpu])
312 return;
314 if (level) {
315 s->intreg_pending[cpu] |= s->cputimer_bit;
316 } else {
317 s->intreg_pending[cpu] &= ~s->cputimer_bit;
320 slavio_check_interrupts(s);
323 static void slavio_intctl_save(QEMUFile *f, void *opaque)
325 SLAVIO_INTCTLState *s = opaque;
326 int i;
328 for (i = 0; i < MAX_CPUS; i++) {
329 qemu_put_be32s(f, &s->intreg_pending[i]);
331 qemu_put_be32s(f, &s->intregm_pending);
332 qemu_put_be32s(f, &s->intregm_disabled);
333 qemu_put_be32s(f, &s->target_cpu);
336 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
338 SLAVIO_INTCTLState *s = opaque;
339 int i;
341 if (version_id != 1)
342 return -EINVAL;
344 for (i = 0; i < MAX_CPUS; i++) {
345 qemu_get_be32s(f, &s->intreg_pending[i]);
347 qemu_get_be32s(f, &s->intregm_pending);
348 qemu_get_be32s(f, &s->intregm_disabled);
349 qemu_get_be32s(f, &s->target_cpu);
350 return 0;
353 static void slavio_intctl_reset(void *opaque)
355 SLAVIO_INTCTLState *s = opaque;
356 int i;
358 for (i = 0; i < MAX_CPUS; i++) {
359 s->intreg_pending[i] = 0;
361 s->intregm_disabled = ~0xffb2007f;
362 s->intregm_pending = 0;
363 s->target_cpu = 0;
366 void slavio_intctl_set_cpu(void *opaque, unsigned int cpu, CPUState *env)
368 SLAVIO_INTCTLState *s = opaque;
370 s->cpu_envs[cpu] = env;
373 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
374 const uint32_t *intbit_to_level,
375 qemu_irq **irq, qemu_irq **cpu_irq,
376 unsigned int cputimer)
379 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
380 SLAVIO_INTCTLState *s;
382 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
383 if (!s)
384 return NULL;
386 s->intbit_to_level = intbit_to_level;
387 for (i = 0; i < MAX_CPUS; i++) {
388 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
389 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
390 slavio_intctl_io_memory);
393 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
394 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
396 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
397 qemu_register_reset(slavio_intctl_reset, s);
398 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
400 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
401 s->cputimer_bit = 1 << s->intbit_to_level[cputimer];
402 slavio_intctl_reset(s);
403 return s;