SYS_SEEK fix (Paul Brook)
[qemu/qemu_0_9_1_stable.git] / cpu-exec.c
blobd414e3343b60d62bf5ce9f27bfab818c7ba6dfd4
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
49 #endif
51 /* exit the current TB from a signal handler. The host registers are
52 restored in a state compatible with the CPU emulator
54 void cpu_resume_from_signal(CPUState *env1, void *puc)
56 #if !defined(CONFIG_SOFTMMU)
57 struct ucontext *uc = puc;
58 #endif
60 env = env1;
62 /* XXX: restore cpu registers saved in host registers */
64 #if !defined(CONFIG_SOFTMMU)
65 if (puc) {
66 /* XXX: use siglongjmp ? */
67 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
69 #endif
70 longjmp(env->jmp_env, 1);
73 /* main execution loop */
75 int cpu_exec(CPUState *env1)
77 int saved_T0, saved_T1, saved_T2;
78 CPUState *saved_env;
79 #ifdef reg_EAX
80 int saved_EAX;
81 #endif
82 #ifdef reg_ECX
83 int saved_ECX;
84 #endif
85 #ifdef reg_EDX
86 int saved_EDX;
87 #endif
88 #ifdef reg_EBX
89 int saved_EBX;
90 #endif
91 #ifdef reg_ESP
92 int saved_ESP;
93 #endif
94 #ifdef reg_EBP
95 int saved_EBP;
96 #endif
97 #ifdef reg_ESI
98 int saved_ESI;
99 #endif
100 #ifdef reg_EDI
101 int saved_EDI;
102 #endif
103 #ifdef __sparc__
104 int saved_i7, tmp_T0;
105 #endif
106 int code_gen_size, ret, interrupt_request;
107 void (*gen_func)(void);
108 TranslationBlock *tb, **ptb;
109 target_ulong cs_base, pc;
110 uint8_t *tc_ptr;
111 unsigned int flags;
113 /* first we save global registers */
114 saved_env = env;
115 env = env1;
116 saved_T0 = T0;
117 saved_T1 = T1;
118 saved_T2 = T2;
119 #ifdef __sparc__
120 /* we also save i7 because longjmp may not restore it */
121 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122 #endif
124 #if defined(TARGET_I386)
125 #ifdef reg_EAX
126 saved_EAX = EAX;
127 #endif
128 #ifdef reg_ECX
129 saved_ECX = ECX;
130 #endif
131 #ifdef reg_EDX
132 saved_EDX = EDX;
133 #endif
134 #ifdef reg_EBX
135 saved_EBX = EBX;
136 #endif
137 #ifdef reg_ESP
138 saved_ESP = ESP;
139 #endif
140 #ifdef reg_EBP
141 saved_EBP = EBP;
142 #endif
143 #ifdef reg_ESI
144 saved_ESI = ESI;
145 #endif
146 #ifdef reg_EDI
147 saved_EDI = EDI;
148 #endif
150 env_to_regs();
151 /* put eflags in CPU temporary format */
152 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153 DF = 1 - (2 * ((env->eflags >> 10) & 1));
154 CC_OP = CC_OP_EFLAGS;
155 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156 #elif defined(TARGET_ARM)
158 unsigned int psr;
159 psr = env->cpsr;
160 env->CF = (psr >> 29) & 1;
161 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162 env->VF = (psr << 3) & 0x80000000;
163 env->QF = (psr >> 27) & 1;
164 env->cpsr = psr & ~CACHED_CPSR_BITS;
166 #elif defined(TARGET_SPARC)
167 #elif defined(TARGET_PPC)
168 #else
169 #error unsupported target CPU
170 #endif
171 env->exception_index = -1;
173 /* prepare setjmp context for exception handling */
174 for(;;) {
175 if (setjmp(env->jmp_env) == 0) {
176 env->current_tb = NULL;
177 /* if an exception is pending, we execute it here */
178 if (env->exception_index >= 0) {
179 if (env->exception_index >= EXCP_INTERRUPT) {
180 /* exit request from the cpu execution loop */
181 ret = env->exception_index;
182 break;
183 } else if (env->user_mode_only) {
184 /* if user mode only, we simulate a fake exception
185 which will be hanlded outside the cpu execution
186 loop */
187 #if defined(TARGET_I386)
188 do_interrupt_user(env->exception_index,
189 env->exception_is_int,
190 env->error_code,
191 env->exception_next_eip);
192 #endif
193 ret = env->exception_index;
194 break;
195 } else {
196 #if defined(TARGET_I386)
197 /* simulate a real cpu exception. On i386, it can
198 trigger new exceptions, but we do not handle
199 double or triple faults yet. */
200 do_interrupt(env->exception_index,
201 env->exception_is_int,
202 env->error_code,
203 env->exception_next_eip, 0);
204 #elif defined(TARGET_PPC)
205 do_interrupt(env);
206 #elif defined(TARGET_SPARC)
207 do_interrupt(env->exception_index);
208 #endif
210 env->exception_index = -1;
212 #ifdef USE_KQEMU
213 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
214 int ret;
215 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216 ret = kqemu_cpu_exec(env);
217 /* put eflags in CPU temporary format */
218 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219 DF = 1 - (2 * ((env->eflags >> 10) & 1));
220 CC_OP = CC_OP_EFLAGS;
221 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222 if (ret == 1) {
223 /* exception */
224 longjmp(env->jmp_env, 1);
225 } else if (ret == 2) {
226 /* softmmu execution needed */
227 } else {
228 if (env->interrupt_request != 0) {
229 /* hardware interrupt will be executed just after */
230 } else {
231 /* otherwise, we restart */
232 longjmp(env->jmp_env, 1);
236 #endif
238 T0 = 0; /* force lookup of first TB */
239 for(;;) {
240 #ifdef __sparc__
241 /* g1 can be modified by some libc? functions */
242 tmp_T0 = T0;
243 #endif
244 interrupt_request = env->interrupt_request;
245 if (__builtin_expect(interrupt_request, 0)) {
246 #if defined(TARGET_I386)
247 /* if hardware interrupt pending, we execute it */
248 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249 (env->eflags & IF_MASK) &&
250 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
251 int intno;
252 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253 intno = cpu_get_pic_interrupt(env);
254 if (loglevel & CPU_LOG_TB_IN_ASM) {
255 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
257 do_interrupt(intno, 0, 0, 0, 1);
258 /* ensure that no TB jump will be modified as
259 the program flow was changed */
260 #ifdef __sparc__
261 tmp_T0 = 0;
262 #else
263 T0 = 0;
264 #endif
266 #elif defined(TARGET_PPC)
267 #if 0
268 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
269 cpu_ppc_reset(env);
271 #endif
272 if (msr_ee != 0) {
273 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
274 /* Raise it */
275 env->exception_index = EXCP_EXTERNAL;
276 env->error_code = 0;
277 do_interrupt(env);
278 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
280 /* Raise it */
281 env->exception_index = EXCP_DECR;
282 env->error_code = 0;
283 do_interrupt(env);
284 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
287 #elif defined(TARGET_SPARC)
288 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
289 (env->psret != 0)) {
290 int pil = env->interrupt_index & 15;
291 int type = env->interrupt_index & 0xf0;
293 if (((type == TT_EXTINT) &&
294 (pil == 15 || pil > env->psrpil)) ||
295 type != TT_EXTINT) {
296 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
297 do_interrupt(env->interrupt_index);
298 env->interrupt_index = 0;
300 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
301 //do_interrupt(0, 0, 0, 0, 0);
302 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
304 #endif
305 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
306 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
307 /* ensure that no TB jump will be modified as
308 the program flow was changed */
309 #ifdef __sparc__
310 tmp_T0 = 0;
311 #else
312 T0 = 0;
313 #endif
315 if (interrupt_request & CPU_INTERRUPT_EXIT) {
316 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
317 env->exception_index = EXCP_INTERRUPT;
318 cpu_loop_exit();
321 #ifdef DEBUG_EXEC
322 if ((loglevel & CPU_LOG_EXEC)) {
323 #if defined(TARGET_I386)
324 /* restore flags in standard format */
325 #ifdef reg_EAX
326 env->regs[R_EAX] = EAX;
327 #endif
328 #ifdef reg_EBX
329 env->regs[R_EBX] = EBX;
330 #endif
331 #ifdef reg_ECX
332 env->regs[R_ECX] = ECX;
333 #endif
334 #ifdef reg_EDX
335 env->regs[R_EDX] = EDX;
336 #endif
337 #ifdef reg_ESI
338 env->regs[R_ESI] = ESI;
339 #endif
340 #ifdef reg_EDI
341 env->regs[R_EDI] = EDI;
342 #endif
343 #ifdef reg_EBP
344 env->regs[R_EBP] = EBP;
345 #endif
346 #ifdef reg_ESP
347 env->regs[R_ESP] = ESP;
348 #endif
349 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
350 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
351 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
352 #elif defined(TARGET_ARM)
353 env->cpsr = compute_cpsr();
354 cpu_dump_state(env, logfile, fprintf, 0);
355 env->cpsr &= ~CACHED_CPSR_BITS;
356 #elif defined(TARGET_SPARC)
357 cpu_dump_state (env, logfile, fprintf, 0);
358 #elif defined(TARGET_PPC)
359 cpu_dump_state(env, logfile, fprintf, 0);
360 #else
361 #error unsupported target CPU
362 #endif
364 #endif
365 /* we record a subset of the CPU state. It will
366 always be the same before a given translated block
367 is executed. */
368 #if defined(TARGET_I386)
369 flags = env->hflags;
370 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
371 cs_base = env->segs[R_CS].base;
372 pc = cs_base + env->eip;
373 #elif defined(TARGET_ARM)
374 flags = env->thumb | (env->vfp.vec_len << 1)
375 | (env->vfp.vec_stride << 4);
376 cs_base = 0;
377 pc = env->regs[15];
378 #elif defined(TARGET_SPARC)
379 flags = 0;
380 cs_base = env->npc;
381 pc = env->pc;
382 #elif defined(TARGET_PPC)
383 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
384 (msr_se << MSR_SE) | (msr_le << MSR_LE);
385 cs_base = 0;
386 pc = env->nip;
387 #else
388 #error unsupported CPU
389 #endif
390 tb = tb_find(&ptb, pc, cs_base,
391 flags);
392 if (!tb) {
393 TranslationBlock **ptb1;
394 unsigned int h;
395 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
398 spin_lock(&tb_lock);
400 tb_invalidated_flag = 0;
402 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
404 /* find translated block using physical mappings */
405 phys_pc = get_phys_addr_code(env, pc);
406 phys_page1 = phys_pc & TARGET_PAGE_MASK;
407 phys_page2 = -1;
408 h = tb_phys_hash_func(phys_pc);
409 ptb1 = &tb_phys_hash[h];
410 for(;;) {
411 tb = *ptb1;
412 if (!tb)
413 goto not_found;
414 if (tb->pc == pc &&
415 tb->page_addr[0] == phys_page1 &&
416 tb->cs_base == cs_base &&
417 tb->flags == flags) {
418 /* check next page if needed */
419 if (tb->page_addr[1] != -1) {
420 virt_page2 = (pc & TARGET_PAGE_MASK) +
421 TARGET_PAGE_SIZE;
422 phys_page2 = get_phys_addr_code(env, virt_page2);
423 if (tb->page_addr[1] == phys_page2)
424 goto found;
425 } else {
426 goto found;
429 ptb1 = &tb->phys_hash_next;
431 not_found:
432 /* if no translated code available, then translate it now */
433 tb = tb_alloc(pc);
434 if (!tb) {
435 /* flush must be done */
436 tb_flush(env);
437 /* cannot fail at this point */
438 tb = tb_alloc(pc);
439 /* don't forget to invalidate previous TB info */
440 ptb = &tb_hash[tb_hash_func(pc)];
441 T0 = 0;
443 tc_ptr = code_gen_ptr;
444 tb->tc_ptr = tc_ptr;
445 tb->cs_base = cs_base;
446 tb->flags = flags;
447 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
448 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
450 /* check next page if needed */
451 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
452 phys_page2 = -1;
453 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
454 phys_page2 = get_phys_addr_code(env, virt_page2);
456 tb_link_phys(tb, phys_pc, phys_page2);
458 found:
459 if (tb_invalidated_flag) {
460 /* as some TB could have been invalidated because
461 of memory exceptions while generating the code, we
462 must recompute the hash index here */
463 ptb = &tb_hash[tb_hash_func(pc)];
464 while (*ptb != NULL)
465 ptb = &(*ptb)->hash_next;
466 T0 = 0;
468 /* we add the TB in the virtual pc hash table */
469 *ptb = tb;
470 tb->hash_next = NULL;
471 tb_link(tb);
472 spin_unlock(&tb_lock);
474 #ifdef DEBUG_EXEC
475 if ((loglevel & CPU_LOG_EXEC)) {
476 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
477 (long)tb->tc_ptr, tb->pc,
478 lookup_symbol(tb->pc));
480 #endif
481 #ifdef __sparc__
482 T0 = tmp_T0;
483 #endif
484 /* see if we can patch the calling TB. */
486 if (T0 != 0
487 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
488 && (tb->cflags & CF_CODE_COPY) ==
489 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
490 #endif
492 spin_lock(&tb_lock);
493 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
494 #if defined(USE_CODE_COPY)
495 /* propagates the FP use info */
496 ((TranslationBlock *)(T0 & ~3))->cflags |=
497 (tb->cflags & CF_FP_USED);
498 #endif
499 spin_unlock(&tb_lock);
502 tc_ptr = tb->tc_ptr;
503 env->current_tb = tb;
504 /* execute the generated code */
505 gen_func = (void *)tc_ptr;
506 #if defined(__sparc__)
507 __asm__ __volatile__("call %0\n\t"
508 "mov %%o7,%%i0"
509 : /* no outputs */
510 : "r" (gen_func)
511 : "i0", "i1", "i2", "i3", "i4", "i5");
512 #elif defined(__arm__)
513 asm volatile ("mov pc, %0\n\t"
514 ".global exec_loop\n\t"
515 "exec_loop:\n\t"
516 : /* no outputs */
517 : "r" (gen_func)
518 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
519 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
521 if (!(tb->cflags & CF_CODE_COPY)) {
522 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
523 save_native_fp_state(env);
525 gen_func();
526 } else {
527 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
528 restore_native_fp_state(env);
530 /* we work with native eflags */
531 CC_SRC = cc_table[CC_OP].compute_all();
532 CC_OP = CC_OP_EFLAGS;
533 asm(".globl exec_loop\n"
534 "\n"
535 "debug1:\n"
536 " pushl %%ebp\n"
537 " fs movl %10, %9\n"
538 " fs movl %11, %%eax\n"
539 " andl $0x400, %%eax\n"
540 " fs orl %8, %%eax\n"
541 " pushl %%eax\n"
542 " popf\n"
543 " fs movl %%esp, %12\n"
544 " fs movl %0, %%eax\n"
545 " fs movl %1, %%ecx\n"
546 " fs movl %2, %%edx\n"
547 " fs movl %3, %%ebx\n"
548 " fs movl %4, %%esp\n"
549 " fs movl %5, %%ebp\n"
550 " fs movl %6, %%esi\n"
551 " fs movl %7, %%edi\n"
552 " fs jmp *%9\n"
553 "exec_loop:\n"
554 " fs movl %%esp, %4\n"
555 " fs movl %12, %%esp\n"
556 " fs movl %%eax, %0\n"
557 " fs movl %%ecx, %1\n"
558 " fs movl %%edx, %2\n"
559 " fs movl %%ebx, %3\n"
560 " fs movl %%ebp, %5\n"
561 " fs movl %%esi, %6\n"
562 " fs movl %%edi, %7\n"
563 " pushf\n"
564 " popl %%eax\n"
565 " movl %%eax, %%ecx\n"
566 " andl $0x400, %%ecx\n"
567 " shrl $9, %%ecx\n"
568 " andl $0x8d5, %%eax\n"
569 " fs movl %%eax, %8\n"
570 " movl $1, %%eax\n"
571 " subl %%ecx, %%eax\n"
572 " fs movl %%eax, %11\n"
573 " fs movl %9, %%ebx\n" /* get T0 value */
574 " popl %%ebp\n"
576 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
577 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
578 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
579 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
580 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
581 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
582 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
583 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
584 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
585 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
586 "a" (gen_func),
587 "m" (*(uint8_t *)offsetof(CPUState, df)),
588 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
589 : "%ecx", "%edx"
593 #elif defined(__ia64)
594 struct fptr {
595 void *ip;
596 void *gp;
597 } fp;
599 fp.ip = tc_ptr;
600 fp.gp = code_gen_buffer + 2 * (1 << 20);
601 (*(void (*)(void)) &fp)();
602 #else
603 gen_func();
604 #endif
605 env->current_tb = NULL;
606 /* reset soft MMU for next block (it can currently
607 only be set by a memory fault) */
608 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
609 if (env->hflags & HF_SOFTMMU_MASK) {
610 env->hflags &= ~HF_SOFTMMU_MASK;
611 /* do not allow linking to another block */
612 T0 = 0;
614 #endif
616 } else {
617 env_to_regs();
619 } /* for(;;) */
622 #if defined(TARGET_I386)
623 #if defined(USE_CODE_COPY)
624 if (env->native_fp_regs) {
625 save_native_fp_state(env);
627 #endif
628 /* restore flags in standard format */
629 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
631 /* restore global registers */
632 #ifdef reg_EAX
633 EAX = saved_EAX;
634 #endif
635 #ifdef reg_ECX
636 ECX = saved_ECX;
637 #endif
638 #ifdef reg_EDX
639 EDX = saved_EDX;
640 #endif
641 #ifdef reg_EBX
642 EBX = saved_EBX;
643 #endif
644 #ifdef reg_ESP
645 ESP = saved_ESP;
646 #endif
647 #ifdef reg_EBP
648 EBP = saved_EBP;
649 #endif
650 #ifdef reg_ESI
651 ESI = saved_ESI;
652 #endif
653 #ifdef reg_EDI
654 EDI = saved_EDI;
655 #endif
656 #elif defined(TARGET_ARM)
657 env->cpsr = compute_cpsr();
658 /* XXX: Save/restore host fpu exception state?. */
659 #elif defined(TARGET_SPARC)
660 #elif defined(TARGET_PPC)
661 #else
662 #error unsupported target CPU
663 #endif
664 #ifdef __sparc__
665 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
666 #endif
667 T0 = saved_T0;
668 T1 = saved_T1;
669 T2 = saved_T2;
670 env = saved_env;
671 return ret;
674 /* must only be called from the generated code as an exception can be
675 generated */
676 void tb_invalidate_page_range(target_ulong start, target_ulong end)
678 /* XXX: cannot enable it yet because it yields to MMU exception
679 where NIP != read address on PowerPC */
680 #if 0
681 target_ulong phys_addr;
682 phys_addr = get_phys_addr_code(env, start);
683 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
684 #endif
687 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
689 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
691 CPUX86State *saved_env;
693 saved_env = env;
694 env = s;
695 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
696 selector &= 0xffff;
697 cpu_x86_load_seg_cache(env, seg_reg, selector,
698 (selector << 4), 0xffff, 0);
699 } else {
700 load_seg(seg_reg, selector);
702 env = saved_env;
705 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
707 CPUX86State *saved_env;
709 saved_env = env;
710 env = s;
712 helper_fsave((target_ulong)ptr, data32);
714 env = saved_env;
717 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
719 CPUX86State *saved_env;
721 saved_env = env;
722 env = s;
724 helper_frstor((target_ulong)ptr, data32);
726 env = saved_env;
729 #endif /* TARGET_I386 */
731 #if !defined(CONFIG_SOFTMMU)
733 #if defined(TARGET_I386)
735 /* 'pc' is the host PC at which the exception was raised. 'address' is
736 the effective address of the memory exception. 'is_write' is 1 if a
737 write caused the exception and otherwise 0'. 'old_set' is the
738 signal set which should be restored */
739 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
740 int is_write, sigset_t *old_set,
741 void *puc)
743 TranslationBlock *tb;
744 int ret;
746 if (cpu_single_env)
747 env = cpu_single_env; /* XXX: find a correct solution for multithread */
748 #if defined(DEBUG_SIGNAL)
749 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
750 pc, address, is_write, *(unsigned long *)old_set);
751 #endif
752 /* XXX: locking issue */
753 if (is_write && page_unprotect(address, pc, puc)) {
754 return 1;
757 /* see if it is an MMU fault */
758 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
759 ((env->hflags & HF_CPL_MASK) == 3), 0);
760 if (ret < 0)
761 return 0; /* not an MMU fault */
762 if (ret == 0)
763 return 1; /* the MMU fault was handled without causing real CPU fault */
764 /* now we have a real cpu fault */
765 tb = tb_find_pc(pc);
766 if (tb) {
767 /* the PC is inside the translated code. It means that we have
768 a virtual CPU fault */
769 cpu_restore_state(tb, env, pc, puc);
771 if (ret == 1) {
772 #if 0
773 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
774 env->eip, env->cr[2], env->error_code);
775 #endif
776 /* we restore the process signal mask as the sigreturn should
777 do it (XXX: use sigsetjmp) */
778 sigprocmask(SIG_SETMASK, old_set, NULL);
779 raise_exception_err(EXCP0E_PAGE, env->error_code);
780 } else {
781 /* activate soft MMU for this block */
782 env->hflags |= HF_SOFTMMU_MASK;
783 cpu_resume_from_signal(env, puc);
785 /* never comes here */
786 return 1;
789 #elif defined(TARGET_ARM)
790 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
791 int is_write, sigset_t *old_set,
792 void *puc)
794 TranslationBlock *tb;
795 int ret;
797 if (cpu_single_env)
798 env = cpu_single_env; /* XXX: find a correct solution for multithread */
799 #if defined(DEBUG_SIGNAL)
800 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
801 pc, address, is_write, *(unsigned long *)old_set);
802 #endif
803 /* XXX: locking issue */
804 if (is_write && page_unprotect(address, pc, puc)) {
805 return 1;
807 /* see if it is an MMU fault */
808 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
809 if (ret < 0)
810 return 0; /* not an MMU fault */
811 if (ret == 0)
812 return 1; /* the MMU fault was handled without causing real CPU fault */
813 /* now we have a real cpu fault */
814 tb = tb_find_pc(pc);
815 if (tb) {
816 /* the PC is inside the translated code. It means that we have
817 a virtual CPU fault */
818 cpu_restore_state(tb, env, pc, puc);
820 /* we restore the process signal mask as the sigreturn should
821 do it (XXX: use sigsetjmp) */
822 sigprocmask(SIG_SETMASK, old_set, NULL);
823 cpu_loop_exit();
825 #elif defined(TARGET_SPARC)
826 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
827 int is_write, sigset_t *old_set,
828 void *puc)
830 TranslationBlock *tb;
831 int ret;
833 if (cpu_single_env)
834 env = cpu_single_env; /* XXX: find a correct solution for multithread */
835 #if defined(DEBUG_SIGNAL)
836 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
837 pc, address, is_write, *(unsigned long *)old_set);
838 #endif
839 /* XXX: locking issue */
840 if (is_write && page_unprotect(address, pc, puc)) {
841 return 1;
843 /* see if it is an MMU fault */
844 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
845 if (ret < 0)
846 return 0; /* not an MMU fault */
847 if (ret == 0)
848 return 1; /* the MMU fault was handled without causing real CPU fault */
849 /* now we have a real cpu fault */
850 tb = tb_find_pc(pc);
851 if (tb) {
852 /* the PC is inside the translated code. It means that we have
853 a virtual CPU fault */
854 cpu_restore_state(tb, env, pc, puc);
856 /* we restore the process signal mask as the sigreturn should
857 do it (XXX: use sigsetjmp) */
858 sigprocmask(SIG_SETMASK, old_set, NULL);
859 cpu_loop_exit();
861 #elif defined (TARGET_PPC)
862 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
863 int is_write, sigset_t *old_set,
864 void *puc)
866 TranslationBlock *tb;
867 int ret;
869 if (cpu_single_env)
870 env = cpu_single_env; /* XXX: find a correct solution for multithread */
871 #if defined(DEBUG_SIGNAL)
872 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
873 pc, address, is_write, *(unsigned long *)old_set);
874 #endif
875 /* XXX: locking issue */
876 if (is_write && page_unprotect(address, pc, puc)) {
877 return 1;
880 /* see if it is an MMU fault */
881 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
882 if (ret < 0)
883 return 0; /* not an MMU fault */
884 if (ret == 0)
885 return 1; /* the MMU fault was handled without causing real CPU fault */
887 /* now we have a real cpu fault */
888 tb = tb_find_pc(pc);
889 if (tb) {
890 /* the PC is inside the translated code. It means that we have
891 a virtual CPU fault */
892 cpu_restore_state(tb, env, pc, puc);
894 if (ret == 1) {
895 #if 0
896 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
897 env->nip, env->error_code, tb);
898 #endif
899 /* we restore the process signal mask as the sigreturn should
900 do it (XXX: use sigsetjmp) */
901 sigprocmask(SIG_SETMASK, old_set, NULL);
902 do_raise_exception_err(env->exception_index, env->error_code);
903 } else {
904 /* activate soft MMU for this block */
905 cpu_resume_from_signal(env, puc);
907 /* never comes here */
908 return 1;
910 #else
911 #error unsupported target CPU
912 #endif
914 #if defined(__i386__)
916 #if defined(USE_CODE_COPY)
917 static void cpu_send_trap(unsigned long pc, int trap,
918 struct ucontext *uc)
920 TranslationBlock *tb;
922 if (cpu_single_env)
923 env = cpu_single_env; /* XXX: find a correct solution for multithread */
924 /* now we have a real cpu fault */
925 tb = tb_find_pc(pc);
926 if (tb) {
927 /* the PC is inside the translated code. It means that we have
928 a virtual CPU fault */
929 cpu_restore_state(tb, env, pc, uc);
931 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
932 raise_exception_err(trap, env->error_code);
934 #endif
936 int cpu_signal_handler(int host_signum, struct siginfo *info,
937 void *puc)
939 struct ucontext *uc = puc;
940 unsigned long pc;
941 int trapno;
943 #ifndef REG_EIP
944 /* for glibc 2.1 */
945 #define REG_EIP EIP
946 #define REG_ERR ERR
947 #define REG_TRAPNO TRAPNO
948 #endif
949 pc = uc->uc_mcontext.gregs[REG_EIP];
950 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
951 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
952 if (trapno == 0x00 || trapno == 0x05) {
953 /* send division by zero or bound exception */
954 cpu_send_trap(pc, trapno, uc);
955 return 1;
956 } else
957 #endif
958 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
959 trapno == 0xe ?
960 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
961 &uc->uc_sigmask, puc);
964 #elif defined(__x86_64__)
966 int cpu_signal_handler(int host_signum, struct siginfo *info,
967 void *puc)
969 struct ucontext *uc = puc;
970 unsigned long pc;
972 pc = uc->uc_mcontext.gregs[REG_RIP];
973 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
974 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
975 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
976 &uc->uc_sigmask, puc);
979 #elif defined(__powerpc__)
981 /***********************************************************************
982 * signal context platform-specific definitions
983 * From Wine
985 #ifdef linux
986 /* All Registers access - only for local access */
987 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
988 /* Gpr Registers access */
989 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
990 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
991 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
992 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
993 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
994 # define LR_sig(context) REG_sig(link, context) /* Link register */
995 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
996 /* Float Registers access */
997 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
998 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
999 /* Exception Registers access */
1000 # define DAR_sig(context) REG_sig(dar, context)
1001 # define DSISR_sig(context) REG_sig(dsisr, context)
1002 # define TRAP_sig(context) REG_sig(trap, context)
1003 #endif /* linux */
1005 #ifdef __APPLE__
1006 # include <sys/ucontext.h>
1007 typedef struct ucontext SIGCONTEXT;
1008 /* All Registers access - only for local access */
1009 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1010 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1011 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1012 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1013 /* Gpr Registers access */
1014 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1015 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1016 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1017 # define CTR_sig(context) REG_sig(ctr, context)
1018 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1019 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1020 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1021 /* Float Registers access */
1022 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1023 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1024 /* Exception Registers access */
1025 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1026 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1027 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1028 #endif /* __APPLE__ */
1030 int cpu_signal_handler(int host_signum, struct siginfo *info,
1031 void *puc)
1033 struct ucontext *uc = puc;
1034 unsigned long pc;
1035 int is_write;
1037 pc = IAR_sig(uc);
1038 is_write = 0;
1039 #if 0
1040 /* ppc 4xx case */
1041 if (DSISR_sig(uc) & 0x00800000)
1042 is_write = 1;
1043 #else
1044 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1045 is_write = 1;
1046 #endif
1047 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1048 is_write, &uc->uc_sigmask, puc);
1051 #elif defined(__alpha__)
1053 int cpu_signal_handler(int host_signum, struct siginfo *info,
1054 void *puc)
1056 struct ucontext *uc = puc;
1057 uint32_t *pc = uc->uc_mcontext.sc_pc;
1058 uint32_t insn = *pc;
1059 int is_write = 0;
1061 /* XXX: need kernel patch to get write flag faster */
1062 switch (insn >> 26) {
1063 case 0x0d: // stw
1064 case 0x0e: // stb
1065 case 0x0f: // stq_u
1066 case 0x24: // stf
1067 case 0x25: // stg
1068 case 0x26: // sts
1069 case 0x27: // stt
1070 case 0x2c: // stl
1071 case 0x2d: // stq
1072 case 0x2e: // stl_c
1073 case 0x2f: // stq_c
1074 is_write = 1;
1077 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1078 is_write, &uc->uc_sigmask, puc);
1080 #elif defined(__sparc__)
1082 int cpu_signal_handler(int host_signum, struct siginfo *info,
1083 void *puc)
1085 uint32_t *regs = (uint32_t *)(info + 1);
1086 void *sigmask = (regs + 20);
1087 unsigned long pc;
1088 int is_write;
1089 uint32_t insn;
1091 /* XXX: is there a standard glibc define ? */
1092 pc = regs[1];
1093 /* XXX: need kernel patch to get write flag faster */
1094 is_write = 0;
1095 insn = *(uint32_t *)pc;
1096 if ((insn >> 30) == 3) {
1097 switch((insn >> 19) & 0x3f) {
1098 case 0x05: // stb
1099 case 0x06: // sth
1100 case 0x04: // st
1101 case 0x07: // std
1102 case 0x24: // stf
1103 case 0x27: // stdf
1104 case 0x25: // stfsr
1105 is_write = 1;
1106 break;
1109 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1110 is_write, sigmask, NULL);
1113 #elif defined(__arm__)
1115 int cpu_signal_handler(int host_signum, struct siginfo *info,
1116 void *puc)
1118 struct ucontext *uc = puc;
1119 unsigned long pc;
1120 int is_write;
1122 pc = uc->uc_mcontext.gregs[R15];
1123 /* XXX: compute is_write */
1124 is_write = 0;
1125 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1126 is_write,
1127 &uc->uc_sigmask);
1130 #elif defined(__mc68000)
1132 int cpu_signal_handler(int host_signum, struct siginfo *info,
1133 void *puc)
1135 struct ucontext *uc = puc;
1136 unsigned long pc;
1137 int is_write;
1139 pc = uc->uc_mcontext.gregs[16];
1140 /* XXX: compute is_write */
1141 is_write = 0;
1142 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1143 is_write,
1144 &uc->uc_sigmask, puc);
1147 #elif defined(__ia64)
1149 #ifndef __ISR_VALID
1150 /* This ought to be in <bits/siginfo.h>... */
1151 # define __ISR_VALID 1
1152 # define si_flags _sifields._sigfault._si_pad0
1153 #endif
1155 int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1157 struct ucontext *uc = puc;
1158 unsigned long ip;
1159 int is_write = 0;
1161 ip = uc->uc_mcontext.sc_ip;
1162 switch (host_signum) {
1163 case SIGILL:
1164 case SIGFPE:
1165 case SIGSEGV:
1166 case SIGBUS:
1167 case SIGTRAP:
1168 if (info->si_code && (info->si_flags & __ISR_VALID))
1169 /* ISR.W (write-access) is bit 33: */
1170 is_write = (info->si_isr >> 33) & 1;
1171 break;
1173 default:
1174 break;
1176 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1177 is_write,
1178 &uc->uc_sigmask, puc);
1181 #else
1183 #error host CPU specific signal handler needed
1185 #endif
1187 #endif /* !defined(CONFIG_SOFTMMU) */