Change -drive parsing so that paths don't have to be double-escaped (Laurent Vivier...
[qemu/qemu_0_9_1_stable.git] / target-ppc / op_helper.c
blob1ea16951ba6d60897ffc4f85a5a9862b5940e61e
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "exec.h"
21 #include "host-utils.h"
23 #include "helper_regs.h"
24 #include "op_helper.h"
26 #define MEMSUFFIX _raw
27 #include "op_helper.h"
28 #include "op_helper_mem.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #define MEMSUFFIX _user
31 #include "op_helper.h"
32 #include "op_helper_mem.h"
33 #define MEMSUFFIX _kernel
34 #include "op_helper.h"
35 #include "op_helper_mem.h"
36 #define MEMSUFFIX _hypv
37 #include "op_helper.h"
38 #include "op_helper_mem.h"
39 #endif
41 //#define DEBUG_OP
42 //#define DEBUG_EXCEPTIONS
43 //#define DEBUG_SOFTWARE_TLB
45 /*****************************************************************************/
46 /* Exceptions processing helpers */
48 void do_raise_exception_err (uint32_t exception, int error_code)
50 #if 0
51 printf("Raise exception %3x code : %d\n", exception, error_code);
52 #endif
53 env->exception_index = exception;
54 env->error_code = error_code;
55 cpu_loop_exit();
58 void do_raise_exception (uint32_t exception)
60 do_raise_exception_err(exception, 0);
63 void cpu_dump_EA (target_ulong EA);
64 void do_print_mem_EA (target_ulong EA)
66 cpu_dump_EA(EA);
69 /*****************************************************************************/
70 /* Registers load and stores */
71 void do_load_cr (void)
73 T0 = (env->crf[0] << 28) |
74 (env->crf[1] << 24) |
75 (env->crf[2] << 20) |
76 (env->crf[3] << 16) |
77 (env->crf[4] << 12) |
78 (env->crf[5] << 8) |
79 (env->crf[6] << 4) |
80 (env->crf[7] << 0);
83 void do_store_cr (uint32_t mask)
85 int i, sh;
87 for (i = 0, sh = 7; i < 8; i++, sh--) {
88 if (mask & (1 << sh))
89 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
93 #if defined(TARGET_PPC64)
94 void do_store_pri (int prio)
96 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
97 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
99 #endif
101 target_ulong ppc_load_dump_spr (int sprn)
103 if (loglevel != 0) {
104 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
105 sprn, sprn, env->spr[sprn]);
108 return env->spr[sprn];
111 void ppc_store_dump_spr (int sprn, target_ulong val)
113 if (loglevel != 0) {
114 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
115 sprn, sprn, env->spr[sprn], val);
117 env->spr[sprn] = val;
120 /*****************************************************************************/
121 /* Fixed point operations helpers */
122 void do_adde (void)
124 T2 = T0;
125 T0 += T1 + xer_ca;
126 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
127 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
128 xer_ca = 0;
129 } else {
130 xer_ca = 1;
134 #if defined(TARGET_PPC64)
135 void do_adde_64 (void)
137 T2 = T0;
138 T0 += T1 + xer_ca;
139 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
140 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
141 xer_ca = 0;
142 } else {
143 xer_ca = 1;
146 #endif
148 void do_addmeo (void)
150 T1 = T0;
151 T0 += xer_ca + (-1);
152 xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
153 xer_so |= xer_ov;
154 if (likely(T1 != 0))
155 xer_ca = 1;
156 else
157 xer_ca = 0;
160 #if defined(TARGET_PPC64)
161 void do_addmeo_64 (void)
163 T1 = T0;
164 T0 += xer_ca + (-1);
165 xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
166 xer_so |= xer_ov;
167 if (likely(T1 != 0))
168 xer_ca = 1;
169 else
170 xer_ca = 0;
172 #endif
174 void do_divwo (void)
176 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
177 (int32_t)T1 == 0))) {
178 xer_ov = 0;
179 T0 = (int32_t)T0 / (int32_t)T1;
180 } else {
181 xer_ov = 1;
182 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
184 xer_so |= xer_ov;
187 #if defined(TARGET_PPC64)
188 void do_divdo (void)
190 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
191 (int64_t)T1 == 0))) {
192 xer_ov = 0;
193 T0 = (int64_t)T0 / (int64_t)T1;
194 } else {
195 xer_ov = 1;
196 T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
198 xer_so |= xer_ov;
200 #endif
202 void do_divwuo (void)
204 if (likely((uint32_t)T1 != 0)) {
205 xer_ov = 0;
206 T0 = (uint32_t)T0 / (uint32_t)T1;
207 } else {
208 xer_ov = 1;
209 xer_so = 1;
210 T0 = 0;
214 #if defined(TARGET_PPC64)
215 void do_divduo (void)
217 if (likely((uint64_t)T1 != 0)) {
218 xer_ov = 0;
219 T0 = (uint64_t)T0 / (uint64_t)T1;
220 } else {
221 xer_ov = 1;
222 xer_so = 1;
223 T0 = 0;
226 #endif
228 void do_mullwo (void)
230 int64_t res = (int64_t)T0 * (int64_t)T1;
232 if (likely((int32_t)res == res)) {
233 xer_ov = 0;
234 } else {
235 xer_ov = 1;
236 xer_so = 1;
238 T0 = (int32_t)res;
241 #if defined(TARGET_PPC64)
242 void do_mulldo (void)
244 int64_t th;
245 uint64_t tl;
247 muls64(&tl, &th, T0, T1);
248 T0 = (int64_t)tl;
249 /* If th != 0 && th != -1, then we had an overflow */
250 if (likely((uint64_t)(th + 1) <= 1)) {
251 xer_ov = 0;
252 } else {
253 xer_ov = 1;
255 xer_so |= xer_ov;
257 #endif
259 void do_nego (void)
261 if (likely((int32_t)T0 != INT32_MIN)) {
262 xer_ov = 0;
263 T0 = -(int32_t)T0;
264 } else {
265 xer_ov = 1;
266 xer_so = 1;
270 #if defined(TARGET_PPC64)
271 void do_nego_64 (void)
273 if (likely((int64_t)T0 != INT64_MIN)) {
274 xer_ov = 0;
275 T0 = -(int64_t)T0;
276 } else {
277 xer_ov = 1;
278 xer_so = 1;
281 #endif
283 void do_subfe (void)
285 T0 = T1 + ~T0 + xer_ca;
286 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
287 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
288 xer_ca = 0;
289 } else {
290 xer_ca = 1;
294 #if defined(TARGET_PPC64)
295 void do_subfe_64 (void)
297 T0 = T1 + ~T0 + xer_ca;
298 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
299 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
300 xer_ca = 0;
301 } else {
302 xer_ca = 1;
305 #endif
307 void do_subfmeo (void)
309 T1 = T0;
310 T0 = ~T0 + xer_ca - 1;
311 xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
312 xer_so |= xer_ov;
313 if (likely((uint32_t)T1 != UINT32_MAX))
314 xer_ca = 1;
315 else
316 xer_ca = 0;
319 #if defined(TARGET_PPC64)
320 void do_subfmeo_64 (void)
322 T1 = T0;
323 T0 = ~T0 + xer_ca - 1;
324 xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
325 xer_so |= xer_ov;
326 if (likely((uint64_t)T1 != UINT64_MAX))
327 xer_ca = 1;
328 else
329 xer_ca = 0;
331 #endif
333 void do_subfzeo (void)
335 T1 = T0;
336 T0 = ~T0 + xer_ca;
337 xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
338 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
339 xer_so |= xer_ov;
340 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
341 xer_ca = 0;
342 } else {
343 xer_ca = 1;
347 #if defined(TARGET_PPC64)
348 void do_subfzeo_64 (void)
350 T1 = T0;
351 T0 = ~T0 + xer_ca;
352 xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) &
353 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
354 xer_so |= xer_ov;
355 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
356 xer_ca = 0;
357 } else {
358 xer_ca = 1;
361 #endif
363 void do_cntlzw (void)
365 T0 = clz32(T0);
368 #if defined(TARGET_PPC64)
369 void do_cntlzd (void)
371 T0 = clz64(T0);
373 #endif
375 /* shift right arithmetic helper */
376 void do_sraw (void)
378 int32_t ret;
380 if (likely(!(T1 & 0x20UL))) {
381 if (likely((uint32_t)T1 != 0)) {
382 ret = (int32_t)T0 >> (T1 & 0x1fUL);
383 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
384 xer_ca = 0;
385 } else {
386 xer_ca = 1;
388 } else {
389 ret = T0;
390 xer_ca = 0;
392 } else {
393 ret = UINT32_MAX * ((uint32_t)T0 >> 31);
394 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
395 xer_ca = 0;
396 } else {
397 xer_ca = 1;
400 T0 = ret;
403 #if defined(TARGET_PPC64)
404 void do_srad (void)
406 int64_t ret;
408 if (likely(!(T1 & 0x40UL))) {
409 if (likely((uint64_t)T1 != 0)) {
410 ret = (int64_t)T0 >> (T1 & 0x3FUL);
411 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
412 xer_ca = 0;
413 } else {
414 xer_ca = 1;
416 } else {
417 ret = T0;
418 xer_ca = 0;
420 } else {
421 ret = UINT64_MAX * ((uint64_t)T0 >> 63);
422 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
423 xer_ca = 0;
424 } else {
425 xer_ca = 1;
428 T0 = ret;
430 #endif
432 void do_popcntb (void)
434 uint32_t ret;
435 int i;
437 ret = 0;
438 for (i = 0; i < 32; i += 8)
439 ret |= ctpop8((T0 >> i) & 0xFF) << i;
440 T0 = ret;
443 #if defined(TARGET_PPC64)
444 void do_popcntb_64 (void)
446 uint64_t ret;
447 int i;
449 ret = 0;
450 for (i = 0; i < 64; i += 8)
451 ret |= ctpop8((T0 >> i) & 0xFF) << i;
452 T0 = ret;
454 #endif
456 /*****************************************************************************/
457 /* Floating point operations helpers */
458 static always_inline int fpisneg (float64 f)
460 union {
461 float64 f;
462 uint64_t u;
463 } u;
465 u.f = f;
467 return u.u >> 63 != 0;
470 static always_inline int isden (float f)
472 union {
473 float64 f;
474 uint64_t u;
475 } u;
477 u.f = f;
479 return ((u.u >> 52) & 0x7FF) == 0;
482 static always_inline int iszero (float64 f)
484 union {
485 float64 f;
486 uint64_t u;
487 } u;
489 u.f = f;
491 return (u.u & ~0x8000000000000000ULL) == 0;
494 static always_inline int isinfinity (float64 f)
496 union {
497 float64 f;
498 uint64_t u;
499 } u;
501 u.f = f;
503 return ((u.u >> 52) & 0x7FF) == 0x7FF &&
504 (u.u & 0x000FFFFFFFFFFFFFULL) == 0;
507 void do_compute_fprf (int set_fprf)
509 int isneg;
511 isneg = fpisneg(FT0);
512 if (unlikely(float64_is_nan(FT0))) {
513 if (float64_is_signaling_nan(FT0)) {
514 /* Signaling NaN: flags are undefined */
515 T0 = 0x00;
516 } else {
517 /* Quiet NaN */
518 T0 = 0x11;
520 } else if (unlikely(isinfinity(FT0))) {
521 /* +/- infinity */
522 if (isneg)
523 T0 = 0x09;
524 else
525 T0 = 0x05;
526 } else {
527 if (iszero(FT0)) {
528 /* +/- zero */
529 if (isneg)
530 T0 = 0x12;
531 else
532 T0 = 0x02;
533 } else {
534 if (isden(FT0)) {
535 /* Denormalized numbers */
536 T0 = 0x10;
537 } else {
538 /* Normalized numbers */
539 T0 = 0x00;
541 if (isneg) {
542 T0 |= 0x08;
543 } else {
544 T0 |= 0x04;
548 if (set_fprf) {
549 /* We update FPSCR_FPRF */
550 env->fpscr &= ~(0x1F << FPSCR_FPRF);
551 env->fpscr |= T0 << FPSCR_FPRF;
553 /* We just need fpcc to update Rc1 */
554 T0 &= 0xF;
557 /* Floating-point invalid operations exception */
558 static always_inline void fload_invalid_op_excp (int op)
560 int ve;
562 ve = fpscr_ve;
563 if (op & POWERPC_EXCP_FP_VXSNAN) {
564 /* Operation on signaling NaN */
565 env->fpscr |= 1 << FPSCR_VXSNAN;
567 if (op & POWERPC_EXCP_FP_VXSOFT) {
568 /* Software-defined condition */
569 env->fpscr |= 1 << FPSCR_VXSOFT;
571 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
572 case POWERPC_EXCP_FP_VXISI:
573 /* Magnitude subtraction of infinities */
574 env->fpscr |= 1 << FPSCR_VXISI;
575 goto update_arith;
576 case POWERPC_EXCP_FP_VXIDI:
577 /* Division of infinity by infinity */
578 env->fpscr |= 1 << FPSCR_VXIDI;
579 goto update_arith;
580 case POWERPC_EXCP_FP_VXZDZ:
581 /* Division of zero by zero */
582 env->fpscr |= 1 << FPSCR_VXZDZ;
583 goto update_arith;
584 case POWERPC_EXCP_FP_VXIMZ:
585 /* Multiplication of zero by infinity */
586 env->fpscr |= 1 << FPSCR_VXIMZ;
587 goto update_arith;
588 case POWERPC_EXCP_FP_VXVC:
589 /* Ordered comparison of NaN */
590 env->fpscr |= 1 << FPSCR_VXVC;
591 env->fpscr &= ~(0xF << FPSCR_FPCC);
592 env->fpscr |= 0x11 << FPSCR_FPCC;
593 /* We must update the target FPR before raising the exception */
594 if (ve != 0) {
595 env->exception_index = POWERPC_EXCP_PROGRAM;
596 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
597 /* Update the floating-point enabled exception summary */
598 env->fpscr |= 1 << FPSCR_FEX;
599 /* Exception is differed */
600 ve = 0;
602 break;
603 case POWERPC_EXCP_FP_VXSQRT:
604 /* Square root of a negative number */
605 env->fpscr |= 1 << FPSCR_VXSQRT;
606 update_arith:
607 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
608 if (ve == 0) {
609 /* Set the result to quiet NaN */
610 FT0 = UINT64_MAX;
611 env->fpscr &= ~(0xF << FPSCR_FPCC);
612 env->fpscr |= 0x11 << FPSCR_FPCC;
614 break;
615 case POWERPC_EXCP_FP_VXCVI:
616 /* Invalid conversion */
617 env->fpscr |= 1 << FPSCR_VXCVI;
618 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
619 if (ve == 0) {
620 /* Set the result to quiet NaN */
621 FT0 = UINT64_MAX;
622 env->fpscr &= ~(0xF << FPSCR_FPCC);
623 env->fpscr |= 0x11 << FPSCR_FPCC;
625 break;
627 /* Update the floating-point invalid operation summary */
628 env->fpscr |= 1 << FPSCR_VX;
629 /* Update the floating-point exception summary */
630 env->fpscr |= 1 << FPSCR_FX;
631 if (ve != 0) {
632 /* Update the floating-point enabled exception summary */
633 env->fpscr |= 1 << FPSCR_FEX;
634 if (msr_fe0 != 0 || msr_fe1 != 0)
635 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
639 static always_inline void float_zero_divide_excp (void)
641 union {
642 float64 f;
643 uint64_t u;
644 } u0, u1;
646 env->fpscr |= 1 << FPSCR_ZX;
647 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
648 /* Update the floating-point exception summary */
649 env->fpscr |= 1 << FPSCR_FX;
650 if (fpscr_ze != 0) {
651 /* Update the floating-point enabled exception summary */
652 env->fpscr |= 1 << FPSCR_FEX;
653 if (msr_fe0 != 0 || msr_fe1 != 0) {
654 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
655 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
657 } else {
658 /* Set the result to infinity */
659 u0.f = FT0;
660 u1.f = FT1;
661 u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
662 u0.u |= 0x7FFULL << 52;
663 FT0 = u0.f;
667 static always_inline void float_overflow_excp (void)
669 env->fpscr |= 1 << FPSCR_OX;
670 /* Update the floating-point exception summary */
671 env->fpscr |= 1 << FPSCR_FX;
672 if (fpscr_oe != 0) {
673 /* XXX: should adjust the result */
674 /* Update the floating-point enabled exception summary */
675 env->fpscr |= 1 << FPSCR_FEX;
676 /* We must update the target FPR before raising the exception */
677 env->exception_index = POWERPC_EXCP_PROGRAM;
678 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
679 } else {
680 env->fpscr |= 1 << FPSCR_XX;
681 env->fpscr |= 1 << FPSCR_FI;
685 static always_inline void float_underflow_excp (void)
687 env->fpscr |= 1 << FPSCR_UX;
688 /* Update the floating-point exception summary */
689 env->fpscr |= 1 << FPSCR_FX;
690 if (fpscr_ue != 0) {
691 /* XXX: should adjust the result */
692 /* Update the floating-point enabled exception summary */
693 env->fpscr |= 1 << FPSCR_FEX;
694 /* We must update the target FPR before raising the exception */
695 env->exception_index = POWERPC_EXCP_PROGRAM;
696 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
700 static always_inline void float_inexact_excp (void)
702 env->fpscr |= 1 << FPSCR_XX;
703 /* Update the floating-point exception summary */
704 env->fpscr |= 1 << FPSCR_FX;
705 if (fpscr_xe != 0) {
706 /* Update the floating-point enabled exception summary */
707 env->fpscr |= 1 << FPSCR_FEX;
708 /* We must update the target FPR before raising the exception */
709 env->exception_index = POWERPC_EXCP_PROGRAM;
710 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
714 static always_inline void fpscr_set_rounding_mode (void)
716 int rnd_type;
718 /* Set rounding mode */
719 switch (fpscr_rn) {
720 case 0:
721 /* Best approximation (round to nearest) */
722 rnd_type = float_round_nearest_even;
723 break;
724 case 1:
725 /* Smaller magnitude (round toward zero) */
726 rnd_type = float_round_to_zero;
727 break;
728 case 2:
729 /* Round toward +infinite */
730 rnd_type = float_round_up;
731 break;
732 default:
733 case 3:
734 /* Round toward -infinite */
735 rnd_type = float_round_down;
736 break;
738 set_float_rounding_mode(rnd_type, &env->fp_status);
741 void do_fpscr_setbit (int bit)
743 int prev;
745 prev = (env->fpscr >> bit) & 1;
746 env->fpscr |= 1 << bit;
747 if (prev == 0) {
748 switch (bit) {
749 case FPSCR_VX:
750 env->fpscr |= 1 << FPSCR_FX;
751 if (fpscr_ve)
752 goto raise_ve;
753 case FPSCR_OX:
754 env->fpscr |= 1 << FPSCR_FX;
755 if (fpscr_oe)
756 goto raise_oe;
757 break;
758 case FPSCR_UX:
759 env->fpscr |= 1 << FPSCR_FX;
760 if (fpscr_ue)
761 goto raise_ue;
762 break;
763 case FPSCR_ZX:
764 env->fpscr |= 1 << FPSCR_FX;
765 if (fpscr_ze)
766 goto raise_ze;
767 break;
768 case FPSCR_XX:
769 env->fpscr |= 1 << FPSCR_FX;
770 if (fpscr_xe)
771 goto raise_xe;
772 break;
773 case FPSCR_VXSNAN:
774 case FPSCR_VXISI:
775 case FPSCR_VXIDI:
776 case FPSCR_VXZDZ:
777 case FPSCR_VXIMZ:
778 case FPSCR_VXVC:
779 case FPSCR_VXSOFT:
780 case FPSCR_VXSQRT:
781 case FPSCR_VXCVI:
782 env->fpscr |= 1 << FPSCR_VX;
783 env->fpscr |= 1 << FPSCR_FX;
784 if (fpscr_ve != 0)
785 goto raise_ve;
786 break;
787 case FPSCR_VE:
788 if (fpscr_vx != 0) {
789 raise_ve:
790 env->error_code = POWERPC_EXCP_FP;
791 if (fpscr_vxsnan)
792 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
793 if (fpscr_vxisi)
794 env->error_code |= POWERPC_EXCP_FP_VXISI;
795 if (fpscr_vxidi)
796 env->error_code |= POWERPC_EXCP_FP_VXIDI;
797 if (fpscr_vxzdz)
798 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
799 if (fpscr_vximz)
800 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
801 if (fpscr_vxvc)
802 env->error_code |= POWERPC_EXCP_FP_VXVC;
803 if (fpscr_vxsoft)
804 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
805 if (fpscr_vxsqrt)
806 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
807 if (fpscr_vxcvi)
808 env->error_code |= POWERPC_EXCP_FP_VXCVI;
809 goto raise_excp;
811 break;
812 case FPSCR_OE:
813 if (fpscr_ox != 0) {
814 raise_oe:
815 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
816 goto raise_excp;
818 break;
819 case FPSCR_UE:
820 if (fpscr_ux != 0) {
821 raise_ue:
822 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
823 goto raise_excp;
825 break;
826 case FPSCR_ZE:
827 if (fpscr_zx != 0) {
828 raise_ze:
829 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
830 goto raise_excp;
832 break;
833 case FPSCR_XE:
834 if (fpscr_xx != 0) {
835 raise_xe:
836 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
837 goto raise_excp;
839 break;
840 case FPSCR_RN1:
841 case FPSCR_RN:
842 fpscr_set_rounding_mode();
843 break;
844 default:
845 break;
846 raise_excp:
847 /* Update the floating-point enabled exception summary */
848 env->fpscr |= 1 << FPSCR_FEX;
849 /* We have to update Rc1 before raising the exception */
850 env->exception_index = POWERPC_EXCP_PROGRAM;
851 break;
856 #if defined(WORDS_BIGENDIAN)
857 #define WORD0 0
858 #define WORD1 1
859 #else
860 #define WORD0 1
861 #define WORD1 0
862 #endif
863 void do_store_fpscr (uint32_t mask)
866 * We use only the 32 LSB of the incoming fpr
868 union {
869 double d;
870 struct {
871 uint32_t u[2];
872 } s;
873 } u;
874 uint32_t prev, new;
875 int i;
877 u.d = FT0;
878 prev = env->fpscr;
879 new = u.s.u[WORD1];
880 new &= ~0x90000000;
881 new |= prev & 0x90000000;
882 for (i = 0; i < 7; i++) {
883 if (mask & (1 << i)) {
884 env->fpscr &= ~(0xF << (4 * i));
885 env->fpscr |= new & (0xF << (4 * i));
888 /* Update VX and FEX */
889 if (fpscr_ix != 0)
890 env->fpscr |= 1 << FPSCR_VX;
891 if ((fpscr_ex & fpscr_eex) != 0) {
892 env->fpscr |= 1 << FPSCR_FEX;
893 env->exception_index = POWERPC_EXCP_PROGRAM;
894 /* XXX: we should compute it properly */
895 env->error_code = POWERPC_EXCP_FP;
897 fpscr_set_rounding_mode();
899 #undef WORD0
900 #undef WORD1
902 #ifdef CONFIG_SOFTFLOAT
903 void do_float_check_status (void)
905 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
906 (env->error_code & POWERPC_EXCP_FP)) {
907 /* Differred floating-point exception after target FPR update */
908 if (msr_fe0 != 0 || msr_fe1 != 0)
909 do_raise_exception_err(env->exception_index, env->error_code);
910 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
911 float_overflow_excp();
912 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
913 float_underflow_excp();
914 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
915 float_inexact_excp();
918 #endif
920 #if USE_PRECISE_EMULATION
921 void do_fadd (void)
923 if (unlikely(float64_is_signaling_nan(FT0) ||
924 float64_is_signaling_nan(FT1))) {
925 /* sNaN addition */
926 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
927 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
928 fpisneg(FT0) == fpisneg(FT1))) {
929 FT0 = float64_add(FT0, FT1, &env->fp_status);
930 } else {
931 /* Magnitude subtraction of infinities */
932 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
936 void do_fsub (void)
938 if (unlikely(float64_is_signaling_nan(FT0) ||
939 float64_is_signaling_nan(FT1))) {
940 /* sNaN subtraction */
941 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
942 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
943 fpisneg(FT0) != fpisneg(FT1))) {
944 FT0 = float64_sub(FT0, FT1, &env->fp_status);
945 } else {
946 /* Magnitude subtraction of infinities */
947 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
951 void do_fmul (void)
953 if (unlikely(float64_is_signaling_nan(FT0) ||
954 float64_is_signaling_nan(FT1))) {
955 /* sNaN multiplication */
956 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
957 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
958 (iszero(FT0) && isinfinity(FT1)))) {
959 /* Multiplication of zero by infinity */
960 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
961 } else {
962 FT0 = float64_mul(FT0, FT1, &env->fp_status);
966 void do_fdiv (void)
968 if (unlikely(float64_is_signaling_nan(FT0) ||
969 float64_is_signaling_nan(FT1))) {
970 /* sNaN division */
971 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
972 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
973 /* Division of infinity by infinity */
974 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
975 } else if (unlikely(iszero(FT1))) {
976 if (iszero(FT0)) {
977 /* Division of zero by zero */
978 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
979 } else {
980 /* Division by zero */
981 float_zero_divide_excp();
983 } else {
984 FT0 = float64_div(FT0, FT1, &env->fp_status);
987 #endif /* USE_PRECISE_EMULATION */
989 void do_fctiw (void)
991 union {
992 double d;
993 uint64_t i;
994 } p;
996 if (unlikely(float64_is_signaling_nan(FT0))) {
997 /* sNaN conversion */
998 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
999 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1000 /* qNan / infinity conversion */
1001 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1002 } else {
1003 p.i = float64_to_int32(FT0, &env->fp_status);
1004 #if USE_PRECISE_EMULATION
1005 /* XXX: higher bits are not supposed to be significant.
1006 * to make tests easier, return the same as a real PowerPC 750
1008 p.i |= 0xFFF80000ULL << 32;
1009 #endif
1010 FT0 = p.d;
1014 void do_fctiwz (void)
1016 union {
1017 double d;
1018 uint64_t i;
1019 } p;
1021 if (unlikely(float64_is_signaling_nan(FT0))) {
1022 /* sNaN conversion */
1023 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1024 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1025 /* qNan / infinity conversion */
1026 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1027 } else {
1028 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
1029 #if USE_PRECISE_EMULATION
1030 /* XXX: higher bits are not supposed to be significant.
1031 * to make tests easier, return the same as a real PowerPC 750
1033 p.i |= 0xFFF80000ULL << 32;
1034 #endif
1035 FT0 = p.d;
1039 #if defined(TARGET_PPC64)
1040 void do_fcfid (void)
1042 union {
1043 double d;
1044 uint64_t i;
1045 } p;
1047 p.d = FT0;
1048 FT0 = int64_to_float64(p.i, &env->fp_status);
1051 void do_fctid (void)
1053 union {
1054 double d;
1055 uint64_t i;
1056 } p;
1058 if (unlikely(float64_is_signaling_nan(FT0))) {
1059 /* sNaN conversion */
1060 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1061 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1062 /* qNan / infinity conversion */
1063 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1064 } else {
1065 p.i = float64_to_int64(FT0, &env->fp_status);
1066 FT0 = p.d;
1070 void do_fctidz (void)
1072 union {
1073 double d;
1074 uint64_t i;
1075 } p;
1077 if (unlikely(float64_is_signaling_nan(FT0))) {
1078 /* sNaN conversion */
1079 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1080 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1081 /* qNan / infinity conversion */
1082 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1083 } else {
1084 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1085 FT0 = p.d;
1089 #endif
1091 static always_inline void do_fri (int rounding_mode)
1093 if (unlikely(float64_is_signaling_nan(FT0))) {
1094 /* sNaN round */
1095 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1096 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1097 /* qNan / infinity round */
1098 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1099 } else {
1100 set_float_rounding_mode(rounding_mode, &env->fp_status);
1101 FT0 = float64_round_to_int(FT0, &env->fp_status);
1102 /* Restore rounding mode from FPSCR */
1103 fpscr_set_rounding_mode();
1107 void do_frin (void)
1109 do_fri(float_round_nearest_even);
1112 void do_friz (void)
1114 do_fri(float_round_to_zero);
1117 void do_frip (void)
1119 do_fri(float_round_up);
1122 void do_frim (void)
1124 do_fri(float_round_down);
1127 #if USE_PRECISE_EMULATION
1128 void do_fmadd (void)
1130 if (unlikely(float64_is_signaling_nan(FT0) ||
1131 float64_is_signaling_nan(FT1) ||
1132 float64_is_signaling_nan(FT2))) {
1133 /* sNaN operation */
1134 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1135 } else {
1136 #ifdef FLOAT128
1137 /* This is the way the PowerPC specification defines it */
1138 float128 ft0_128, ft1_128;
1140 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1141 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1142 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1143 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1144 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1145 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1146 #else
1147 /* This is OK on x86 hosts */
1148 FT0 = (FT0 * FT1) + FT2;
1149 #endif
1153 void do_fmsub (void)
1155 if (unlikely(float64_is_signaling_nan(FT0) ||
1156 float64_is_signaling_nan(FT1) ||
1157 float64_is_signaling_nan(FT2))) {
1158 /* sNaN operation */
1159 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1160 } else {
1161 #ifdef FLOAT128
1162 /* This is the way the PowerPC specification defines it */
1163 float128 ft0_128, ft1_128;
1165 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1166 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1167 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1168 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1169 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1170 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1171 #else
1172 /* This is OK on x86 hosts */
1173 FT0 = (FT0 * FT1) - FT2;
1174 #endif
1177 #endif /* USE_PRECISE_EMULATION */
1179 void do_fnmadd (void)
1181 if (unlikely(float64_is_signaling_nan(FT0) ||
1182 float64_is_signaling_nan(FT1) ||
1183 float64_is_signaling_nan(FT2))) {
1184 /* sNaN operation */
1185 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1186 } else {
1187 #if USE_PRECISE_EMULATION
1188 #ifdef FLOAT128
1189 /* This is the way the PowerPC specification defines it */
1190 float128 ft0_128, ft1_128;
1192 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1193 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1194 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1195 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1196 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1197 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1198 #else
1199 /* This is OK on x86 hosts */
1200 FT0 = (FT0 * FT1) + FT2;
1201 #endif
1202 #else
1203 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1204 FT0 = float64_add(FT0, FT2, &env->fp_status);
1205 #endif
1206 if (likely(!isnan(FT0)))
1207 FT0 = float64_chs(FT0);
1211 void do_fnmsub (void)
1213 if (unlikely(float64_is_signaling_nan(FT0) ||
1214 float64_is_signaling_nan(FT1) ||
1215 float64_is_signaling_nan(FT2))) {
1216 /* sNaN operation */
1217 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1218 } else {
1219 #if USE_PRECISE_EMULATION
1220 #ifdef FLOAT128
1221 /* This is the way the PowerPC specification defines it */
1222 float128 ft0_128, ft1_128;
1224 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1225 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1226 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1227 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1228 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1229 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1230 #else
1231 /* This is OK on x86 hosts */
1232 FT0 = (FT0 * FT1) - FT2;
1233 #endif
1234 #else
1235 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1236 FT0 = float64_sub(FT0, FT2, &env->fp_status);
1237 #endif
1238 if (likely(!isnan(FT0)))
1239 FT0 = float64_chs(FT0);
1243 #if USE_PRECISE_EMULATION
1244 void do_frsp (void)
1246 if (unlikely(float64_is_signaling_nan(FT0))) {
1247 /* sNaN square root */
1248 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1249 } else {
1250 FT0 = float64_to_float32(FT0, &env->fp_status);
1253 #endif /* USE_PRECISE_EMULATION */
1255 void do_fsqrt (void)
1257 if (unlikely(float64_is_signaling_nan(FT0))) {
1258 /* sNaN square root */
1259 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1260 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1261 /* Square root of a negative nonzero number */
1262 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1263 } else {
1264 FT0 = float64_sqrt(FT0, &env->fp_status);
1268 void do_fre (void)
1270 union {
1271 double d;
1272 uint64_t i;
1273 } p;
1275 if (unlikely(float64_is_signaling_nan(FT0))) {
1276 /* sNaN reciprocal */
1277 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1278 } else if (unlikely(iszero(FT0))) {
1279 /* Zero reciprocal */
1280 float_zero_divide_excp();
1281 } else if (likely(isnormal(FT0))) {
1282 FT0 = float64_div(1.0, FT0, &env->fp_status);
1283 } else {
1284 p.d = FT0;
1285 if (p.i == 0x8000000000000000ULL) {
1286 p.i = 0xFFF0000000000000ULL;
1287 } else if (p.i == 0x0000000000000000ULL) {
1288 p.i = 0x7FF0000000000000ULL;
1289 } else if (isnan(FT0)) {
1290 p.i = 0x7FF8000000000000ULL;
1291 } else if (fpisneg(FT0)) {
1292 p.i = 0x8000000000000000ULL;
1293 } else {
1294 p.i = 0x0000000000000000ULL;
1296 FT0 = p.d;
1300 void do_fres (void)
1302 union {
1303 double d;
1304 uint64_t i;
1305 } p;
1307 if (unlikely(float64_is_signaling_nan(FT0))) {
1308 /* sNaN reciprocal */
1309 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1310 } else if (unlikely(iszero(FT0))) {
1311 /* Zero reciprocal */
1312 float_zero_divide_excp();
1313 } else if (likely(isnormal(FT0))) {
1314 #if USE_PRECISE_EMULATION
1315 FT0 = float64_div(1.0, FT0, &env->fp_status);
1316 FT0 = float64_to_float32(FT0, &env->fp_status);
1317 #else
1318 FT0 = float32_div(1.0, FT0, &env->fp_status);
1319 #endif
1320 } else {
1321 p.d = FT0;
1322 if (p.i == 0x8000000000000000ULL) {
1323 p.i = 0xFFF0000000000000ULL;
1324 } else if (p.i == 0x0000000000000000ULL) {
1325 p.i = 0x7FF0000000000000ULL;
1326 } else if (isnan(FT0)) {
1327 p.i = 0x7FF8000000000000ULL;
1328 } else if (fpisneg(FT0)) {
1329 p.i = 0x8000000000000000ULL;
1330 } else {
1331 p.i = 0x0000000000000000ULL;
1333 FT0 = p.d;
1337 void do_frsqrte (void)
1339 union {
1340 double d;
1341 uint64_t i;
1342 } p;
1344 if (unlikely(float64_is_signaling_nan(FT0))) {
1345 /* sNaN reciprocal square root */
1346 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1347 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1348 /* Reciprocal square root of a negative nonzero number */
1349 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1350 } else if (likely(isnormal(FT0))) {
1351 FT0 = float64_sqrt(FT0, &env->fp_status);
1352 FT0 = float32_div(1.0, FT0, &env->fp_status);
1353 } else {
1354 p.d = FT0;
1355 if (p.i == 0x8000000000000000ULL) {
1356 p.i = 0xFFF0000000000000ULL;
1357 } else if (p.i == 0x0000000000000000ULL) {
1358 p.i = 0x7FF0000000000000ULL;
1359 } else if (isnan(FT0)) {
1360 p.i |= 0x000FFFFFFFFFFFFFULL;
1361 } else if (fpisneg(FT0)) {
1362 p.i = 0x7FF8000000000000ULL;
1363 } else {
1364 p.i = 0x0000000000000000ULL;
1366 FT0 = p.d;
1370 void do_fsel (void)
1372 if (!fpisneg(FT0) || iszero(FT0))
1373 FT0 = FT1;
1374 else
1375 FT0 = FT2;
1378 void do_fcmpu (void)
1380 if (unlikely(float64_is_signaling_nan(FT0) ||
1381 float64_is_signaling_nan(FT1))) {
1382 /* sNaN comparison */
1383 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1384 } else {
1385 if (float64_lt(FT0, FT1, &env->fp_status)) {
1386 T0 = 0x08UL;
1387 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1388 T0 = 0x04UL;
1389 } else {
1390 T0 = 0x02UL;
1393 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1394 env->fpscr |= T0 << FPSCR_FPRF;
1397 void do_fcmpo (void)
1399 if (unlikely(float64_is_nan(FT0) ||
1400 float64_is_nan(FT1))) {
1401 if (float64_is_signaling_nan(FT0) ||
1402 float64_is_signaling_nan(FT1)) {
1403 /* sNaN comparison */
1404 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1405 POWERPC_EXCP_FP_VXVC);
1406 } else {
1407 /* qNaN comparison */
1408 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1410 } else {
1411 if (float64_lt(FT0, FT1, &env->fp_status)) {
1412 T0 = 0x08UL;
1413 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1414 T0 = 0x04UL;
1415 } else {
1416 T0 = 0x02UL;
1419 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1420 env->fpscr |= T0 << FPSCR_FPRF;
1423 #if !defined (CONFIG_USER_ONLY)
1424 void cpu_dump_rfi (target_ulong RA, target_ulong msr);
1426 void do_store_msr (void)
1428 T0 = hreg_store_msr(env, T0, 0);
1429 if (T0 != 0) {
1430 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1431 do_raise_exception(T0);
1435 static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1436 target_ulong msrm, int keep_msrh)
1438 #if defined(TARGET_PPC64)
1439 if (msr & (1ULL << MSR_SF)) {
1440 nip = (uint64_t)nip;
1441 msr &= (uint64_t)msrm;
1442 } else {
1443 nip = (uint32_t)nip;
1444 msr = (uint32_t)(msr & msrm);
1445 if (keep_msrh)
1446 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1448 #else
1449 nip = (uint32_t)nip;
1450 msr &= (uint32_t)msrm;
1451 #endif
1452 /* XXX: beware: this is false if VLE is supported */
1453 env->nip = nip & ~((target_ulong)0x00000003);
1454 hreg_store_msr(env, msr, 1);
1455 #if defined (DEBUG_OP)
1456 cpu_dump_rfi(env->nip, env->msr);
1457 #endif
1458 /* No need to raise an exception here,
1459 * as rfi is always the last insn of a TB
1461 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1464 void do_rfi (void)
1466 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1467 ~((target_ulong)0xFFFF0000), 1);
1470 #if defined(TARGET_PPC64)
1471 void do_rfid (void)
1473 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1474 ~((target_ulong)0xFFFF0000), 0);
1477 void do_hrfid (void)
1479 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1480 ~((target_ulong)0xFFFF0000), 0);
1482 #endif
1483 #endif
1485 void do_tw (int flags)
1487 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1488 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1489 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1490 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
1491 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
1492 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1496 #if defined(TARGET_PPC64)
1497 void do_td (int flags)
1499 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1500 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1501 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1502 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1503 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
1504 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1506 #endif
1508 /*****************************************************************************/
1509 /* PowerPC 601 specific instructions (POWER bridge) */
1510 void do_POWER_abso (void)
1512 if ((int32_t)T0 == INT32_MIN) {
1513 T0 = INT32_MAX;
1514 xer_ov = 1;
1515 } else if ((int32_t)T0 < 0) {
1516 T0 = -T0;
1517 xer_ov = 0;
1518 } else {
1519 xer_ov = 0;
1521 xer_so |= xer_ov;
1524 void do_POWER_clcs (void)
1526 switch (T0) {
1527 case 0x0CUL:
1528 /* Instruction cache line size */
1529 T0 = env->icache_line_size;
1530 break;
1531 case 0x0DUL:
1532 /* Data cache line size */
1533 T0 = env->dcache_line_size;
1534 break;
1535 case 0x0EUL:
1536 /* Minimum cache line size */
1537 T0 = env->icache_line_size < env->dcache_line_size ?
1538 env->icache_line_size : env->dcache_line_size;
1539 break;
1540 case 0x0FUL:
1541 /* Maximum cache line size */
1542 T0 = env->icache_line_size > env->dcache_line_size ?
1543 env->icache_line_size : env->dcache_line_size;
1544 break;
1545 default:
1546 /* Undefined */
1547 break;
1551 void do_POWER_div (void)
1553 uint64_t tmp;
1555 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1556 (int32_t)T1 == 0) {
1557 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1558 env->spr[SPR_MQ] = 0;
1559 } else {
1560 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1561 env->spr[SPR_MQ] = tmp % T1;
1562 T0 = tmp / (int32_t)T1;
1566 void do_POWER_divo (void)
1568 int64_t tmp;
1570 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1571 (int32_t)T1 == 0) {
1572 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1573 env->spr[SPR_MQ] = 0;
1574 xer_ov = 1;
1575 } else {
1576 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1577 env->spr[SPR_MQ] = tmp % T1;
1578 tmp /= (int32_t)T1;
1579 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1580 xer_ov = 1;
1581 } else {
1582 xer_ov = 0;
1584 T0 = tmp;
1586 xer_so |= xer_ov;
1589 void do_POWER_divs (void)
1591 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1592 (int32_t)T1 == 0) {
1593 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1594 env->spr[SPR_MQ] = 0;
1595 } else {
1596 env->spr[SPR_MQ] = T0 % T1;
1597 T0 = (int32_t)T0 / (int32_t)T1;
1601 void do_POWER_divso (void)
1603 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1604 (int32_t)T1 == 0) {
1605 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1606 env->spr[SPR_MQ] = 0;
1607 xer_ov = 1;
1608 } else {
1609 T0 = (int32_t)T0 / (int32_t)T1;
1610 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1611 xer_ov = 0;
1613 xer_so |= xer_ov;
1616 void do_POWER_dozo (void)
1618 if ((int32_t)T1 > (int32_t)T0) {
1619 T2 = T0;
1620 T0 = T1 - T0;
1621 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1622 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1623 xer_ov = 1;
1624 xer_so = 1;
1625 } else {
1626 xer_ov = 0;
1628 } else {
1629 T0 = 0;
1630 xer_ov = 0;
1634 void do_POWER_maskg (void)
1636 uint32_t ret;
1638 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1639 ret = UINT32_MAX;
1640 } else {
1641 ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1642 ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
1643 if ((uint32_t)T0 > (uint32_t)T1)
1644 ret = ~ret;
1646 T0 = ret;
1649 void do_POWER_mulo (void)
1651 uint64_t tmp;
1653 tmp = (uint64_t)T0 * (uint64_t)T1;
1654 env->spr[SPR_MQ] = tmp >> 32;
1655 T0 = tmp;
1656 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1657 xer_ov = 1;
1658 xer_so = 1;
1659 } else {
1660 xer_ov = 0;
1664 #if !defined (CONFIG_USER_ONLY)
1665 void do_POWER_rac (void)
1667 mmu_ctx_t ctx;
1668 int nb_BATs;
1670 /* We don't have to generate many instances of this instruction,
1671 * as rac is supervisor only.
1673 /* XXX: FIX THIS: Pretend we have no BAT */
1674 nb_BATs = env->nb_BATs;
1675 env->nb_BATs = 0;
1676 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
1677 T0 = ctx.raddr;
1678 env->nb_BATs = nb_BATs;
1681 void do_POWER_rfsvc (void)
1683 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1686 void do_store_hid0_601 (void)
1688 uint32_t hid0;
1690 hid0 = env->spr[SPR_HID0];
1691 if ((T0 ^ hid0) & 0x00000008) {
1692 /* Change current endianness */
1693 env->hflags &= ~(1 << MSR_LE);
1694 env->hflags_nmsr &= ~(1 << MSR_LE);
1695 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1696 env->hflags |= env->hflags_nmsr;
1697 if (loglevel != 0) {
1698 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1699 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1702 env->spr[SPR_HID0] = T0;
1704 #endif
1706 /*****************************************************************************/
1707 /* 602 specific instructions */
1708 /* mfrom is the most crazy instruction ever seen, imho ! */
1709 /* Real implementation uses a ROM table. Do the same */
1710 #define USE_MFROM_ROM_TABLE
1711 void do_op_602_mfrom (void)
1713 if (likely(T0 < 602)) {
1714 #if defined(USE_MFROM_ROM_TABLE)
1715 #include "mfrom_table.c"
1716 T0 = mfrom_ROM_table[T0];
1717 #else
1718 double d;
1719 /* Extremly decomposed:
1720 * -T0 / 256
1721 * T0 = 256 * log10(10 + 1.0) + 0.5
1723 d = T0;
1724 d = float64_div(d, 256, &env->fp_status);
1725 d = float64_chs(d);
1726 d = exp10(d); // XXX: use float emulation function
1727 d = float64_add(d, 1.0, &env->fp_status);
1728 d = log10(d); // XXX: use float emulation function
1729 d = float64_mul(d, 256, &env->fp_status);
1730 d = float64_add(d, 0.5, &env->fp_status);
1731 T0 = float64_round_to_int(d, &env->fp_status);
1732 #endif
1733 } else {
1734 T0 = 0;
1738 /*****************************************************************************/
1739 /* Embedded PowerPC specific helpers */
1740 void do_405_check_sat (void)
1742 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1743 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1744 /* Saturate result */
1745 if (T2 >> 31) {
1746 T0 = INT32_MIN;
1747 } else {
1748 T0 = INT32_MAX;
1753 /* XXX: to be improved to check access rights when in user-mode */
1754 void do_load_dcr (void)
1756 target_ulong val;
1758 if (unlikely(env->dcr_env == NULL)) {
1759 if (loglevel != 0) {
1760 fprintf(logfile, "No DCR environment\n");
1762 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1763 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1764 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1765 if (loglevel != 0) {
1766 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1768 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1769 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1770 } else {
1771 T0 = val;
1775 void do_store_dcr (void)
1777 if (unlikely(env->dcr_env == NULL)) {
1778 if (loglevel != 0) {
1779 fprintf(logfile, "No DCR environment\n");
1781 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1782 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1783 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1784 if (loglevel != 0) {
1785 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1787 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1788 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1792 #if !defined(CONFIG_USER_ONLY)
1793 void do_40x_rfci (void)
1795 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1796 ~((target_ulong)0xFFFF0000), 0);
1799 void do_rfci (void)
1801 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1802 ~((target_ulong)0x3FFF0000), 0);
1805 void do_rfdi (void)
1807 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1808 ~((target_ulong)0x3FFF0000), 0);
1811 void do_rfmci (void)
1813 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1814 ~((target_ulong)0x3FFF0000), 0);
1817 void do_load_403_pb (int num)
1819 T0 = env->pb[num];
1822 void do_store_403_pb (int num)
1824 if (likely(env->pb[num] != T0)) {
1825 env->pb[num] = T0;
1826 /* Should be optimized */
1827 tlb_flush(env, 1);
1830 #endif
1832 /* 440 specific */
1833 void do_440_dlmzb (void)
1835 target_ulong mask;
1836 int i;
1838 i = 1;
1839 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1840 if ((T0 & mask) == 0)
1841 goto done;
1842 i++;
1844 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1845 if ((T1 & mask) == 0)
1846 break;
1847 i++;
1849 done:
1850 T0 = i;
1853 /* SPE extension helpers */
1854 /* Use a table to make this quicker */
1855 static uint8_t hbrev[16] = {
1856 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1857 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1860 static always_inline uint8_t byte_reverse (uint8_t val)
1862 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1865 static always_inline uint32_t word_reverse (uint32_t val)
1867 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1868 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1871 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
1872 void do_brinc (void)
1874 uint32_t a, b, d, mask;
1876 mask = UINT32_MAX >> (32 - MASKBITS);
1877 a = T0 & mask;
1878 b = T1 & mask;
1879 d = word_reverse(1 + word_reverse(a | ~b));
1880 T0 = (T0 & ~mask) | (d & b);
1883 #define DO_SPE_OP2(name) \
1884 void do_ev##name (void) \
1886 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1887 (uint64_t)_do_e##name(T0_64, T1_64); \
1890 #define DO_SPE_OP1(name) \
1891 void do_ev##name (void) \
1893 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1894 (uint64_t)_do_e##name(T0_64); \
1897 /* Fixed-point vector arithmetic */
1898 static always_inline uint32_t _do_eabs (uint32_t val)
1900 if ((val & 0x80000000) && val != 0x80000000)
1901 val -= val;
1903 return val;
1906 static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1908 return op1 + op2;
1911 static always_inline int _do_ecntlsw (uint32_t val)
1913 if (val & 0x80000000)
1914 return clz32(~val);
1915 else
1916 return clz32(val);
1919 static always_inline int _do_ecntlzw (uint32_t val)
1921 return clz32(val);
1924 static always_inline uint32_t _do_eneg (uint32_t val)
1926 if (val != 0x80000000)
1927 val -= val;
1929 return val;
1932 static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1934 return rotl32(op1, op2);
1937 static always_inline uint32_t _do_erndw (uint32_t val)
1939 return (val + 0x000080000000) & 0xFFFF0000;
1942 static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1944 /* No error here: 6 bits are used */
1945 return op1 << (op2 & 0x3F);
1948 static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1950 /* No error here: 6 bits are used */
1951 return op1 >> (op2 & 0x3F);
1954 static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1956 /* No error here: 6 bits are used */
1957 return op1 >> (op2 & 0x3F);
1960 static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1962 return op2 - op1;
1965 /* evabs */
1966 DO_SPE_OP1(abs);
1967 /* evaddw */
1968 DO_SPE_OP2(addw);
1969 /* evcntlsw */
1970 DO_SPE_OP1(cntlsw);
1971 /* evcntlzw */
1972 DO_SPE_OP1(cntlzw);
1973 /* evneg */
1974 DO_SPE_OP1(neg);
1975 /* evrlw */
1976 DO_SPE_OP2(rlw);
1977 /* evrnd */
1978 DO_SPE_OP1(rndw);
1979 /* evslw */
1980 DO_SPE_OP2(slw);
1981 /* evsrws */
1982 DO_SPE_OP2(srws);
1983 /* evsrwu */
1984 DO_SPE_OP2(srwu);
1985 /* evsubfw */
1986 DO_SPE_OP2(subfw);
1988 /* evsel is a little bit more complicated... */
1989 static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1991 if (n)
1992 return op1;
1993 else
1994 return op2;
1997 void do_evsel (void)
1999 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
2000 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
2003 /* Fixed-point vector comparisons */
2004 #define DO_SPE_CMP(name) \
2005 void do_ev##name (void) \
2007 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
2008 T1_64 >> 32) << 32, \
2009 _do_e##name(T0_64, T1_64)); \
2012 static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
2014 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2016 static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
2018 return op1 == op2 ? 1 : 0;
2021 static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
2023 return op1 > op2 ? 1 : 0;
2026 static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
2028 return op1 > op2 ? 1 : 0;
2031 static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
2033 return op1 < op2 ? 1 : 0;
2036 static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
2038 return op1 < op2 ? 1 : 0;
2041 /* evcmpeq */
2042 DO_SPE_CMP(cmpeq);
2043 /* evcmpgts */
2044 DO_SPE_CMP(cmpgts);
2045 /* evcmpgtu */
2046 DO_SPE_CMP(cmpgtu);
2047 /* evcmplts */
2048 DO_SPE_CMP(cmplts);
2049 /* evcmpltu */
2050 DO_SPE_CMP(cmpltu);
2052 /* Single precision floating-point conversions from/to integer */
2053 static always_inline uint32_t _do_efscfsi (int32_t val)
2055 union {
2056 uint32_t u;
2057 float32 f;
2058 } u;
2060 u.f = int32_to_float32(val, &env->spe_status);
2062 return u.u;
2065 static always_inline uint32_t _do_efscfui (uint32_t val)
2067 union {
2068 uint32_t u;
2069 float32 f;
2070 } u;
2072 u.f = uint32_to_float32(val, &env->spe_status);
2074 return u.u;
2077 static always_inline int32_t _do_efsctsi (uint32_t val)
2079 union {
2080 int32_t u;
2081 float32 f;
2082 } u;
2084 u.u = val;
2085 /* NaN are not treated the same way IEEE 754 does */
2086 if (unlikely(isnan(u.f)))
2087 return 0;
2089 return float32_to_int32(u.f, &env->spe_status);
2092 static always_inline uint32_t _do_efsctui (uint32_t val)
2094 union {
2095 int32_t u;
2096 float32 f;
2097 } u;
2099 u.u = val;
2100 /* NaN are not treated the same way IEEE 754 does */
2101 if (unlikely(isnan(u.f)))
2102 return 0;
2104 return float32_to_uint32(u.f, &env->spe_status);
2107 static always_inline int32_t _do_efsctsiz (uint32_t val)
2109 union {
2110 int32_t u;
2111 float32 f;
2112 } u;
2114 u.u = val;
2115 /* NaN are not treated the same way IEEE 754 does */
2116 if (unlikely(isnan(u.f)))
2117 return 0;
2119 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2122 static always_inline uint32_t _do_efsctuiz (uint32_t val)
2124 union {
2125 int32_t u;
2126 float32 f;
2127 } u;
2129 u.u = val;
2130 /* NaN are not treated the same way IEEE 754 does */
2131 if (unlikely(isnan(u.f)))
2132 return 0;
2134 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2137 void do_efscfsi (void)
2139 T0_64 = _do_efscfsi(T0_64);
2142 void do_efscfui (void)
2144 T0_64 = _do_efscfui(T0_64);
2147 void do_efsctsi (void)
2149 T0_64 = _do_efsctsi(T0_64);
2152 void do_efsctui (void)
2154 T0_64 = _do_efsctui(T0_64);
2157 void do_efsctsiz (void)
2159 T0_64 = _do_efsctsiz(T0_64);
2162 void do_efsctuiz (void)
2164 T0_64 = _do_efsctuiz(T0_64);
2167 /* Single precision floating-point conversion to/from fractional */
2168 static always_inline uint32_t _do_efscfsf (uint32_t val)
2170 union {
2171 uint32_t u;
2172 float32 f;
2173 } u;
2174 float32 tmp;
2176 u.f = int32_to_float32(val, &env->spe_status);
2177 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2178 u.f = float32_div(u.f, tmp, &env->spe_status);
2180 return u.u;
2183 static always_inline uint32_t _do_efscfuf (uint32_t val)
2185 union {
2186 uint32_t u;
2187 float32 f;
2188 } u;
2189 float32 tmp;
2191 u.f = uint32_to_float32(val, &env->spe_status);
2192 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2193 u.f = float32_div(u.f, tmp, &env->spe_status);
2195 return u.u;
2198 static always_inline int32_t _do_efsctsf (uint32_t val)
2200 union {
2201 int32_t u;
2202 float32 f;
2203 } u;
2204 float32 tmp;
2206 u.u = val;
2207 /* NaN are not treated the same way IEEE 754 does */
2208 if (unlikely(isnan(u.f)))
2209 return 0;
2210 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2211 u.f = float32_mul(u.f, tmp, &env->spe_status);
2213 return float32_to_int32(u.f, &env->spe_status);
2216 static always_inline uint32_t _do_efsctuf (uint32_t val)
2218 union {
2219 int32_t u;
2220 float32 f;
2221 } u;
2222 float32 tmp;
2224 u.u = val;
2225 /* NaN are not treated the same way IEEE 754 does */
2226 if (unlikely(isnan(u.f)))
2227 return 0;
2228 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2229 u.f = float32_mul(u.f, tmp, &env->spe_status);
2231 return float32_to_uint32(u.f, &env->spe_status);
2234 static always_inline int32_t _do_efsctsfz (uint32_t val)
2236 union {
2237 int32_t u;
2238 float32 f;
2239 } u;
2240 float32 tmp;
2242 u.u = val;
2243 /* NaN are not treated the same way IEEE 754 does */
2244 if (unlikely(isnan(u.f)))
2245 return 0;
2246 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2247 u.f = float32_mul(u.f, tmp, &env->spe_status);
2249 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2252 static always_inline uint32_t _do_efsctufz (uint32_t val)
2254 union {
2255 int32_t u;
2256 float32 f;
2257 } u;
2258 float32 tmp;
2260 u.u = val;
2261 /* NaN are not treated the same way IEEE 754 does */
2262 if (unlikely(isnan(u.f)))
2263 return 0;
2264 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2265 u.f = float32_mul(u.f, tmp, &env->spe_status);
2267 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2270 void do_efscfsf (void)
2272 T0_64 = _do_efscfsf(T0_64);
2275 void do_efscfuf (void)
2277 T0_64 = _do_efscfuf(T0_64);
2280 void do_efsctsf (void)
2282 T0_64 = _do_efsctsf(T0_64);
2285 void do_efsctuf (void)
2287 T0_64 = _do_efsctuf(T0_64);
2290 void do_efsctsfz (void)
2292 T0_64 = _do_efsctsfz(T0_64);
2295 void do_efsctufz (void)
2297 T0_64 = _do_efsctufz(T0_64);
2300 /* Double precision floating point helpers */
2301 static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
2303 /* XXX: TODO: test special values (NaN, infinites, ...) */
2304 return _do_efdtstlt(op1, op2);
2307 static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
2309 /* XXX: TODO: test special values (NaN, infinites, ...) */
2310 return _do_efdtstgt(op1, op2);
2313 static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
2315 /* XXX: TODO: test special values (NaN, infinites, ...) */
2316 return _do_efdtsteq(op1, op2);
2319 void do_efdcmplt (void)
2321 T0 = _do_efdcmplt(T0_64, T1_64);
2324 void do_efdcmpgt (void)
2326 T0 = _do_efdcmpgt(T0_64, T1_64);
2329 void do_efdcmpeq (void)
2331 T0 = _do_efdcmpeq(T0_64, T1_64);
2334 /* Double precision floating-point conversion to/from integer */
2335 static always_inline uint64_t _do_efdcfsi (int64_t val)
2337 union {
2338 uint64_t u;
2339 float64 f;
2340 } u;
2342 u.f = int64_to_float64(val, &env->spe_status);
2344 return u.u;
2347 static always_inline uint64_t _do_efdcfui (uint64_t val)
2349 union {
2350 uint64_t u;
2351 float64 f;
2352 } u;
2354 u.f = uint64_to_float64(val, &env->spe_status);
2356 return u.u;
2359 static always_inline int64_t _do_efdctsi (uint64_t val)
2361 union {
2362 int64_t u;
2363 float64 f;
2364 } u;
2366 u.u = val;
2367 /* NaN are not treated the same way IEEE 754 does */
2368 if (unlikely(isnan(u.f)))
2369 return 0;
2371 return float64_to_int64(u.f, &env->spe_status);
2374 static always_inline uint64_t _do_efdctui (uint64_t val)
2376 union {
2377 int64_t u;
2378 float64 f;
2379 } u;
2381 u.u = val;
2382 /* NaN are not treated the same way IEEE 754 does */
2383 if (unlikely(isnan(u.f)))
2384 return 0;
2386 return float64_to_uint64(u.f, &env->spe_status);
2389 static always_inline int64_t _do_efdctsiz (uint64_t val)
2391 union {
2392 int64_t u;
2393 float64 f;
2394 } u;
2396 u.u = val;
2397 /* NaN are not treated the same way IEEE 754 does */
2398 if (unlikely(isnan(u.f)))
2399 return 0;
2401 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
2404 static always_inline uint64_t _do_efdctuiz (uint64_t val)
2406 union {
2407 int64_t u;
2408 float64 f;
2409 } u;
2411 u.u = val;
2412 /* NaN are not treated the same way IEEE 754 does */
2413 if (unlikely(isnan(u.f)))
2414 return 0;
2416 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
2419 void do_efdcfsi (void)
2421 T0_64 = _do_efdcfsi(T0_64);
2424 void do_efdcfui (void)
2426 T0_64 = _do_efdcfui(T0_64);
2429 void do_efdctsi (void)
2431 T0_64 = _do_efdctsi(T0_64);
2434 void do_efdctui (void)
2436 T0_64 = _do_efdctui(T0_64);
2439 void do_efdctsiz (void)
2441 T0_64 = _do_efdctsiz(T0_64);
2444 void do_efdctuiz (void)
2446 T0_64 = _do_efdctuiz(T0_64);
2449 /* Double precision floating-point conversion to/from fractional */
2450 static always_inline uint64_t _do_efdcfsf (int64_t val)
2452 union {
2453 uint64_t u;
2454 float64 f;
2455 } u;
2456 float64 tmp;
2458 u.f = int32_to_float64(val, &env->spe_status);
2459 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2460 u.f = float64_div(u.f, tmp, &env->spe_status);
2462 return u.u;
2465 static always_inline uint64_t _do_efdcfuf (uint64_t val)
2467 union {
2468 uint64_t u;
2469 float64 f;
2470 } u;
2471 float64 tmp;
2473 u.f = uint32_to_float64(val, &env->spe_status);
2474 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2475 u.f = float64_div(u.f, tmp, &env->spe_status);
2477 return u.u;
2480 static always_inline int64_t _do_efdctsf (uint64_t val)
2482 union {
2483 int64_t u;
2484 float64 f;
2485 } u;
2486 float64 tmp;
2488 u.u = val;
2489 /* NaN are not treated the same way IEEE 754 does */
2490 if (unlikely(isnan(u.f)))
2491 return 0;
2492 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2493 u.f = float64_mul(u.f, tmp, &env->spe_status);
2495 return float64_to_int32(u.f, &env->spe_status);
2498 static always_inline uint64_t _do_efdctuf (uint64_t val)
2500 union {
2501 int64_t u;
2502 float64 f;
2503 } u;
2504 float64 tmp;
2506 u.u = val;
2507 /* NaN are not treated the same way IEEE 754 does */
2508 if (unlikely(isnan(u.f)))
2509 return 0;
2510 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2511 u.f = float64_mul(u.f, tmp, &env->spe_status);
2513 return float64_to_uint32(u.f, &env->spe_status);
2516 static always_inline int64_t _do_efdctsfz (uint64_t val)
2518 union {
2519 int64_t u;
2520 float64 f;
2521 } u;
2522 float64 tmp;
2524 u.u = val;
2525 /* NaN are not treated the same way IEEE 754 does */
2526 if (unlikely(isnan(u.f)))
2527 return 0;
2528 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2529 u.f = float64_mul(u.f, tmp, &env->spe_status);
2531 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2534 static always_inline uint64_t _do_efdctufz (uint64_t val)
2536 union {
2537 int64_t u;
2538 float64 f;
2539 } u;
2540 float64 tmp;
2542 u.u = val;
2543 /* NaN are not treated the same way IEEE 754 does */
2544 if (unlikely(isnan(u.f)))
2545 return 0;
2546 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2547 u.f = float64_mul(u.f, tmp, &env->spe_status);
2549 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2552 void do_efdcfsf (void)
2554 T0_64 = _do_efdcfsf(T0_64);
2557 void do_efdcfuf (void)
2559 T0_64 = _do_efdcfuf(T0_64);
2562 void do_efdctsf (void)
2564 T0_64 = _do_efdctsf(T0_64);
2567 void do_efdctuf (void)
2569 T0_64 = _do_efdctuf(T0_64);
2572 void do_efdctsfz (void)
2574 T0_64 = _do_efdctsfz(T0_64);
2577 void do_efdctufz (void)
2579 T0_64 = _do_efdctufz(T0_64);
2582 /* Floating point conversion between single and double precision */
2583 static always_inline uint32_t _do_efscfd (uint64_t val)
2585 union {
2586 uint64_t u;
2587 float64 f;
2588 } u1;
2589 union {
2590 uint32_t u;
2591 float32 f;
2592 } u2;
2594 u1.u = val;
2595 u2.f = float64_to_float32(u1.f, &env->spe_status);
2597 return u2.u;
2600 static always_inline uint64_t _do_efdcfs (uint32_t val)
2602 union {
2603 uint64_t u;
2604 float64 f;
2605 } u2;
2606 union {
2607 uint32_t u;
2608 float32 f;
2609 } u1;
2611 u1.u = val;
2612 u2.f = float32_to_float64(u1.f, &env->spe_status);
2614 return u2.u;
2617 void do_efscfd (void)
2619 T0_64 = _do_efscfd(T0_64);
2622 void do_efdcfs (void)
2624 T0_64 = _do_efdcfs(T0_64);
2627 /* Single precision fixed-point vector arithmetic */
2628 /* evfsabs */
2629 DO_SPE_OP1(fsabs);
2630 /* evfsnabs */
2631 DO_SPE_OP1(fsnabs);
2632 /* evfsneg */
2633 DO_SPE_OP1(fsneg);
2634 /* evfsadd */
2635 DO_SPE_OP2(fsadd);
2636 /* evfssub */
2637 DO_SPE_OP2(fssub);
2638 /* evfsmul */
2639 DO_SPE_OP2(fsmul);
2640 /* evfsdiv */
2641 DO_SPE_OP2(fsdiv);
2643 /* Single-precision floating-point comparisons */
2644 static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2646 /* XXX: TODO: test special values (NaN, infinites, ...) */
2647 return _do_efststlt(op1, op2);
2650 static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2652 /* XXX: TODO: test special values (NaN, infinites, ...) */
2653 return _do_efststgt(op1, op2);
2656 static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2658 /* XXX: TODO: test special values (NaN, infinites, ...) */
2659 return _do_efststeq(op1, op2);
2662 void do_efscmplt (void)
2664 T0 = _do_efscmplt(T0_64, T1_64);
2667 void do_efscmpgt (void)
2669 T0 = _do_efscmpgt(T0_64, T1_64);
2672 void do_efscmpeq (void)
2674 T0 = _do_efscmpeq(T0_64, T1_64);
2677 /* Single-precision floating-point vector comparisons */
2678 /* evfscmplt */
2679 DO_SPE_CMP(fscmplt);
2680 /* evfscmpgt */
2681 DO_SPE_CMP(fscmpgt);
2682 /* evfscmpeq */
2683 DO_SPE_CMP(fscmpeq);
2684 /* evfststlt */
2685 DO_SPE_CMP(fststlt);
2686 /* evfststgt */
2687 DO_SPE_CMP(fststgt);
2688 /* evfststeq */
2689 DO_SPE_CMP(fststeq);
2691 /* Single-precision floating-point vector conversions */
2692 /* evfscfsi */
2693 DO_SPE_OP1(fscfsi);
2694 /* evfscfui */
2695 DO_SPE_OP1(fscfui);
2696 /* evfscfuf */
2697 DO_SPE_OP1(fscfuf);
2698 /* evfscfsf */
2699 DO_SPE_OP1(fscfsf);
2700 /* evfsctsi */
2701 DO_SPE_OP1(fsctsi);
2702 /* evfsctui */
2703 DO_SPE_OP1(fsctui);
2704 /* evfsctsiz */
2705 DO_SPE_OP1(fsctsiz);
2706 /* evfsctuiz */
2707 DO_SPE_OP1(fsctuiz);
2708 /* evfsctsf */
2709 DO_SPE_OP1(fsctsf);
2710 /* evfsctuf */
2711 DO_SPE_OP1(fsctuf);
2713 /*****************************************************************************/
2714 /* Softmmu support */
2715 #if !defined (CONFIG_USER_ONLY)
2717 #define MMUSUFFIX _mmu
2718 #ifdef __s390__
2719 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2720 #else
2721 # define GETPC() (__builtin_return_address(0))
2722 #endif
2724 #define SHIFT 0
2725 #include "softmmu_template.h"
2727 #define SHIFT 1
2728 #include "softmmu_template.h"
2730 #define SHIFT 2
2731 #include "softmmu_template.h"
2733 #define SHIFT 3
2734 #include "softmmu_template.h"
2736 /* try to fill the TLB and return an exception if error. If retaddr is
2737 NULL, it means that the function was called in C code (i.e. not
2738 from generated code or from helper.c) */
2739 /* XXX: fix it to restore all registers */
2740 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2742 TranslationBlock *tb;
2743 CPUState *saved_env;
2744 unsigned long pc;
2745 int ret;
2747 /* XXX: hack to restore env in all cases, even if not called from
2748 generated code */
2749 saved_env = env;
2750 env = cpu_single_env;
2751 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2752 if (unlikely(ret != 0)) {
2753 if (likely(retaddr)) {
2754 /* now we have a real cpu fault */
2755 pc = (unsigned long)retaddr;
2756 tb = tb_find_pc(pc);
2757 if (likely(tb)) {
2758 /* the PC is inside the translated code. It means that we have
2759 a virtual CPU fault */
2760 cpu_restore_state(tb, env, pc, NULL);
2763 do_raise_exception_err(env->exception_index, env->error_code);
2765 env = saved_env;
2768 /* Software driven TLBs management */
2769 /* PowerPC 602/603 software TLB load instructions helpers */
2770 void do_load_6xx_tlb (int is_code)
2772 target_ulong RPN, CMP, EPN;
2773 int way;
2775 RPN = env->spr[SPR_RPA];
2776 if (is_code) {
2777 CMP = env->spr[SPR_ICMP];
2778 EPN = env->spr[SPR_IMISS];
2779 } else {
2780 CMP = env->spr[SPR_DCMP];
2781 EPN = env->spr[SPR_DMISS];
2783 way = (env->spr[SPR_SRR1] >> 17) & 1;
2784 #if defined (DEBUG_SOFTWARE_TLB)
2785 if (loglevel != 0) {
2786 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2787 " PTE1 " ADDRX " way %d\n",
2788 __func__, T0, EPN, CMP, RPN, way);
2790 #endif
2791 /* Store this TLB */
2792 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2793 way, is_code, CMP, RPN);
2796 void do_load_74xx_tlb (int is_code)
2798 target_ulong RPN, CMP, EPN;
2799 int way;
2801 RPN = env->spr[SPR_PTELO];
2802 CMP = env->spr[SPR_PTEHI];
2803 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2804 way = env->spr[SPR_TLBMISS] & 0x3;
2805 #if defined (DEBUG_SOFTWARE_TLB)
2806 if (loglevel != 0) {
2807 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2808 " PTE1 " ADDRX " way %d\n",
2809 __func__, T0, EPN, CMP, RPN, way);
2811 #endif
2812 /* Store this TLB */
2813 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2814 way, is_code, CMP, RPN);
2817 static always_inline target_ulong booke_tlb_to_page_size (int size)
2819 return 1024 << (2 * size);
2822 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2824 int size;
2826 switch (page_size) {
2827 case 0x00000400UL:
2828 size = 0x0;
2829 break;
2830 case 0x00001000UL:
2831 size = 0x1;
2832 break;
2833 case 0x00004000UL:
2834 size = 0x2;
2835 break;
2836 case 0x00010000UL:
2837 size = 0x3;
2838 break;
2839 case 0x00040000UL:
2840 size = 0x4;
2841 break;
2842 case 0x00100000UL:
2843 size = 0x5;
2844 break;
2845 case 0x00400000UL:
2846 size = 0x6;
2847 break;
2848 case 0x01000000UL:
2849 size = 0x7;
2850 break;
2851 case 0x04000000UL:
2852 size = 0x8;
2853 break;
2854 case 0x10000000UL:
2855 size = 0x9;
2856 break;
2857 case 0x40000000UL:
2858 size = 0xA;
2859 break;
2860 #if defined (TARGET_PPC64)
2861 case 0x000100000000ULL:
2862 size = 0xB;
2863 break;
2864 case 0x000400000000ULL:
2865 size = 0xC;
2866 break;
2867 case 0x001000000000ULL:
2868 size = 0xD;
2869 break;
2870 case 0x004000000000ULL:
2871 size = 0xE;
2872 break;
2873 case 0x010000000000ULL:
2874 size = 0xF;
2875 break;
2876 #endif
2877 default:
2878 size = -1;
2879 break;
2882 return size;
2885 /* Helpers for 4xx TLB management */
2886 void do_4xx_tlbre_lo (void)
2888 ppcemb_tlb_t *tlb;
2889 int size;
2891 T0 &= 0x3F;
2892 tlb = &env->tlb[T0].tlbe;
2893 T0 = tlb->EPN;
2894 if (tlb->prot & PAGE_VALID)
2895 T0 |= 0x400;
2896 size = booke_page_size_to_tlb(tlb->size);
2897 if (size < 0 || size > 0x7)
2898 size = 1;
2899 T0 |= size << 7;
2900 env->spr[SPR_40x_PID] = tlb->PID;
2903 void do_4xx_tlbre_hi (void)
2905 ppcemb_tlb_t *tlb;
2907 T0 &= 0x3F;
2908 tlb = &env->tlb[T0].tlbe;
2909 T0 = tlb->RPN;
2910 if (tlb->prot & PAGE_EXEC)
2911 T0 |= 0x200;
2912 if (tlb->prot & PAGE_WRITE)
2913 T0 |= 0x100;
2916 void do_4xx_tlbwe_hi (void)
2918 ppcemb_tlb_t *tlb;
2919 target_ulong page, end;
2921 #if defined (DEBUG_SOFTWARE_TLB)
2922 if (loglevel != 0) {
2923 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
2925 #endif
2926 T0 &= 0x3F;
2927 tlb = &env->tlb[T0].tlbe;
2928 /* Invalidate previous TLB (if it's valid) */
2929 if (tlb->prot & PAGE_VALID) {
2930 end = tlb->EPN + tlb->size;
2931 #if defined (DEBUG_SOFTWARE_TLB)
2932 if (loglevel != 0) {
2933 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2934 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2936 #endif
2937 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2938 tlb_flush_page(env, page);
2940 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2941 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2942 * If this ever occurs, one should use the ppcemb target instead
2943 * of the ppc or ppc64 one
2945 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2946 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2947 "are not supported (%d)\n",
2948 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2950 tlb->EPN = T1 & ~(tlb->size - 1);
2951 if (T1 & 0x40)
2952 tlb->prot |= PAGE_VALID;
2953 else
2954 tlb->prot &= ~PAGE_VALID;
2955 if (T1 & 0x20) {
2956 /* XXX: TO BE FIXED */
2957 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2959 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2960 tlb->attr = T1 & 0xFF;
2961 #if defined (DEBUG_SOFTWARE_TLB)
2962 if (loglevel != 0) {
2963 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2964 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2965 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2966 tlb->prot & PAGE_READ ? 'r' : '-',
2967 tlb->prot & PAGE_WRITE ? 'w' : '-',
2968 tlb->prot & PAGE_EXEC ? 'x' : '-',
2969 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2971 #endif
2972 /* Invalidate new TLB (if valid) */
2973 if (tlb->prot & PAGE_VALID) {
2974 end = tlb->EPN + tlb->size;
2975 #if defined (DEBUG_SOFTWARE_TLB)
2976 if (loglevel != 0) {
2977 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2978 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2980 #endif
2981 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2982 tlb_flush_page(env, page);
2986 void do_4xx_tlbwe_lo (void)
2988 ppcemb_tlb_t *tlb;
2990 #if defined (DEBUG_SOFTWARE_TLB)
2991 if (loglevel != 0) {
2992 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
2994 #endif
2995 T0 &= 0x3F;
2996 tlb = &env->tlb[T0].tlbe;
2997 tlb->RPN = T1 & 0xFFFFFC00;
2998 tlb->prot = PAGE_READ;
2999 if (T1 & 0x200)
3000 tlb->prot |= PAGE_EXEC;
3001 if (T1 & 0x100)
3002 tlb->prot |= PAGE_WRITE;
3003 #if defined (DEBUG_SOFTWARE_TLB)
3004 if (loglevel != 0) {
3005 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3006 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3007 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
3008 tlb->prot & PAGE_READ ? 'r' : '-',
3009 tlb->prot & PAGE_WRITE ? 'w' : '-',
3010 tlb->prot & PAGE_EXEC ? 'x' : '-',
3011 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3013 #endif
3016 /* PowerPC 440 TLB management */
3017 void do_440_tlbwe (int word)
3019 ppcemb_tlb_t *tlb;
3020 target_ulong EPN, RPN, size;
3021 int do_flush_tlbs;
3023 #if defined (DEBUG_SOFTWARE_TLB)
3024 if (loglevel != 0) {
3025 fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
3026 __func__, word, T0, T1);
3028 #endif
3029 do_flush_tlbs = 0;
3030 T0 &= 0x3F;
3031 tlb = &env->tlb[T0].tlbe;
3032 switch (word) {
3033 default:
3034 /* Just here to please gcc */
3035 case 0:
3036 EPN = T1 & 0xFFFFFC00;
3037 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3038 do_flush_tlbs = 1;
3039 tlb->EPN = EPN;
3040 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
3041 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3042 do_flush_tlbs = 1;
3043 tlb->size = size;
3044 tlb->attr &= ~0x1;
3045 tlb->attr |= (T1 >> 8) & 1;
3046 if (T1 & 0x200) {
3047 tlb->prot |= PAGE_VALID;
3048 } else {
3049 if (tlb->prot & PAGE_VALID) {
3050 tlb->prot &= ~PAGE_VALID;
3051 do_flush_tlbs = 1;
3054 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3055 if (do_flush_tlbs)
3056 tlb_flush(env, 1);
3057 break;
3058 case 1:
3059 RPN = T1 & 0xFFFFFC0F;
3060 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3061 tlb_flush(env, 1);
3062 tlb->RPN = RPN;
3063 break;
3064 case 2:
3065 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
3066 tlb->prot = tlb->prot & PAGE_VALID;
3067 if (T1 & 0x1)
3068 tlb->prot |= PAGE_READ << 4;
3069 if (T1 & 0x2)
3070 tlb->prot |= PAGE_WRITE << 4;
3071 if (T1 & 0x4)
3072 tlb->prot |= PAGE_EXEC << 4;
3073 if (T1 & 0x8)
3074 tlb->prot |= PAGE_READ;
3075 if (T1 & 0x10)
3076 tlb->prot |= PAGE_WRITE;
3077 if (T1 & 0x20)
3078 tlb->prot |= PAGE_EXEC;
3079 break;
3083 void do_440_tlbre (int word)
3085 ppcemb_tlb_t *tlb;
3086 int size;
3088 T0 &= 0x3F;
3089 tlb = &env->tlb[T0].tlbe;
3090 switch (word) {
3091 default:
3092 /* Just here to please gcc */
3093 case 0:
3094 T0 = tlb->EPN;
3095 size = booke_page_size_to_tlb(tlb->size);
3096 if (size < 0 || size > 0xF)
3097 size = 1;
3098 T0 |= size << 4;
3099 if (tlb->attr & 0x1)
3100 T0 |= 0x100;
3101 if (tlb->prot & PAGE_VALID)
3102 T0 |= 0x200;
3103 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3104 env->spr[SPR_440_MMUCR] |= tlb->PID;
3105 break;
3106 case 1:
3107 T0 = tlb->RPN;
3108 break;
3109 case 2:
3110 T0 = tlb->attr & ~0x1;
3111 if (tlb->prot & (PAGE_READ << 4))
3112 T0 |= 0x1;
3113 if (tlb->prot & (PAGE_WRITE << 4))
3114 T0 |= 0x2;
3115 if (tlb->prot & (PAGE_EXEC << 4))
3116 T0 |= 0x4;
3117 if (tlb->prot & PAGE_READ)
3118 T0 |= 0x8;
3119 if (tlb->prot & PAGE_WRITE)
3120 T0 |= 0x10;
3121 if (tlb->prot & PAGE_EXEC)
3122 T0 |= 0x20;
3123 break;
3126 #endif /* !CONFIG_USER_ONLY */