sparc update (Blue Swirl)
[qemu/qemu_0_9_1_stable.git] / cpu-exec.c
blob432e6020dfbe94f891e12a441cbd7c25c6f8cab2
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
49 #endif
51 /* exit the current TB from a signal handler. The host registers are
52 restored in a state compatible with the CPU emulator
54 void cpu_resume_from_signal(CPUState *env1, void *puc)
56 #if !defined(CONFIG_SOFTMMU)
57 struct ucontext *uc = puc;
58 #endif
60 env = env1;
62 /* XXX: restore cpu registers saved in host registers */
64 #if !defined(CONFIG_SOFTMMU)
65 if (puc) {
66 /* XXX: use siglongjmp ? */
67 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
69 #endif
70 longjmp(env->jmp_env, 1);
73 /* main execution loop */
75 int cpu_exec(CPUState *env1)
77 int saved_T0, saved_T1, saved_T2;
78 CPUState *saved_env;
79 #ifdef reg_EAX
80 int saved_EAX;
81 #endif
82 #ifdef reg_ECX
83 int saved_ECX;
84 #endif
85 #ifdef reg_EDX
86 int saved_EDX;
87 #endif
88 #ifdef reg_EBX
89 int saved_EBX;
90 #endif
91 #ifdef reg_ESP
92 int saved_ESP;
93 #endif
94 #ifdef reg_EBP
95 int saved_EBP;
96 #endif
97 #ifdef reg_ESI
98 int saved_ESI;
99 #endif
100 #ifdef reg_EDI
101 int saved_EDI;
102 #endif
103 #ifdef __sparc__
104 int saved_i7, tmp_T0;
105 #endif
106 int code_gen_size, ret, interrupt_request;
107 void (*gen_func)(void);
108 TranslationBlock *tb, **ptb;
109 target_ulong cs_base, pc;
110 uint8_t *tc_ptr;
111 unsigned int flags;
113 /* first we save global registers */
114 saved_env = env;
115 env = env1;
116 saved_T0 = T0;
117 saved_T1 = T1;
118 saved_T2 = T2;
119 #ifdef __sparc__
120 /* we also save i7 because longjmp may not restore it */
121 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122 #endif
124 #if defined(TARGET_I386)
125 #ifdef reg_EAX
126 saved_EAX = EAX;
127 #endif
128 #ifdef reg_ECX
129 saved_ECX = ECX;
130 #endif
131 #ifdef reg_EDX
132 saved_EDX = EDX;
133 #endif
134 #ifdef reg_EBX
135 saved_EBX = EBX;
136 #endif
137 #ifdef reg_ESP
138 saved_ESP = ESP;
139 #endif
140 #ifdef reg_EBP
141 saved_EBP = EBP;
142 #endif
143 #ifdef reg_ESI
144 saved_ESI = ESI;
145 #endif
146 #ifdef reg_EDI
147 saved_EDI = EDI;
148 #endif
150 env_to_regs();
151 /* put eflags in CPU temporary format */
152 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153 DF = 1 - (2 * ((env->eflags >> 10) & 1));
154 CC_OP = CC_OP_EFLAGS;
155 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156 #elif defined(TARGET_ARM)
158 unsigned int psr;
159 psr = env->cpsr;
160 env->CF = (psr >> 29) & 1;
161 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162 env->VF = (psr << 3) & 0x80000000;
163 env->QF = (psr >> 27) & 1;
164 env->cpsr = psr & ~CACHED_CPSR_BITS;
166 #elif defined(TARGET_SPARC)
167 #elif defined(TARGET_PPC)
168 #else
169 #error unsupported target CPU
170 #endif
171 env->exception_index = -1;
173 /* prepare setjmp context for exception handling */
174 for(;;) {
175 if (setjmp(env->jmp_env) == 0) {
176 env->current_tb = NULL;
177 /* if an exception is pending, we execute it here */
178 if (env->exception_index >= 0) {
179 if (env->exception_index >= EXCP_INTERRUPT) {
180 /* exit request from the cpu execution loop */
181 ret = env->exception_index;
182 break;
183 } else if (env->user_mode_only) {
184 /* if user mode only, we simulate a fake exception
185 which will be hanlded outside the cpu execution
186 loop */
187 #if defined(TARGET_I386)
188 do_interrupt_user(env->exception_index,
189 env->exception_is_int,
190 env->error_code,
191 env->exception_next_eip);
192 #endif
193 ret = env->exception_index;
194 break;
195 } else {
196 #if defined(TARGET_I386)
197 /* simulate a real cpu exception. On i386, it can
198 trigger new exceptions, but we do not handle
199 double or triple faults yet. */
200 do_interrupt(env->exception_index,
201 env->exception_is_int,
202 env->error_code,
203 env->exception_next_eip, 0);
204 #elif defined(TARGET_PPC)
205 do_interrupt(env);
206 #elif defined(TARGET_SPARC)
207 do_interrupt(env->exception_index);
208 #endif
210 env->exception_index = -1;
212 #ifdef USE_KQEMU
213 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
214 int ret;
215 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216 ret = kqemu_cpu_exec(env);
217 /* put eflags in CPU temporary format */
218 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219 DF = 1 - (2 * ((env->eflags >> 10) & 1));
220 CC_OP = CC_OP_EFLAGS;
221 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222 if (ret == 1) {
223 /* exception */
224 longjmp(env->jmp_env, 1);
225 } else if (ret == 2) {
226 /* softmmu execution needed */
227 } else {
228 if (env->interrupt_request != 0) {
229 /* hardware interrupt will be executed just after */
230 } else {
231 /* otherwise, we restart */
232 longjmp(env->jmp_env, 1);
236 #endif
238 T0 = 0; /* force lookup of first TB */
239 for(;;) {
240 #ifdef __sparc__
241 /* g1 can be modified by some libc? functions */
242 tmp_T0 = T0;
243 #endif
244 interrupt_request = env->interrupt_request;
245 if (__builtin_expect(interrupt_request, 0)) {
246 #if defined(TARGET_I386)
247 /* if hardware interrupt pending, we execute it */
248 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249 (env->eflags & IF_MASK) &&
250 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
251 int intno;
252 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253 intno = cpu_get_pic_interrupt(env);
254 if (loglevel & CPU_LOG_TB_IN_ASM) {
255 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
257 do_interrupt(intno, 0, 0, 0, 1);
258 /* ensure that no TB jump will be modified as
259 the program flow was changed */
260 #ifdef __sparc__
261 tmp_T0 = 0;
262 #else
263 T0 = 0;
264 #endif
266 #elif defined(TARGET_PPC)
267 #if 0
268 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
269 cpu_ppc_reset(env);
271 #endif
272 if (msr_ee != 0) {
273 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
274 /* Raise it */
275 env->exception_index = EXCP_EXTERNAL;
276 env->error_code = 0;
277 do_interrupt(env);
278 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
280 /* Raise it */
281 env->exception_index = EXCP_DECR;
282 env->error_code = 0;
283 do_interrupt(env);
284 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
287 #elif defined(TARGET_SPARC)
288 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
289 (env->psret != 0)) {
290 int pil = env->interrupt_index & 15;
291 int type = env->interrupt_index & 0xf0;
293 if (((type == TT_EXTINT) &&
294 (pil == 15 || pil > env->psrpil)) ||
295 type != TT_EXTINT) {
296 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
297 do_interrupt(env->interrupt_index);
298 env->interrupt_index = 0;
300 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
301 //do_interrupt(0, 0, 0, 0, 0);
302 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
304 #endif
305 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
306 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
307 /* ensure that no TB jump will be modified as
308 the program flow was changed */
309 #ifdef __sparc__
310 tmp_T0 = 0;
311 #else
312 T0 = 0;
313 #endif
315 if (interrupt_request & CPU_INTERRUPT_EXIT) {
316 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
317 env->exception_index = EXCP_INTERRUPT;
318 cpu_loop_exit();
321 #ifdef DEBUG_EXEC
322 if ((loglevel & CPU_LOG_EXEC)) {
323 #if defined(TARGET_I386)
324 /* restore flags in standard format */
325 env->regs[R_EAX] = EAX;
326 env->regs[R_EBX] = EBX;
327 env->regs[R_ECX] = ECX;
328 env->regs[R_EDX] = EDX;
329 env->regs[R_ESI] = ESI;
330 env->regs[R_EDI] = EDI;
331 env->regs[R_EBP] = EBP;
332 env->regs[R_ESP] = ESP;
333 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
334 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
335 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
336 #elif defined(TARGET_ARM)
337 env->cpsr = compute_cpsr();
338 cpu_dump_state(env, logfile, fprintf, 0);
339 env->cpsr &= ~CACHED_CPSR_BITS;
340 #elif defined(TARGET_SPARC)
341 cpu_dump_state (env, logfile, fprintf, 0);
342 #elif defined(TARGET_PPC)
343 cpu_dump_state(env, logfile, fprintf, 0);
344 #else
345 #error unsupported target CPU
346 #endif
348 #endif
349 /* we record a subset of the CPU state. It will
350 always be the same before a given translated block
351 is executed. */
352 #if defined(TARGET_I386)
353 flags = env->hflags;
354 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
355 cs_base = env->segs[R_CS].base;
356 pc = cs_base + env->eip;
357 #elif defined(TARGET_ARM)
358 flags = env->thumb | (env->vfp.vec_len << 1)
359 | (env->vfp.vec_stride << 4);
360 cs_base = 0;
361 pc = env->regs[15];
362 #elif defined(TARGET_SPARC)
363 flags = 0;
364 cs_base = env->npc;
365 pc = env->pc;
366 #elif defined(TARGET_PPC)
367 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) | (msr_se << MSR_SE);
368 cs_base = 0;
369 pc = env->nip;
370 #else
371 #error unsupported CPU
372 #endif
373 tb = tb_find(&ptb, pc, cs_base,
374 flags);
375 if (!tb) {
376 TranslationBlock **ptb1;
377 unsigned int h;
378 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
381 spin_lock(&tb_lock);
383 tb_invalidated_flag = 0;
385 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
387 /* find translated block using physical mappings */
388 phys_pc = get_phys_addr_code(env, pc);
389 phys_page1 = phys_pc & TARGET_PAGE_MASK;
390 phys_page2 = -1;
391 h = tb_phys_hash_func(phys_pc);
392 ptb1 = &tb_phys_hash[h];
393 for(;;) {
394 tb = *ptb1;
395 if (!tb)
396 goto not_found;
397 if (tb->pc == pc &&
398 tb->page_addr[0] == phys_page1 &&
399 tb->cs_base == cs_base &&
400 tb->flags == flags) {
401 /* check next page if needed */
402 if (tb->page_addr[1] != -1) {
403 virt_page2 = (pc & TARGET_PAGE_MASK) +
404 TARGET_PAGE_SIZE;
405 phys_page2 = get_phys_addr_code(env, virt_page2);
406 if (tb->page_addr[1] == phys_page2)
407 goto found;
408 } else {
409 goto found;
412 ptb1 = &tb->phys_hash_next;
414 not_found:
415 /* if no translated code available, then translate it now */
416 tb = tb_alloc(pc);
417 if (!tb) {
418 /* flush must be done */
419 tb_flush(env);
420 /* cannot fail at this point */
421 tb = tb_alloc(pc);
422 /* don't forget to invalidate previous TB info */
423 ptb = &tb_hash[tb_hash_func(pc)];
424 T0 = 0;
426 tc_ptr = code_gen_ptr;
427 tb->tc_ptr = tc_ptr;
428 tb->cs_base = cs_base;
429 tb->flags = flags;
430 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
431 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
433 /* check next page if needed */
434 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
435 phys_page2 = -1;
436 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
437 phys_page2 = get_phys_addr_code(env, virt_page2);
439 tb_link_phys(tb, phys_pc, phys_page2);
441 found:
442 if (tb_invalidated_flag) {
443 /* as some TB could have been invalidated because
444 of memory exceptions while generating the code, we
445 must recompute the hash index here */
446 ptb = &tb_hash[tb_hash_func(pc)];
447 while (*ptb != NULL)
448 ptb = &(*ptb)->hash_next;
449 T0 = 0;
451 /* we add the TB in the virtual pc hash table */
452 *ptb = tb;
453 tb->hash_next = NULL;
454 tb_link(tb);
455 spin_unlock(&tb_lock);
457 #ifdef DEBUG_EXEC
458 if ((loglevel & CPU_LOG_EXEC)) {
459 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
460 (long)tb->tc_ptr, tb->pc,
461 lookup_symbol(tb->pc));
463 #endif
464 #ifdef __sparc__
465 T0 = tmp_T0;
466 #endif
467 /* see if we can patch the calling TB. */
469 if (T0 != 0
470 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
471 && (tb->cflags & CF_CODE_COPY) ==
472 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
473 #endif
475 spin_lock(&tb_lock);
476 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
477 #if defined(USE_CODE_COPY)
478 /* propagates the FP use info */
479 ((TranslationBlock *)(T0 & ~3))->cflags |=
480 (tb->cflags & CF_FP_USED);
481 #endif
482 spin_unlock(&tb_lock);
485 tc_ptr = tb->tc_ptr;
486 env->current_tb = tb;
487 /* execute the generated code */
488 gen_func = (void *)tc_ptr;
489 #if defined(__sparc__)
490 __asm__ __volatile__("call %0\n\t"
491 "mov %%o7,%%i0"
492 : /* no outputs */
493 : "r" (gen_func)
494 : "i0", "i1", "i2", "i3", "i4", "i5");
495 #elif defined(__arm__)
496 asm volatile ("mov pc, %0\n\t"
497 ".global exec_loop\n\t"
498 "exec_loop:\n\t"
499 : /* no outputs */
500 : "r" (gen_func)
501 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
502 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
504 if (!(tb->cflags & CF_CODE_COPY)) {
505 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
506 save_native_fp_state(env);
508 gen_func();
509 } else {
510 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
511 restore_native_fp_state(env);
513 /* we work with native eflags */
514 CC_SRC = cc_table[CC_OP].compute_all();
515 CC_OP = CC_OP_EFLAGS;
516 asm(".globl exec_loop\n"
517 "\n"
518 "debug1:\n"
519 " pushl %%ebp\n"
520 " fs movl %10, %9\n"
521 " fs movl %11, %%eax\n"
522 " andl $0x400, %%eax\n"
523 " fs orl %8, %%eax\n"
524 " pushl %%eax\n"
525 " popf\n"
526 " fs movl %%esp, %12\n"
527 " fs movl %0, %%eax\n"
528 " fs movl %1, %%ecx\n"
529 " fs movl %2, %%edx\n"
530 " fs movl %3, %%ebx\n"
531 " fs movl %4, %%esp\n"
532 " fs movl %5, %%ebp\n"
533 " fs movl %6, %%esi\n"
534 " fs movl %7, %%edi\n"
535 " fs jmp *%9\n"
536 "exec_loop:\n"
537 " fs movl %%esp, %4\n"
538 " fs movl %12, %%esp\n"
539 " fs movl %%eax, %0\n"
540 " fs movl %%ecx, %1\n"
541 " fs movl %%edx, %2\n"
542 " fs movl %%ebx, %3\n"
543 " fs movl %%ebp, %5\n"
544 " fs movl %%esi, %6\n"
545 " fs movl %%edi, %7\n"
546 " pushf\n"
547 " popl %%eax\n"
548 " movl %%eax, %%ecx\n"
549 " andl $0x400, %%ecx\n"
550 " shrl $9, %%ecx\n"
551 " andl $0x8d5, %%eax\n"
552 " fs movl %%eax, %8\n"
553 " movl $1, %%eax\n"
554 " subl %%ecx, %%eax\n"
555 " fs movl %%eax, %11\n"
556 " fs movl %9, %%ebx\n" /* get T0 value */
557 " popl %%ebp\n"
559 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
560 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
561 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
562 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
563 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
564 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
565 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
566 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
567 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
568 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
569 "a" (gen_func),
570 "m" (*(uint8_t *)offsetof(CPUState, df)),
571 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
572 : "%ecx", "%edx"
576 #else
577 gen_func();
578 #endif
579 env->current_tb = NULL;
580 /* reset soft MMU for next block (it can currently
581 only be set by a memory fault) */
582 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
583 if (env->hflags & HF_SOFTMMU_MASK) {
584 env->hflags &= ~HF_SOFTMMU_MASK;
585 /* do not allow linking to another block */
586 T0 = 0;
588 #endif
590 } else {
591 env_to_regs();
593 } /* for(;;) */
596 #if defined(TARGET_I386)
597 #if defined(USE_CODE_COPY)
598 if (env->native_fp_regs) {
599 save_native_fp_state(env);
601 #endif
602 /* restore flags in standard format */
603 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
605 /* restore global registers */
606 #ifdef reg_EAX
607 EAX = saved_EAX;
608 #endif
609 #ifdef reg_ECX
610 ECX = saved_ECX;
611 #endif
612 #ifdef reg_EDX
613 EDX = saved_EDX;
614 #endif
615 #ifdef reg_EBX
616 EBX = saved_EBX;
617 #endif
618 #ifdef reg_ESP
619 ESP = saved_ESP;
620 #endif
621 #ifdef reg_EBP
622 EBP = saved_EBP;
623 #endif
624 #ifdef reg_ESI
625 ESI = saved_ESI;
626 #endif
627 #ifdef reg_EDI
628 EDI = saved_EDI;
629 #endif
630 #elif defined(TARGET_ARM)
631 env->cpsr = compute_cpsr();
632 /* XXX: Save/restore host fpu exception state?. */
633 #elif defined(TARGET_SPARC)
634 #elif defined(TARGET_PPC)
635 #else
636 #error unsupported target CPU
637 #endif
638 #ifdef __sparc__
639 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
640 #endif
641 T0 = saved_T0;
642 T1 = saved_T1;
643 T2 = saved_T2;
644 env = saved_env;
645 return ret;
648 /* must only be called from the generated code as an exception can be
649 generated */
650 void tb_invalidate_page_range(target_ulong start, target_ulong end)
652 /* XXX: cannot enable it yet because it yields to MMU exception
653 where NIP != read address on PowerPC */
654 #if 0
655 target_ulong phys_addr;
656 phys_addr = get_phys_addr_code(env, start);
657 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
658 #endif
661 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
663 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
665 CPUX86State *saved_env;
667 saved_env = env;
668 env = s;
669 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
670 selector &= 0xffff;
671 cpu_x86_load_seg_cache(env, seg_reg, selector,
672 (selector << 4), 0xffff, 0);
673 } else {
674 load_seg(seg_reg, selector);
676 env = saved_env;
679 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
681 CPUX86State *saved_env;
683 saved_env = env;
684 env = s;
686 helper_fsave((target_ulong)ptr, data32);
688 env = saved_env;
691 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
693 CPUX86State *saved_env;
695 saved_env = env;
696 env = s;
698 helper_frstor((target_ulong)ptr, data32);
700 env = saved_env;
703 #endif /* TARGET_I386 */
705 #if !defined(CONFIG_SOFTMMU)
707 #if defined(TARGET_I386)
709 /* 'pc' is the host PC at which the exception was raised. 'address' is
710 the effective address of the memory exception. 'is_write' is 1 if a
711 write caused the exception and otherwise 0'. 'old_set' is the
712 signal set which should be restored */
713 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
714 int is_write, sigset_t *old_set,
715 void *puc)
717 TranslationBlock *tb;
718 int ret;
720 if (cpu_single_env)
721 env = cpu_single_env; /* XXX: find a correct solution for multithread */
722 #if defined(DEBUG_SIGNAL)
723 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
724 pc, address, is_write, *(unsigned long *)old_set);
725 #endif
726 /* XXX: locking issue */
727 if (is_write && page_unprotect(address, pc, puc)) {
728 return 1;
731 /* see if it is an MMU fault */
732 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
733 ((env->hflags & HF_CPL_MASK) == 3), 0);
734 if (ret < 0)
735 return 0; /* not an MMU fault */
736 if (ret == 0)
737 return 1; /* the MMU fault was handled without causing real CPU fault */
738 /* now we have a real cpu fault */
739 tb = tb_find_pc(pc);
740 if (tb) {
741 /* the PC is inside the translated code. It means that we have
742 a virtual CPU fault */
743 cpu_restore_state(tb, env, pc, puc);
745 if (ret == 1) {
746 #if 0
747 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
748 env->eip, env->cr[2], env->error_code);
749 #endif
750 /* we restore the process signal mask as the sigreturn should
751 do it (XXX: use sigsetjmp) */
752 sigprocmask(SIG_SETMASK, old_set, NULL);
753 raise_exception_err(EXCP0E_PAGE, env->error_code);
754 } else {
755 /* activate soft MMU for this block */
756 env->hflags |= HF_SOFTMMU_MASK;
757 cpu_resume_from_signal(env, puc);
759 /* never comes here */
760 return 1;
763 #elif defined(TARGET_ARM)
764 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
765 int is_write, sigset_t *old_set,
766 void *puc)
768 TranslationBlock *tb;
769 int ret;
771 if (cpu_single_env)
772 env = cpu_single_env; /* XXX: find a correct solution for multithread */
773 #if defined(DEBUG_SIGNAL)
774 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
775 pc, address, is_write, *(unsigned long *)old_set);
776 #endif
777 /* XXX: locking issue */
778 if (is_write && page_unprotect(address, pc, puc)) {
779 return 1;
781 /* see if it is an MMU fault */
782 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
783 if (ret < 0)
784 return 0; /* not an MMU fault */
785 if (ret == 0)
786 return 1; /* the MMU fault was handled without causing real CPU fault */
787 /* now we have a real cpu fault */
788 tb = tb_find_pc(pc);
789 if (tb) {
790 /* the PC is inside the translated code. It means that we have
791 a virtual CPU fault */
792 cpu_restore_state(tb, env, pc, puc);
794 /* we restore the process signal mask as the sigreturn should
795 do it (XXX: use sigsetjmp) */
796 sigprocmask(SIG_SETMASK, old_set, NULL);
797 cpu_loop_exit();
799 #elif defined(TARGET_SPARC)
800 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
801 int is_write, sigset_t *old_set,
802 void *puc)
804 TranslationBlock *tb;
805 int ret;
807 if (cpu_single_env)
808 env = cpu_single_env; /* XXX: find a correct solution for multithread */
809 #if defined(DEBUG_SIGNAL)
810 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
811 pc, address, is_write, *(unsigned long *)old_set);
812 #endif
813 /* XXX: locking issue */
814 if (is_write && page_unprotect(address, pc, puc)) {
815 return 1;
817 /* see if it is an MMU fault */
818 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
819 if (ret < 0)
820 return 0; /* not an MMU fault */
821 if (ret == 0)
822 return 1; /* the MMU fault was handled without causing real CPU fault */
823 /* now we have a real cpu fault */
824 tb = tb_find_pc(pc);
825 if (tb) {
826 /* the PC is inside the translated code. It means that we have
827 a virtual CPU fault */
828 cpu_restore_state(tb, env, pc, puc);
830 /* we restore the process signal mask as the sigreturn should
831 do it (XXX: use sigsetjmp) */
832 sigprocmask(SIG_SETMASK, old_set, NULL);
833 cpu_loop_exit();
835 #elif defined (TARGET_PPC)
836 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
837 int is_write, sigset_t *old_set,
838 void *puc)
840 TranslationBlock *tb;
841 int ret;
843 if (cpu_single_env)
844 env = cpu_single_env; /* XXX: find a correct solution for multithread */
845 #if defined(DEBUG_SIGNAL)
846 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
847 pc, address, is_write, *(unsigned long *)old_set);
848 #endif
849 /* XXX: locking issue */
850 if (is_write && page_unprotect(address, pc, puc)) {
851 return 1;
854 /* see if it is an MMU fault */
855 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
856 if (ret < 0)
857 return 0; /* not an MMU fault */
858 if (ret == 0)
859 return 1; /* the MMU fault was handled without causing real CPU fault */
861 /* now we have a real cpu fault */
862 tb = tb_find_pc(pc);
863 if (tb) {
864 /* the PC is inside the translated code. It means that we have
865 a virtual CPU fault */
866 cpu_restore_state(tb, env, pc, puc);
868 if (ret == 1) {
869 #if 0
870 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
871 env->nip, env->error_code, tb);
872 #endif
873 /* we restore the process signal mask as the sigreturn should
874 do it (XXX: use sigsetjmp) */
875 sigprocmask(SIG_SETMASK, old_set, NULL);
876 do_raise_exception_err(env->exception_index, env->error_code);
877 } else {
878 /* activate soft MMU for this block */
879 cpu_resume_from_signal(env, puc);
881 /* never comes here */
882 return 1;
884 #else
885 #error unsupported target CPU
886 #endif
888 #if defined(__i386__)
890 #if defined(USE_CODE_COPY)
891 static void cpu_send_trap(unsigned long pc, int trap,
892 struct ucontext *uc)
894 TranslationBlock *tb;
896 if (cpu_single_env)
897 env = cpu_single_env; /* XXX: find a correct solution for multithread */
898 /* now we have a real cpu fault */
899 tb = tb_find_pc(pc);
900 if (tb) {
901 /* the PC is inside the translated code. It means that we have
902 a virtual CPU fault */
903 cpu_restore_state(tb, env, pc, uc);
905 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
906 raise_exception_err(trap, env->error_code);
908 #endif
910 int cpu_signal_handler(int host_signum, struct siginfo *info,
911 void *puc)
913 struct ucontext *uc = puc;
914 unsigned long pc;
915 int trapno;
917 #ifndef REG_EIP
918 /* for glibc 2.1 */
919 #define REG_EIP EIP
920 #define REG_ERR ERR
921 #define REG_TRAPNO TRAPNO
922 #endif
923 pc = uc->uc_mcontext.gregs[REG_EIP];
924 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
925 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
926 if (trapno == 0x00 || trapno == 0x05) {
927 /* send division by zero or bound exception */
928 cpu_send_trap(pc, trapno, uc);
929 return 1;
930 } else
931 #endif
932 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
933 trapno == 0xe ?
934 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
935 &uc->uc_sigmask, puc);
938 #elif defined(__x86_64__)
940 int cpu_signal_handler(int host_signum, struct siginfo *info,
941 void *puc)
943 struct ucontext *uc = puc;
944 unsigned long pc;
946 pc = uc->uc_mcontext.gregs[REG_RIP];
947 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
948 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
949 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
950 &uc->uc_sigmask, puc);
953 #elif defined(__powerpc__)
955 /***********************************************************************
956 * signal context platform-specific definitions
957 * From Wine
959 #ifdef linux
960 /* All Registers access - only for local access */
961 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
962 /* Gpr Registers access */
963 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
964 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
965 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
966 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
967 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
968 # define LR_sig(context) REG_sig(link, context) /* Link register */
969 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
970 /* Float Registers access */
971 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
972 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
973 /* Exception Registers access */
974 # define DAR_sig(context) REG_sig(dar, context)
975 # define DSISR_sig(context) REG_sig(dsisr, context)
976 # define TRAP_sig(context) REG_sig(trap, context)
977 #endif /* linux */
979 #ifdef __APPLE__
980 # include <sys/ucontext.h>
981 typedef struct ucontext SIGCONTEXT;
982 /* All Registers access - only for local access */
983 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
984 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
985 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
986 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
987 /* Gpr Registers access */
988 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
989 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
990 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
991 # define CTR_sig(context) REG_sig(ctr, context)
992 # define XER_sig(context) REG_sig(xer, context) /* Link register */
993 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
994 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
995 /* Float Registers access */
996 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
997 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
998 /* Exception Registers access */
999 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1000 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1001 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1002 #endif /* __APPLE__ */
1004 int cpu_signal_handler(int host_signum, struct siginfo *info,
1005 void *puc)
1007 struct ucontext *uc = puc;
1008 unsigned long pc;
1009 int is_write;
1011 pc = IAR_sig(uc);
1012 is_write = 0;
1013 #if 0
1014 /* ppc 4xx case */
1015 if (DSISR_sig(uc) & 0x00800000)
1016 is_write = 1;
1017 #else
1018 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1019 is_write = 1;
1020 #endif
1021 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1022 is_write, &uc->uc_sigmask, puc);
1025 #elif defined(__alpha__)
1027 int cpu_signal_handler(int host_signum, struct siginfo *info,
1028 void *puc)
1030 struct ucontext *uc = puc;
1031 uint32_t *pc = uc->uc_mcontext.sc_pc;
1032 uint32_t insn = *pc;
1033 int is_write = 0;
1035 /* XXX: need kernel patch to get write flag faster */
1036 switch (insn >> 26) {
1037 case 0x0d: // stw
1038 case 0x0e: // stb
1039 case 0x0f: // stq_u
1040 case 0x24: // stf
1041 case 0x25: // stg
1042 case 0x26: // sts
1043 case 0x27: // stt
1044 case 0x2c: // stl
1045 case 0x2d: // stq
1046 case 0x2e: // stl_c
1047 case 0x2f: // stq_c
1048 is_write = 1;
1051 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1052 is_write, &uc->uc_sigmask, puc);
1054 #elif defined(__sparc__)
1056 int cpu_signal_handler(int host_signum, struct siginfo *info,
1057 void *puc)
1059 uint32_t *regs = (uint32_t *)(info + 1);
1060 void *sigmask = (regs + 20);
1061 unsigned long pc;
1062 int is_write;
1063 uint32_t insn;
1065 /* XXX: is there a standard glibc define ? */
1066 pc = regs[1];
1067 /* XXX: need kernel patch to get write flag faster */
1068 is_write = 0;
1069 insn = *(uint32_t *)pc;
1070 if ((insn >> 30) == 3) {
1071 switch((insn >> 19) & 0x3f) {
1072 case 0x05: // stb
1073 case 0x06: // sth
1074 case 0x04: // st
1075 case 0x07: // std
1076 case 0x24: // stf
1077 case 0x27: // stdf
1078 case 0x25: // stfsr
1079 is_write = 1;
1080 break;
1083 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1084 is_write, sigmask, NULL);
1087 #elif defined(__arm__)
1089 int cpu_signal_handler(int host_signum, struct siginfo *info,
1090 void *puc)
1092 struct ucontext *uc = puc;
1093 unsigned long pc;
1094 int is_write;
1096 pc = uc->uc_mcontext.gregs[R15];
1097 /* XXX: compute is_write */
1098 is_write = 0;
1099 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1100 is_write,
1101 &uc->uc_sigmask);
1104 #elif defined(__mc68000)
1106 int cpu_signal_handler(int host_signum, struct siginfo *info,
1107 void *puc)
1109 struct ucontext *uc = puc;
1110 unsigned long pc;
1111 int is_write;
1113 pc = uc->uc_mcontext.gregs[16];
1114 /* XXX: compute is_write */
1115 is_write = 0;
1116 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1117 is_write,
1118 &uc->uc_sigmask, puc);
1121 #else
1123 #error host CPU specific signal handler needed
1125 #endif
1127 #endif /* !defined(CONFIG_SOFTMMU) */