1 /* Native implementation of soft float functions. Only a single status
2 context is supported */
6 void set_float_rounding_mode(int val STATUS_PARAM
)
8 STATUS(float_rounding_mode
) = val
;
9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
11 #elif defined(__arm__)
19 void set_floatx80_rounding_precision(int val STATUS_PARAM
)
21 STATUS(floatx80_rounding_precision
) = val
;
25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 #define lrint(d) ((int32_t)rint(d))
27 #define llrint(d) ((int64_t)rint(d))
28 #define lrintf(f) ((int32_t)rint(f))
29 #define llrintf(f) ((int64_t)rint(f))
30 #define sqrtf(f) ((float)sqrt(f))
31 #define remainderf(fa, fb) ((float)remainder(fa, fb))
32 #define rintf(f) ((float)rint(f))
33 #if !defined(__sparc__) && HOST_SOLARIS < 10
34 extern long double rintl(long double);
35 extern long double scalbnl(long double, int);
38 llrintl(long double x
) {
39 return ((long long) rintl(x
));
43 lrintl(long double x
) {
44 return ((long) rintl(x
));
48 ldexpl(long double x
, int n
) {
49 return (scalbnl(x
, n
));
54 #if defined(__powerpc__)
56 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
57 double qemu_rint(double x
)
59 double y
= 4503599627370496.0;
70 #define rint qemu_rint
73 /*----------------------------------------------------------------------------
74 | Software IEC/IEEE integer-to-floating-point conversion routines.
75 *----------------------------------------------------------------------------*/
76 float32
int32_to_float32(int v STATUS_PARAM
)
81 float32
uint32_to_float32(unsigned int v STATUS_PARAM
)
86 float64
int32_to_float64(int v STATUS_PARAM
)
91 float64
uint32_to_float64(unsigned int v STATUS_PARAM
)
97 floatx80
int32_to_floatx80(int v STATUS_PARAM
)
102 float32
int64_to_float32( int64_t v STATUS_PARAM
)
106 float32
uint64_to_float32( uint64_t v STATUS_PARAM
)
110 float64
int64_to_float64( int64_t v STATUS_PARAM
)
114 float64
uint64_to_float64( uint64_t v STATUS_PARAM
)
119 floatx80
int64_to_floatx80( int64_t v STATUS_PARAM
)
125 /* XXX: this code implements the x86 behaviour, not the IEEE one. */
126 #if HOST_LONG_BITS == 32
127 static inline int long_to_int32(long a
)
132 static inline int long_to_int32(long a
)
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE single-precision conversion routines.
142 *----------------------------------------------------------------------------*/
143 int float32_to_int32( float32 a STATUS_PARAM
)
145 return long_to_int32(lrintf(a
));
147 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM
)
151 int64_t float32_to_int64( float32 a STATUS_PARAM
)
156 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM
)
161 float64
float32_to_float64( float32 a STATUS_PARAM
)
166 floatx80
float32_to_floatx80( float32 a STATUS_PARAM
)
172 unsigned int float32_to_uint32( float32 a STATUS_PARAM
)
180 } else if (v
> 0xffffffff) {
187 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM
)
195 } else if (v
> 0xffffffff) {
203 /*----------------------------------------------------------------------------
204 | Software IEC/IEEE single-precision operations.
205 *----------------------------------------------------------------------------*/
206 float32
float32_round_to_int( float32 a STATUS_PARAM
)
211 float32
float32_rem( float32 a
, float32 b STATUS_PARAM
)
213 return remainderf(a
, b
);
216 float32
float32_sqrt( float32 a STATUS_PARAM
)
220 int float32_compare( float32 a
, float32 b STATUS_PARAM
)
232 int float32_compare_quiet( float32 a
, float32 b STATUS_PARAM
)
238 } else if (isgreater(a
, b
)) {
244 int float32_is_signaling_nan( float32 a1
)
250 return ( ( ( a
>>22 ) & 0x1FF ) == 0x1FE ) && ( a
& 0x003FFFFF );
253 /*----------------------------------------------------------------------------
254 | Software IEC/IEEE double-precision conversion routines.
255 *----------------------------------------------------------------------------*/
256 int float64_to_int32( float64 a STATUS_PARAM
)
258 return long_to_int32(lrint(a
));
260 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM
)
264 int64_t float64_to_int64( float64 a STATUS_PARAM
)
268 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM
)
272 float32
float64_to_float32( float64 a STATUS_PARAM
)
277 floatx80
float64_to_floatx80( float64 a STATUS_PARAM
)
283 float128
float64_to_float128( float64 a STATUS_PARAM
)
289 unsigned int float64_to_uint32( float64 a STATUS_PARAM
)
297 } else if (v
> 0xffffffff) {
304 unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM
)
312 } else if (v
> 0xffffffff) {
319 uint64_t float64_to_uint64 (float64 a STATUS_PARAM
)
323 v
= llrint(a
+ (float64
)INT64_MIN
);
325 return v
- INT64_MIN
;
327 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM
)
331 v
= (int64_t)(a
+ (float64
)INT64_MIN
);
333 return v
- INT64_MIN
;
336 /*----------------------------------------------------------------------------
337 | Software IEC/IEEE double-precision operations.
338 *----------------------------------------------------------------------------*/
339 #if ( defined(__sun__) && ( HOST_SOLARIS < 10 ))
340 static inline float64
trunc(float64 x
)
342 return x
< 0 ? -floor(-x
) : floor(x
);
345 float64
float64_trunc_to_int( float64 a STATUS_PARAM
)
350 float64
float64_round_to_int( float64 a STATUS_PARAM
)
353 switch(STATUS(float_rounding_mode
)) {
355 case float_round_nearest_even
:
356 asm("rndd %0, %1" : "=f" (a
) : "f"(a
));
358 case float_round_down
:
359 asm("rnddm %0, %1" : "=f" (a
) : "f"(a
));
362 asm("rnddp %0, %1" : "=f" (a
) : "f"(a
));
364 case float_round_to_zero
:
365 asm("rnddz %0, %1" : "=f" (a
) : "f"(a
));
373 float64
float64_rem( float64 a
, float64 b STATUS_PARAM
)
375 return remainder(a
, b
);
378 float64
float64_sqrt( float64 a STATUS_PARAM
)
382 int float64_compare( float64 a
, float64 b STATUS_PARAM
)
394 int float64_compare_quiet( float64 a
, float64 b STATUS_PARAM
)
400 } else if (isgreater(a
, b
)) {
406 int float64_is_signaling_nan( float64 a1
)
413 ( ( ( a
>>51 ) & 0xFFF ) == 0xFFE )
414 && ( a
& LIT64( 0x0007FFFFFFFFFFFF ) );
418 int float64_is_nan( float64 a1
)
425 return ( LIT64( 0xFFE0000000000000 ) < (bits64
) ( a
<<1 ) );
431 /*----------------------------------------------------------------------------
432 | Software IEC/IEEE extended double-precision conversion routines.
433 *----------------------------------------------------------------------------*/
434 int floatx80_to_int32( floatx80 a STATUS_PARAM
)
436 return long_to_int32(lrintl(a
));
438 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM
)
442 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM
)
446 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM
)
450 float32
floatx80_to_float32( floatx80 a STATUS_PARAM
)
454 float64
floatx80_to_float64( floatx80 a STATUS_PARAM
)
459 /*----------------------------------------------------------------------------
460 | Software IEC/IEEE extended double-precision operations.
461 *----------------------------------------------------------------------------*/
462 floatx80
floatx80_round_to_int( floatx80 a STATUS_PARAM
)
466 floatx80
floatx80_rem( floatx80 a
, floatx80 b STATUS_PARAM
)
468 return remainderl(a
, b
);
470 floatx80
floatx80_sqrt( floatx80 a STATUS_PARAM
)
474 int floatx80_compare( floatx80 a
, floatx80 b STATUS_PARAM
)
486 int floatx80_compare_quiet( floatx80 a
, floatx80 b STATUS_PARAM
)
492 } else if (isgreater(a
, b
)) {
498 int floatx80_is_signaling_nan( floatx80 a1
)
502 return ( ( u
.i
.high
& 0x7FFF ) == 0x7FFF ) && (bits64
) ( u
.i
.low
<<1 );