more native FPU comparison functions - native FPU remainder
[qemu/qemu_0_9_1_stable.git] / linux-user / vm86.c
blob360d52592d0666995e9822c5f1782c90ea403375
1 /*
2 * vm86 linux syscall support
3 *
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <stdarg.h>
23 #include <string.h>
24 #include <errno.h>
25 #include <unistd.h>
27 #include "qemu.h"
29 //#define DEBUG_VM86
31 #define set_flags(X,new,mask) \
32 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
34 #define SAFE_MASK (0xDD5)
35 #define RETURN_MASK (0xDFF)
37 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
39 return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
42 static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
44 stw(segptr + (reg16 & 0xffff), val);
47 static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
49 stl(segptr + (reg16 & 0xffff), val);
52 static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
54 return lduw(segptr + (reg16 & 0xffff));
57 static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
59 return ldl(segptr + (reg16 & 0xffff));
62 void save_v86_state(CPUX86State *env)
64 TaskState *ts = env->opaque;
66 /* put the VM86 registers in the userspace register structure */
67 ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
68 ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
69 ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
70 ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
71 ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
72 ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
73 ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
74 ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
75 ts->target_v86->regs.eip = tswap32(env->eip);
76 ts->target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
77 ts->target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
78 ts->target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
79 ts->target_v86->regs.es = tswap16(env->segs[R_ES].selector);
80 ts->target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
81 ts->target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
82 set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
83 ts->target_v86->regs.eflags = tswap32(env->eflags);
84 #ifdef DEBUG_VM86
85 fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
86 env->eflags, env->segs[R_CS].selector, env->eip);
87 #endif
89 /* restore 32 bit registers */
90 env->regs[R_EAX] = ts->vm86_saved_regs.eax;
91 env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
92 env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
93 env->regs[R_EDX] = ts->vm86_saved_regs.edx;
94 env->regs[R_ESI] = ts->vm86_saved_regs.esi;
95 env->regs[R_EDI] = ts->vm86_saved_regs.edi;
96 env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
97 env->regs[R_ESP] = ts->vm86_saved_regs.esp;
98 env->eflags = ts->vm86_saved_regs.eflags;
99 env->eip = ts->vm86_saved_regs.eip;
101 cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
102 cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
103 cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
104 cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
105 cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
106 cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
109 /* return from vm86 mode to 32 bit. The vm86() syscall will return
110 'retval' */
111 static inline void return_to_32bit(CPUX86State *env, int retval)
113 #ifdef DEBUG_VM86
114 fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
115 #endif
116 save_v86_state(env);
117 env->regs[R_EAX] = retval;
120 static inline int set_IF(CPUX86State *env)
122 TaskState *ts = env->opaque;
124 ts->v86flags |= VIF_MASK;
125 if (ts->v86flags & VIP_MASK) {
126 return_to_32bit(env, TARGET_VM86_STI);
127 return 1;
129 return 0;
132 static inline void clear_IF(CPUX86State *env)
134 TaskState *ts = env->opaque;
136 ts->v86flags &= ~VIF_MASK;
139 static inline void clear_TF(CPUX86State *env)
141 env->eflags &= ~TF_MASK;
144 static inline void clear_AC(CPUX86State *env)
146 env->eflags &= ~AC_MASK;
149 static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
151 TaskState *ts = env->opaque;
153 set_flags(ts->v86flags, eflags, ts->v86mask);
154 set_flags(env->eflags, eflags, SAFE_MASK);
155 if (eflags & IF_MASK)
156 return set_IF(env);
157 else
158 clear_IF(env);
159 return 0;
162 static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
164 TaskState *ts = env->opaque;
166 set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
167 set_flags(env->eflags, flags, SAFE_MASK);
168 if (flags & IF_MASK)
169 return set_IF(env);
170 else
171 clear_IF(env);
172 return 0;
175 static inline unsigned int get_vflags(CPUX86State *env)
177 TaskState *ts = env->opaque;
178 unsigned int flags;
180 flags = env->eflags & RETURN_MASK;
181 if (ts->v86flags & VIF_MASK)
182 flags |= IF_MASK;
183 flags |= IOPL_MASK;
184 return flags | (ts->v86flags & ts->v86mask);
187 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
189 /* handle VM86 interrupt (NOTE: the CPU core currently does not
190 support TSS interrupt revectoring, so this code is always executed) */
191 static void do_int(CPUX86State *env, int intno)
193 TaskState *ts = env->opaque;
194 uint32_t *int_ptr, segoffs;
195 uint8_t *ssp;
196 unsigned int sp;
198 if (env->segs[R_CS].selector == TARGET_BIOSSEG)
199 goto cannot_handle;
200 if (is_revectored(intno, &ts->vm86plus.int_revectored))
201 goto cannot_handle;
202 if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
203 &ts->vm86plus.int21_revectored))
204 goto cannot_handle;
205 int_ptr = (uint32_t *)(intno << 2);
206 segoffs = tswap32(*int_ptr);
207 if ((segoffs >> 16) == TARGET_BIOSSEG)
208 goto cannot_handle;
209 #if defined(DEBUG_VM86)
210 fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
211 intno, segoffs >> 16, segoffs & 0xffff);
212 #endif
213 /* save old state */
214 ssp = (uint8_t *)(env->segs[R_SS].selector << 4);
215 sp = env->regs[R_ESP] & 0xffff;
216 vm_putw(ssp, sp - 2, get_vflags(env));
217 vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
218 vm_putw(ssp, sp - 6, env->eip);
219 ADD16(env->regs[R_ESP], -6);
220 /* goto interrupt handler */
221 env->eip = segoffs & 0xffff;
222 cpu_x86_load_seg(env, R_CS, segoffs >> 16);
223 clear_TF(env);
224 clear_IF(env);
225 clear_AC(env);
226 return;
227 cannot_handle:
228 #if defined(DEBUG_VM86)
229 fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
230 #endif
231 return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
234 void handle_vm86_trap(CPUX86State *env, int trapno)
236 if (trapno == 1 || trapno == 3) {
237 return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
238 } else {
239 do_int(env, trapno);
243 #define CHECK_IF_IN_TRAP() \
244 if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
245 (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
246 newflags |= TF_MASK
248 #define VM86_FAULT_RETURN \
249 if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
250 (ts->v86flags & (IF_MASK | VIF_MASK))) \
251 return_to_32bit(env, TARGET_VM86_PICRETURN); \
252 return
254 void handle_vm86_fault(CPUX86State *env)
256 TaskState *ts = env->opaque;
257 uint8_t *csp, *pc, *ssp;
258 unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
259 int data32, pref_done;
261 csp = (uint8_t *)(env->segs[R_CS].selector << 4);
262 ip = env->eip & 0xffff;
263 pc = csp + ip;
265 ssp = (uint8_t *)(env->segs[R_SS].selector << 4);
266 sp = env->regs[R_ESP] & 0xffff;
268 #if defined(DEBUG_VM86)
269 fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
270 env->segs[R_CS].selector, env->eip, pc[0], pc[1]);
271 #endif
273 data32 = 0;
274 pref_done = 0;
275 do {
276 opcode = csp[ip];
277 ADD16(ip, 1);
278 switch (opcode) {
279 case 0x66: /* 32-bit data */ data32=1; break;
280 case 0x67: /* 32-bit address */ break;
281 case 0x2e: /* CS */ break;
282 case 0x3e: /* DS */ break;
283 case 0x26: /* ES */ break;
284 case 0x36: /* SS */ break;
285 case 0x65: /* GS */ break;
286 case 0x64: /* FS */ break;
287 case 0xf2: /* repnz */ break;
288 case 0xf3: /* rep */ break;
289 default: pref_done = 1;
291 } while (!pref_done);
293 /* VM86 mode */
294 switch(opcode) {
295 case 0x9c: /* pushf */
296 if (data32) {
297 vm_putl(ssp, sp - 4, get_vflags(env));
298 ADD16(env->regs[R_ESP], -4);
299 } else {
300 vm_putw(ssp, sp - 2, get_vflags(env));
301 ADD16(env->regs[R_ESP], -2);
303 env->eip = ip;
304 VM86_FAULT_RETURN;
306 case 0x9d: /* popf */
307 if (data32) {
308 newflags = vm_getl(ssp, sp);
309 ADD16(env->regs[R_ESP], 4);
310 } else {
311 newflags = vm_getw(ssp, sp);
312 ADD16(env->regs[R_ESP], 2);
314 env->eip = ip;
315 CHECK_IF_IN_TRAP();
316 if (data32) {
317 if (set_vflags_long(newflags, env))
318 return;
319 } else {
320 if (set_vflags_short(newflags, env))
321 return;
323 VM86_FAULT_RETURN;
325 case 0xcd: /* int */
326 intno = csp[ip];
327 ADD16(ip, 1);
328 env->eip = ip;
329 if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
330 if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
331 (intno &7)) & 1) {
332 return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
333 return;
336 do_int(env, intno);
337 break;
339 case 0xcf: /* iret */
340 if (data32) {
341 newip = vm_getl(ssp, sp) & 0xffff;
342 newcs = vm_getl(ssp, sp + 4) & 0xffff;
343 newflags = vm_getl(ssp, sp + 8);
344 ADD16(env->regs[R_ESP], 12);
345 } else {
346 newip = vm_getw(ssp, sp);
347 newcs = vm_getw(ssp, sp + 2);
348 newflags = vm_getw(ssp, sp + 4);
349 ADD16(env->regs[R_ESP], 6);
351 env->eip = newip;
352 cpu_x86_load_seg(env, R_CS, newcs);
353 CHECK_IF_IN_TRAP();
354 if (data32) {
355 if (set_vflags_long(newflags, env))
356 return;
357 } else {
358 if (set_vflags_short(newflags, env))
359 return;
361 VM86_FAULT_RETURN;
363 case 0xfa: /* cli */
364 env->eip = ip;
365 clear_IF(env);
366 VM86_FAULT_RETURN;
368 case 0xfb: /* sti */
369 env->eip = ip;
370 if (set_IF(env))
371 return;
372 VM86_FAULT_RETURN;
374 default:
375 /* real VM86 GPF exception */
376 return_to_32bit(env, TARGET_VM86_UNKNOWN);
377 break;
381 int do_vm86(CPUX86State *env, long subfunction,
382 struct target_vm86plus_struct * target_v86)
384 TaskState *ts = env->opaque;
385 int ret;
387 switch (subfunction) {
388 case TARGET_VM86_REQUEST_IRQ:
389 case TARGET_VM86_FREE_IRQ:
390 case TARGET_VM86_GET_IRQ_BITS:
391 case TARGET_VM86_GET_AND_RESET_IRQ:
392 gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
393 ret = -EINVAL;
394 goto out;
395 case TARGET_VM86_PLUS_INSTALL_CHECK:
396 /* NOTE: on old vm86 stuff this will return the error
397 from verify_area(), because the subfunction is
398 interpreted as (invalid) address to vm86_struct.
399 So the installation check works.
401 ret = 0;
402 goto out;
405 ts->target_v86 = target_v86;
406 /* save current CPU regs */
407 ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
408 ts->vm86_saved_regs.ebx = env->regs[R_EBX];
409 ts->vm86_saved_regs.ecx = env->regs[R_ECX];
410 ts->vm86_saved_regs.edx = env->regs[R_EDX];
411 ts->vm86_saved_regs.esi = env->regs[R_ESI];
412 ts->vm86_saved_regs.edi = env->regs[R_EDI];
413 ts->vm86_saved_regs.ebp = env->regs[R_EBP];
414 ts->vm86_saved_regs.esp = env->regs[R_ESP];
415 ts->vm86_saved_regs.eflags = env->eflags;
416 ts->vm86_saved_regs.eip = env->eip;
417 ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
418 ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
419 ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
420 ts->vm86_saved_regs.es = env->segs[R_ES].selector;
421 ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
422 ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
424 /* build vm86 CPU state */
425 ts->v86flags = tswap32(target_v86->regs.eflags);
426 env->eflags = (env->eflags & ~SAFE_MASK) |
427 (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
429 ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
430 switch (ts->vm86plus.cpu_type) {
431 case TARGET_CPU_286:
432 ts->v86mask = 0;
433 break;
434 case TARGET_CPU_386:
435 ts->v86mask = NT_MASK | IOPL_MASK;
436 break;
437 case TARGET_CPU_486:
438 ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
439 break;
440 default:
441 ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
442 break;
445 env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
446 env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
447 env->regs[R_EDX] = tswap32(target_v86->regs.edx);
448 env->regs[R_ESI] = tswap32(target_v86->regs.esi);
449 env->regs[R_EDI] = tswap32(target_v86->regs.edi);
450 env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
451 env->regs[R_ESP] = tswap32(target_v86->regs.esp);
452 env->eip = tswap32(target_v86->regs.eip);
453 cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
454 cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
455 cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
456 cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
457 cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
458 cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
459 ret = tswap32(target_v86->regs.eax); /* eax will be restored at
460 the end of the syscall */
461 memcpy(&ts->vm86plus.int_revectored,
462 &target_v86->int_revectored, 32);
463 memcpy(&ts->vm86plus.int21_revectored,
464 &target_v86->int21_revectored, 32);
465 ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
466 memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
467 target_v86->vm86plus.vm86dbg_intxxtab, 32);
469 #ifdef DEBUG_VM86
470 fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n",
471 env->segs[R_CS].selector, env->eip);
472 #endif
473 /* now the virtual CPU is ready for vm86 execution ! */
474 out:
475 return ret;