2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 * Registers of hardware timer in sun4m.
31 * This is the timer/counter part of chip STP2001 (Slave I/O), also
32 * produced as NCR89C105. See
33 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
35 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
36 * are zero. Bit 31 is 1 when count has been reached.
40 typedef struct SLAVIO_TIMERState
{
41 uint32_t limit
, count
, counthigh
;
42 int64_t count_load_time
;
44 int64_t stop_time
, tick_offset
;
48 int mode
; // 0 = processor, 1 = user, 2 = system
51 #define TIMER_MAXADDR 0x1f
52 #define CNT_FREQ 2000000
55 // Update count, set irq, update expire_time
56 static void slavio_timer_get_out(SLAVIO_TIMERState
*s
)
59 int64_t diff
, ticks
, count
;
62 // There are three clock tick units: CPU ticks, register units
63 // (nanoseconds), and counter ticks (500 ns).
64 if (s
->mode
== 1 && s
->stopped
)
67 ticks
= qemu_get_clock(vm_clock
) - s
->tick_offset
;
69 out
= (ticks
>= s
->expire_time
);
71 s
->reached
= 0x80000000;
77 // Convert register units to counter ticks
80 // Convert cpu ticks to counter ticks
81 diff
= muldiv64(ticks
- s
->count_load_time
, CNT_FREQ
, ticks_per_sec
);
83 // Calculate what the counter should be, convert to register
86 s
->count
= count
<< 9;
87 s
->counthigh
= count
>> 22;
89 // Expire time: CPU ticks left to next interrupt
90 // Convert remaining counter ticks to CPU ticks
91 s
->expire_time
= ticks
+ muldiv64(limit
- count
, ticks_per_sec
, CNT_FREQ
);
94 term_printf("timer: irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s
->irq
, limit
, s
->reached
?1:0, (ticks
-s
->count_load_time
), count
, s
->count
, s
->expire_time
- ticks
, s
->stopped
, s
->mode
);
97 pic_set_irq(s
->irq
, out
);
101 static void slavio_timer_irq(void *opaque
)
103 SLAVIO_TIMERState
*s
= opaque
;
107 slavio_timer_get_out(s
);
109 qemu_mod_timer(s
->irq_timer
, s
->expire_time
);
112 static uint32_t slavio_timer_mem_readl(void *opaque
, target_phys_addr_t addr
)
114 SLAVIO_TIMERState
*s
= opaque
;
117 saddr
= (addr
& TIMER_MAXADDR
) >> 2;
120 // read limit (system counter mode) or read most signifying
121 // part of counter (user mode)
124 pic_set_irq(s
->irq
, 0);
125 s
->count_load_time
= qemu_get_clock(vm_clock
);
130 slavio_timer_get_out(s
);
131 return s
->counthigh
& 0x7fffffff;
134 // read counter and reached bit (system mode) or read lsbits
135 // of counter (user mode)
136 slavio_timer_get_out(s
);
138 return (s
->count
& 0x7fffffff) | s
->reached
;
142 // read start/stop status
145 // read user/system mode
152 static void slavio_timer_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
154 SLAVIO_TIMERState
*s
= opaque
;
157 saddr
= (addr
& TIMER_MAXADDR
) >> 2;
160 // set limit, reset counter
161 s
->count_load_time
= qemu_get_clock(vm_clock
);
164 // set limit without resetting counter
166 s
->limit
= 0x7fffffff;
168 s
->limit
= val
& 0x7fffffff;
172 // start/stop user counter
175 s
->stop_time
= qemu_get_clock(vm_clock
);
180 s
->tick_offset
+= qemu_get_clock(vm_clock
) - s
->stop_time
;
186 // bit 0: user (1) or system (0) counter mode
187 if (s
->mode
== 0 || s
->mode
== 1)
195 static CPUReadMemoryFunc
*slavio_timer_mem_read
[3] = {
196 slavio_timer_mem_readl
,
197 slavio_timer_mem_readl
,
198 slavio_timer_mem_readl
,
201 static CPUWriteMemoryFunc
*slavio_timer_mem_write
[3] = {
202 slavio_timer_mem_writel
,
203 slavio_timer_mem_writel
,
204 slavio_timer_mem_writel
,
207 static void slavio_timer_save(QEMUFile
*f
, void *opaque
)
209 SLAVIO_TIMERState
*s
= opaque
;
211 qemu_put_be32s(f
, &s
->limit
);
212 qemu_put_be32s(f
, &s
->count
);
213 qemu_put_be32s(f
, &s
->counthigh
);
214 qemu_put_be64s(f
, &s
->count_load_time
);
215 qemu_put_be64s(f
, &s
->expire_time
);
216 qemu_put_be64s(f
, &s
->stop_time
);
217 qemu_put_be64s(f
, &s
->tick_offset
);
218 qemu_put_be32s(f
, &s
->irq
);
219 qemu_put_be32s(f
, &s
->reached
);
220 qemu_put_be32s(f
, &s
->stopped
);
221 qemu_put_be32s(f
, &s
->mode
);
224 static int slavio_timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
226 SLAVIO_TIMERState
*s
= opaque
;
231 qemu_get_be32s(f
, &s
->limit
);
232 qemu_get_be32s(f
, &s
->count
);
233 qemu_get_be32s(f
, &s
->counthigh
);
234 qemu_get_be64s(f
, &s
->count_load_time
);
235 qemu_get_be64s(f
, &s
->expire_time
);
236 qemu_get_be64s(f
, &s
->stop_time
);
237 qemu_get_be64s(f
, &s
->tick_offset
);
238 qemu_get_be32s(f
, &s
->irq
);
239 qemu_get_be32s(f
, &s
->reached
);
240 qemu_get_be32s(f
, &s
->stopped
);
241 qemu_get_be32s(f
, &s
->mode
);
245 static void slavio_timer_reset(void *opaque
)
247 SLAVIO_TIMERState
*s
= opaque
;
251 s
->count_load_time
= qemu_get_clock(vm_clock
);;
252 s
->stop_time
= s
->count_load_time
;
257 slavio_timer_get_out(s
);
260 static void slavio_timer_init_internal(uint32_t addr
, int irq
, int mode
)
262 int slavio_timer_io_memory
;
263 SLAVIO_TIMERState
*s
;
265 s
= qemu_mallocz(sizeof(SLAVIO_TIMERState
));
270 s
->irq_timer
= qemu_new_timer(vm_clock
, slavio_timer_irq
, s
);
272 slavio_timer_io_memory
= cpu_register_io_memory(0, slavio_timer_mem_read
,
273 slavio_timer_mem_write
, s
);
274 cpu_register_physical_memory(addr
, TIMER_MAXADDR
, slavio_timer_io_memory
);
275 register_savevm("slavio_timer", addr
, 1, slavio_timer_save
, slavio_timer_load
, s
);
276 qemu_register_reset(slavio_timer_reset
, s
);
277 slavio_timer_reset(s
);
280 void slavio_timer_init(uint32_t addr1
, int irq1
, uint32_t addr2
, int irq2
)
284 for (i
= 0; i
< MAX_CPUS
; i
++) {
285 slavio_timer_init_internal(addr1
+ i
* TARGET_PAGE_SIZE
, irq1
, 0);
288 slavio_timer_init_internal(addr2
, irq2
, 2);