P4 style multiplication eflags
[qemu/qemu_0_9_1_stable.git] / cpu-exec.c
blob5507c04dd04bfe5c95ccb516e156e65346d35744
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 int tb_invalidated_flag;
26 //#define DEBUG_EXEC
27 //#define DEBUG_SIGNAL
29 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
30 /* XXX: unify with i386 target */
31 void cpu_loop_exit(void)
33 longjmp(env->jmp_env, 1);
35 #endif
37 /* main execution loop */
39 int cpu_exec(CPUState *env1)
41 int saved_T0, saved_T1, saved_T2;
42 CPUState *saved_env;
43 #ifdef reg_EAX
44 int saved_EAX;
45 #endif
46 #ifdef reg_ECX
47 int saved_ECX;
48 #endif
49 #ifdef reg_EDX
50 int saved_EDX;
51 #endif
52 #ifdef reg_EBX
53 int saved_EBX;
54 #endif
55 #ifdef reg_ESP
56 int saved_ESP;
57 #endif
58 #ifdef reg_EBP
59 int saved_EBP;
60 #endif
61 #ifdef reg_ESI
62 int saved_ESI;
63 #endif
64 #ifdef reg_EDI
65 int saved_EDI;
66 #endif
67 #ifdef __sparc__
68 int saved_i7, tmp_T0;
69 #endif
70 int code_gen_size, ret, interrupt_request;
71 void (*gen_func)(void);
72 TranslationBlock *tb, **ptb;
73 uint8_t *tc_ptr, *cs_base, *pc;
74 unsigned int flags;
76 /* first we save global registers */
77 saved_T0 = T0;
78 saved_T1 = T1;
79 saved_T2 = T2;
80 saved_env = env;
81 env = env1;
82 #ifdef __sparc__
83 /* we also save i7 because longjmp may not restore it */
84 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85 #endif
87 #if defined(TARGET_I386)
88 #ifdef reg_EAX
89 saved_EAX = EAX;
90 EAX = env->regs[R_EAX];
91 #endif
92 #ifdef reg_ECX
93 saved_ECX = ECX;
94 ECX = env->regs[R_ECX];
95 #endif
96 #ifdef reg_EDX
97 saved_EDX = EDX;
98 EDX = env->regs[R_EDX];
99 #endif
100 #ifdef reg_EBX
101 saved_EBX = EBX;
102 EBX = env->regs[R_EBX];
103 #endif
104 #ifdef reg_ESP
105 saved_ESP = ESP;
106 ESP = env->regs[R_ESP];
107 #endif
108 #ifdef reg_EBP
109 saved_EBP = EBP;
110 EBP = env->regs[R_EBP];
111 #endif
112 #ifdef reg_ESI
113 saved_ESI = ESI;
114 ESI = env->regs[R_ESI];
115 #endif
116 #ifdef reg_EDI
117 saved_EDI = EDI;
118 EDI = env->regs[R_EDI];
119 #endif
121 /* put eflags in CPU temporary format */
122 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
123 DF = 1 - (2 * ((env->eflags >> 10) & 1));
124 CC_OP = CC_OP_EFLAGS;
125 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
126 #elif defined(TARGET_ARM)
128 unsigned int psr;
129 psr = env->cpsr;
130 env->CF = (psr >> 29) & 1;
131 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
132 env->VF = (psr << 3) & 0x80000000;
133 env->cpsr = psr & ~0xf0000000;
135 #elif defined(TARGET_SPARC)
136 #elif defined(TARGET_PPC)
137 #else
138 #error unsupported target CPU
139 #endif
140 env->exception_index = -1;
142 /* prepare setjmp context for exception handling */
143 for(;;) {
144 if (setjmp(env->jmp_env) == 0) {
145 /* if an exception is pending, we execute it here */
146 if (env->exception_index >= 0) {
147 if (env->exception_index >= EXCP_INTERRUPT) {
148 /* exit request from the cpu execution loop */
149 ret = env->exception_index;
150 break;
151 } else if (env->user_mode_only) {
152 /* if user mode only, we simulate a fake exception
153 which will be hanlded outside the cpu execution
154 loop */
155 #if defined(TARGET_I386)
156 do_interrupt_user(env->exception_index,
157 env->exception_is_int,
158 env->error_code,
159 env->exception_next_eip);
160 #endif
161 ret = env->exception_index;
162 break;
163 } else {
164 #if defined(TARGET_I386)
165 /* simulate a real cpu exception. On i386, it can
166 trigger new exceptions, but we do not handle
167 double or triple faults yet. */
168 do_interrupt(env->exception_index,
169 env->exception_is_int,
170 env->error_code,
171 env->exception_next_eip, 0);
172 #endif
174 env->exception_index = -1;
176 T0 = 0; /* force lookup of first TB */
177 for(;;) {
178 #ifdef __sparc__
179 /* g1 can be modified by some libc? functions */
180 tmp_T0 = T0;
181 #endif
182 interrupt_request = env->interrupt_request;
183 if (__builtin_expect(interrupt_request, 0)) {
184 #if defined(TARGET_I386)
185 /* if hardware interrupt pending, we execute it */
186 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
187 (env->eflags & IF_MASK) &&
188 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
189 int intno;
190 intno = cpu_x86_get_pic_interrupt(env);
191 if (loglevel) {
192 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
194 do_interrupt(intno, 0, 0, 0, 1);
195 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
196 /* ensure that no TB jump will be modified as
197 the program flow was changed */
198 #ifdef __sparc__
199 tmp_T0 = 0;
200 #else
201 T0 = 0;
202 #endif
204 #endif
205 if (interrupt_request & CPU_INTERRUPT_EXIT) {
206 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
207 env->exception_index = EXCP_INTERRUPT;
208 cpu_loop_exit();
211 #ifdef DEBUG_EXEC
212 if (loglevel) {
213 #if defined(TARGET_I386)
214 /* restore flags in standard format */
215 env->regs[R_EAX] = EAX;
216 env->regs[R_EBX] = EBX;
217 env->regs[R_ECX] = ECX;
218 env->regs[R_EDX] = EDX;
219 env->regs[R_ESI] = ESI;
220 env->regs[R_EDI] = EDI;
221 env->regs[R_EBP] = EBP;
222 env->regs[R_ESP] = ESP;
223 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
224 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
225 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
226 #elif defined(TARGET_ARM)
227 env->cpsr = compute_cpsr();
228 cpu_arm_dump_state(env, logfile, 0);
229 env->cpsr &= ~0xf0000000;
230 #elif defined(TARGET_SPARC)
231 cpu_sparc_dump_state (env, logfile, 0);
232 #elif defined(TARGET_PPC)
233 cpu_ppc_dump_state(env, logfile, 0);
234 #else
235 #error unsupported target CPU
236 #endif
238 #endif
239 /* we record a subset of the CPU state. It will
240 always be the same before a given translated block
241 is executed. */
242 #if defined(TARGET_I386)
243 flags = env->hflags;
244 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
245 cs_base = env->segs[R_CS].base;
246 pc = cs_base + env->eip;
247 #elif defined(TARGET_ARM)
248 flags = 0;
249 cs_base = 0;
250 pc = (uint8_t *)env->regs[15];
251 #elif defined(TARGET_SPARC)
252 flags = 0;
253 cs_base = 0;
254 if (env->npc) {
255 env->pc = env->npc;
256 env->npc = 0;
258 pc = (uint8_t *) env->pc;
259 #elif defined(TARGET_PPC)
260 flags = 0;
261 cs_base = 0;
262 pc = (uint8_t *)env->nip;
263 #else
264 #error unsupported CPU
265 #endif
266 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
267 flags);
268 if (!tb) {
269 spin_lock(&tb_lock);
270 /* if no translated code available, then translate it now */
271 tb = tb_alloc((unsigned long)pc);
272 if (!tb) {
273 /* flush must be done */
274 tb_flush();
275 /* cannot fail at this point */
276 tb = tb_alloc((unsigned long)pc);
277 /* don't forget to invalidate previous TB info */
278 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
279 T0 = 0;
281 tc_ptr = code_gen_ptr;
282 tb->tc_ptr = tc_ptr;
283 tb->cs_base = (unsigned long)cs_base;
284 tb->flags = flags;
285 tb_invalidated_flag = 0;
286 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
287 if (tb_invalidated_flag) {
288 /* as some TB could have been invalidated because
289 of memory exceptions while generating the code, we
290 must recompute the hash index here */
291 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
292 while (*ptb != NULL)
293 ptb = &(*ptb)->hash_next;
294 T0 = 0;
296 *ptb = tb;
297 tb->hash_next = NULL;
298 tb_link(tb);
299 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
300 spin_unlock(&tb_lock);
302 #ifdef DEBUG_EXEC
303 if (loglevel) {
304 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
305 (long)tb->tc_ptr, (long)tb->pc,
306 lookup_symbol((void *)tb->pc));
308 #endif
309 #ifdef __sparc__
310 T0 = tmp_T0;
311 #endif
312 /* see if we can patch the calling TB. */
313 if (T0 != 0) {
314 spin_lock(&tb_lock);
315 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
316 spin_unlock(&tb_lock);
318 tc_ptr = tb->tc_ptr;
319 env->current_tb = tb;
320 /* execute the generated code */
321 gen_func = (void *)tc_ptr;
322 #if defined(__sparc__)
323 __asm__ __volatile__("call %0\n\t"
324 "mov %%o7,%%i0"
325 : /* no outputs */
326 : "r" (gen_func)
327 : "i0", "i1", "i2", "i3", "i4", "i5");
328 #elif defined(__arm__)
329 asm volatile ("mov pc, %0\n\t"
330 ".global exec_loop\n\t"
331 "exec_loop:\n\t"
332 : /* no outputs */
333 : "r" (gen_func)
334 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
335 #else
336 gen_func();
337 #endif
338 env->current_tb = NULL;
339 /* reset soft MMU for next block (it can currently
340 only be set by a memory fault) */
341 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
342 if (env->hflags & HF_SOFTMMU_MASK) {
343 env->hflags &= ~HF_SOFTMMU_MASK;
344 /* do not allow linking to another block */
345 T0 = 0;
347 #endif
349 } else {
351 } /* for(;;) */
354 #if defined(TARGET_I386)
355 /* restore flags in standard format */
356 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
358 /* restore global registers */
359 #ifdef reg_EAX
360 EAX = saved_EAX;
361 #endif
362 #ifdef reg_ECX
363 ECX = saved_ECX;
364 #endif
365 #ifdef reg_EDX
366 EDX = saved_EDX;
367 #endif
368 #ifdef reg_EBX
369 EBX = saved_EBX;
370 #endif
371 #ifdef reg_ESP
372 ESP = saved_ESP;
373 #endif
374 #ifdef reg_EBP
375 EBP = saved_EBP;
376 #endif
377 #ifdef reg_ESI
378 ESI = saved_ESI;
379 #endif
380 #ifdef reg_EDI
381 EDI = saved_EDI;
382 #endif
383 #elif defined(TARGET_ARM)
384 env->cpsr = compute_cpsr();
385 #elif defined(TARGET_SPARC)
386 #elif defined(TARGET_PPC)
387 #else
388 #error unsupported target CPU
389 #endif
390 #ifdef __sparc__
391 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
392 #endif
393 T0 = saved_T0;
394 T1 = saved_T1;
395 T2 = saved_T2;
396 env = saved_env;
397 return ret;
400 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
402 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
404 CPUX86State *saved_env;
406 saved_env = env;
407 env = s;
408 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
409 selector &= 0xffff;
410 cpu_x86_load_seg_cache(env, seg_reg, selector,
411 (uint8_t *)(selector << 4), 0xffff, 0);
412 } else {
413 load_seg(seg_reg, selector, 0);
415 env = saved_env;
418 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
420 CPUX86State *saved_env;
422 saved_env = env;
423 env = s;
425 helper_fsave(ptr, data32);
427 env = saved_env;
430 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
432 CPUX86State *saved_env;
434 saved_env = env;
435 env = s;
437 helper_frstor(ptr, data32);
439 env = saved_env;
442 #endif /* TARGET_I386 */
444 #undef EAX
445 #undef ECX
446 #undef EDX
447 #undef EBX
448 #undef ESP
449 #undef EBP
450 #undef ESI
451 #undef EDI
452 #undef EIP
453 #include <signal.h>
454 #include <sys/ucontext.h>
456 #if defined(TARGET_I386)
458 /* 'pc' is the host PC at which the exception was raised. 'address' is
459 the effective address of the memory exception. 'is_write' is 1 if a
460 write caused the exception and otherwise 0'. 'old_set' is the
461 signal set which should be restored */
462 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
463 int is_write, sigset_t *old_set)
465 TranslationBlock *tb;
466 int ret;
468 if (cpu_single_env)
469 env = cpu_single_env; /* XXX: find a correct solution for multithread */
470 #if defined(DEBUG_SIGNAL)
471 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
472 pc, address, is_write, *(unsigned long *)old_set);
473 #endif
474 /* XXX: locking issue */
475 if (is_write && page_unprotect(address)) {
476 return 1;
478 /* see if it is an MMU fault */
479 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
480 ((env->hflags & HF_CPL_MASK) == 3), 0);
481 if (ret < 0)
482 return 0; /* not an MMU fault */
483 if (ret == 0)
484 return 1; /* the MMU fault was handled without causing real CPU fault */
485 /* now we have a real cpu fault */
486 tb = tb_find_pc(pc);
487 if (tb) {
488 /* the PC is inside the translated code. It means that we have
489 a virtual CPU fault */
490 cpu_restore_state(tb, env, pc);
492 if (ret == 1) {
493 #if 0
494 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
495 env->eip, env->cr[2], env->error_code);
496 #endif
497 /* we restore the process signal mask as the sigreturn should
498 do it (XXX: use sigsetjmp) */
499 sigprocmask(SIG_SETMASK, old_set, NULL);
500 raise_exception_err(EXCP0E_PAGE, env->error_code);
501 } else {
502 /* activate soft MMU for this block */
503 env->hflags |= HF_SOFTMMU_MASK;
504 sigprocmask(SIG_SETMASK, old_set, NULL);
505 cpu_loop_exit();
507 /* never comes here */
508 return 1;
511 #elif defined(TARGET_ARM)
512 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
513 int is_write, sigset_t *old_set)
515 /* XXX: do more */
516 return 0;
518 #elif defined(TARGET_SPARC)
519 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
520 int is_write, sigset_t *old_set)
522 return 0;
524 #elif defined (TARGET_PPC)
525 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
526 int is_write, sigset_t *old_set)
528 TranslationBlock *tb;
530 #if 0
531 if (cpu_single_env)
532 env = cpu_single_env; /* XXX: find a correct solution for multithread */
533 #endif
534 #if defined(DEBUG_SIGNAL)
535 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
536 pc, address, is_write, *(unsigned long *)old_set);
537 #endif
538 /* XXX: locking issue */
539 if (is_write && page_unprotect(address)) {
540 return 1;
543 /* now we have a real cpu fault */
544 tb = tb_find_pc(pc);
545 if (tb) {
546 /* the PC is inside the translated code. It means that we have
547 a virtual CPU fault */
548 cpu_restore_state(tb, env, pc);
550 #if 0
551 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
552 env->eip, env->cr[2], env->error_code);
553 #endif
554 /* we restore the process signal mask as the sigreturn should
555 do it (XXX: use sigsetjmp) */
556 sigprocmask(SIG_SETMASK, old_set, NULL);
557 raise_exception_err(EXCP_PROGRAM, env->error_code);
558 /* never comes here */
559 return 1;
561 #else
562 #error unsupported target CPU
563 #endif
565 #if defined(__i386__)
567 int cpu_signal_handler(int host_signum, struct siginfo *info,
568 void *puc)
570 struct ucontext *uc = puc;
571 unsigned long pc;
573 #ifndef REG_EIP
574 /* for glibc 2.1 */
575 #define REG_EIP EIP
576 #define REG_ERR ERR
577 #define REG_TRAPNO TRAPNO
578 #endif
579 pc = uc->uc_mcontext.gregs[REG_EIP];
580 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
581 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
582 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
583 &uc->uc_sigmask);
586 #elif defined(__powerpc)
588 int cpu_signal_handler(int host_signum, struct siginfo *info,
589 void *puc)
591 struct ucontext *uc = puc;
592 struct pt_regs *regs = uc->uc_mcontext.regs;
593 unsigned long pc;
594 int is_write;
596 pc = regs->nip;
597 is_write = 0;
598 #if 0
599 /* ppc 4xx case */
600 if (regs->dsisr & 0x00800000)
601 is_write = 1;
602 #else
603 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
604 is_write = 1;
605 #endif
606 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
607 is_write, &uc->uc_sigmask);
610 #elif defined(__alpha__)
612 int cpu_signal_handler(int host_signum, struct siginfo *info,
613 void *puc)
615 struct ucontext *uc = puc;
616 uint32_t *pc = uc->uc_mcontext.sc_pc;
617 uint32_t insn = *pc;
618 int is_write = 0;
620 /* XXX: need kernel patch to get write flag faster */
621 switch (insn >> 26) {
622 case 0x0d: // stw
623 case 0x0e: // stb
624 case 0x0f: // stq_u
625 case 0x24: // stf
626 case 0x25: // stg
627 case 0x26: // sts
628 case 0x27: // stt
629 case 0x2c: // stl
630 case 0x2d: // stq
631 case 0x2e: // stl_c
632 case 0x2f: // stq_c
633 is_write = 1;
636 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
637 is_write, &uc->uc_sigmask);
639 #elif defined(__sparc__)
641 int cpu_signal_handler(int host_signum, struct siginfo *info,
642 void *puc)
644 uint32_t *regs = (uint32_t *)(info + 1);
645 void *sigmask = (regs + 20);
646 unsigned long pc;
647 int is_write;
648 uint32_t insn;
650 /* XXX: is there a standard glibc define ? */
651 pc = regs[1];
652 /* XXX: need kernel patch to get write flag faster */
653 is_write = 0;
654 insn = *(uint32_t *)pc;
655 if ((insn >> 30) == 3) {
656 switch((insn >> 19) & 0x3f) {
657 case 0x05: // stb
658 case 0x06: // sth
659 case 0x04: // st
660 case 0x07: // std
661 case 0x24: // stf
662 case 0x27: // stdf
663 case 0x25: // stfsr
664 is_write = 1;
665 break;
668 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
669 is_write, sigmask);
672 #elif defined(__arm__)
674 int cpu_signal_handler(int host_signum, struct siginfo *info,
675 void *puc)
677 struct ucontext *uc = puc;
678 unsigned long pc;
679 int is_write;
681 pc = uc->uc_mcontext.gregs[R15];
682 /* XXX: compute is_write */
683 is_write = 0;
684 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
685 is_write,
686 &uc->uc_sigmask);
689 #elif defined(__mc68000)
691 int cpu_signal_handler(int host_signum, struct siginfo *info,
692 void *puc)
694 struct ucontext *uc = puc;
695 unsigned long pc;
696 int is_write;
698 pc = uc->uc_mcontext.gregs[16];
699 /* XXX: compute is_write */
700 is_write = 0;
701 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
702 is_write,
703 &uc->uc_sigmask);
706 #else
708 #error host CPU specific signal handler needed
710 #endif