Use qemu_irqs between CPUs and interrupt controller
[qemu/qemu_0_9_1_stable.git] / hw / slavio_intctl.c
blobd89f86315631ecbe0e4a45d1188fecb5ba9ef1af
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
25 //#define DEBUG_IRQ_COUNT
26 //#define DEBUG_IRQ
28 #ifdef DEBUG_IRQ
29 #define DPRINTF(fmt, args...) \
30 do { printf("IRQ: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
36 * Registers of interrupt controller in sun4m.
38 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * There is a system master controller and one for each cpu.
46 #define MAX_CPUS 16
47 #define MAX_PILS 16
49 typedef struct SLAVIO_INTCTLState {
50 uint32_t intreg_pending[MAX_CPUS];
51 uint32_t intregm_pending;
52 uint32_t intregm_disabled;
53 uint32_t target_cpu;
54 #ifdef DEBUG_IRQ_COUNT
55 uint64_t irq_count[32];
56 #endif
57 qemu_irq *cpu_irqs[MAX_CPUS];
58 const uint32_t *intbit_to_level;
59 uint32_t cputimer_bit;
60 uint32_t pil_out[MAX_CPUS];
61 } SLAVIO_INTCTLState;
63 #define INTCTL_MAXADDR 0xf
64 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
65 #define INTCTLM_MAXADDR 0x13
66 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
67 #define INTCTLM_MASK 0x1f
68 static void slavio_check_interrupts(void *opaque);
70 // per-cpu interrupt controller
71 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
73 SLAVIO_INTCTLState *s = opaque;
74 uint32_t saddr;
75 int cpu;
77 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
78 saddr = (addr & INTCTL_MAXADDR) >> 2;
79 switch (saddr) {
80 case 0:
81 return s->intreg_pending[cpu];
82 default:
83 break;
85 return 0;
88 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
90 SLAVIO_INTCTLState *s = opaque;
91 uint32_t saddr;
92 int cpu;
94 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
95 saddr = (addr & INTCTL_MAXADDR) >> 2;
96 switch (saddr) {
97 case 1: // clear pending softints
98 if (val & 0x4000)
99 val |= 80000000;
100 val &= 0xfffe0000;
101 s->intreg_pending[cpu] &= ~val;
102 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
103 break;
104 case 2: // set softint
105 val &= 0xfffe0000;
106 s->intreg_pending[cpu] |= val;
107 slavio_check_interrupts(s);
108 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
109 break;
110 default:
111 break;
115 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
116 slavio_intctl_mem_readl,
117 slavio_intctl_mem_readl,
118 slavio_intctl_mem_readl,
121 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
122 slavio_intctl_mem_writel,
123 slavio_intctl_mem_writel,
124 slavio_intctl_mem_writel,
127 // master system interrupt controller
128 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
130 SLAVIO_INTCTLState *s = opaque;
131 uint32_t saddr;
133 saddr = (addr & INTCTLM_MAXADDR) >> 2;
134 switch (saddr) {
135 case 0:
136 return s->intregm_pending & 0x7fffffff;
137 case 1:
138 return s->intregm_disabled;
139 case 4:
140 return s->target_cpu;
141 default:
142 break;
144 return 0;
147 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
149 SLAVIO_INTCTLState *s = opaque;
150 uint32_t saddr;
152 saddr = (addr & INTCTLM_MASK) >> 2;
153 switch (saddr) {
154 case 2: // clear (enable)
155 // Force clear unused bits
156 val &= ~0x4fb2007f;
157 s->intregm_disabled &= ~val;
158 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
159 slavio_check_interrupts(s);
160 break;
161 case 3: // set (disable, clear pending)
162 // Force clear unused bits
163 val &= ~0x4fb2007f;
164 s->intregm_disabled |= val;
165 s->intregm_pending &= ~val;
166 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
167 break;
168 case 4:
169 s->target_cpu = val & (MAX_CPUS - 1);
170 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
171 break;
172 default:
173 break;
177 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
178 slavio_intctlm_mem_readl,
179 slavio_intctlm_mem_readl,
180 slavio_intctlm_mem_readl,
183 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
184 slavio_intctlm_mem_writel,
185 slavio_intctlm_mem_writel,
186 slavio_intctlm_mem_writel,
189 void slavio_pic_info(void *opaque)
191 SLAVIO_INTCTLState *s = opaque;
192 int i;
194 for (i = 0; i < MAX_CPUS; i++) {
195 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
197 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
200 void slavio_irq_info(void *opaque)
202 #ifndef DEBUG_IRQ_COUNT
203 term_printf("irq statistic code not compiled.\n");
204 #else
205 SLAVIO_INTCTLState *s = opaque;
206 int i;
207 int64_t count;
209 term_printf("IRQ statistics:\n");
210 for (i = 0; i < 32; i++) {
211 count = s->irq_count[i];
212 if (count > 0)
213 term_printf("%2d: %" PRId64 "\n", i, count);
215 #endif
218 static void raise_pil(SLAVIO_INTCTLState *s, unsigned int pil,
219 unsigned int cpu)
221 qemu_irq irq;
222 unsigned int oldmax;
224 irq = s->cpu_irqs[cpu][pil];
226 #ifdef DEBUG_IRQ_COUNT
227 s->irq_count[pil]++;
228 #endif
229 oldmax = s->pil_out[cpu];
230 if (oldmax > 0 && oldmax != pil)
231 qemu_irq_lower(s->cpu_irqs[cpu][oldmax]);
232 s->pil_out[cpu] = pil;
233 if (pil > 0)
234 qemu_irq_raise(irq);
235 DPRINTF("cpu %d pil %d\n", cpu, pil);
238 static void slavio_check_interrupts(void *opaque)
240 SLAVIO_INTCTLState *s = opaque;
241 uint32_t pending = s->intregm_pending;
242 unsigned int i, j, max = 0;
244 pending &= ~s->intregm_disabled;
246 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
247 for (i = 0; i < MAX_CPUS; i++) {
248 max = 0;
249 if (pending && !(s->intregm_disabled & 0x80000000) &&
250 (i == s->target_cpu)) {
251 for (j = 0; j < 32; j++) {
252 if (pending & (1 << j)) {
253 if (max < s->intbit_to_level[j])
254 max = s->intbit_to_level[j];
258 for (j = 17; j < 32; j++) {
259 if (s->intreg_pending[i] & (1 << j)) {
260 if (max < j - 16)
261 max = j - 16;
264 raise_pil(s, max, i);
269 * "irq" here is the bit number in the system interrupt register to
270 * separate serial and keyboard interrupts sharing a level.
272 static void slavio_set_irq(void *opaque, int irq, int level)
274 SLAVIO_INTCTLState *s = opaque;
275 uint32_t mask = 1 << irq;
276 uint32_t pil = s->intbit_to_level[irq];
278 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
279 level);
280 if (pil > 0) {
281 if (level) {
282 s->intregm_pending |= mask;
283 s->intreg_pending[s->target_cpu] |= 1 << pil;
284 } else {
285 s->intregm_pending &= ~mask;
286 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
288 slavio_check_interrupts(s);
292 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
294 SLAVIO_INTCTLState *s = opaque;
296 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
298 if (level)
299 s->intreg_pending[cpu] |= s->cputimer_bit;
300 else
301 s->intreg_pending[cpu] &= ~s->cputimer_bit;
303 slavio_check_interrupts(s);
306 static void slavio_intctl_save(QEMUFile *f, void *opaque)
308 SLAVIO_INTCTLState *s = opaque;
309 int i;
311 for (i = 0; i < MAX_CPUS; i++) {
312 qemu_put_be32s(f, &s->intreg_pending[i]);
314 qemu_put_be32s(f, &s->intregm_pending);
315 qemu_put_be32s(f, &s->intregm_disabled);
316 qemu_put_be32s(f, &s->target_cpu);
319 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
321 SLAVIO_INTCTLState *s = opaque;
322 int i;
324 if (version_id != 1)
325 return -EINVAL;
327 for (i = 0; i < MAX_CPUS; i++) {
328 qemu_get_be32s(f, &s->intreg_pending[i]);
330 qemu_get_be32s(f, &s->intregm_pending);
331 qemu_get_be32s(f, &s->intregm_disabled);
332 qemu_get_be32s(f, &s->target_cpu);
333 return 0;
336 static void slavio_intctl_reset(void *opaque)
338 SLAVIO_INTCTLState *s = opaque;
339 int i;
341 for (i = 0; i < MAX_CPUS; i++) {
342 s->intreg_pending[i] = 0;
344 s->intregm_disabled = ~0xffb2007f;
345 s->intregm_pending = 0;
346 s->target_cpu = 0;
349 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
350 const uint32_t *intbit_to_level,
351 qemu_irq **irq, qemu_irq **cpu_irq,
352 qemu_irq **parent_irq, unsigned int cputimer)
354 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
355 SLAVIO_INTCTLState *s;
357 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
358 if (!s)
359 return NULL;
361 s->intbit_to_level = intbit_to_level;
362 for (i = 0; i < MAX_CPUS; i++) {
363 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
364 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
365 slavio_intctl_io_memory);
366 s->cpu_irqs[i] = parent_irq[i];
369 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
370 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
372 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
373 qemu_register_reset(slavio_intctl_reset, s);
374 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
376 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
377 s->cputimer_bit = 1 << s->intbit_to_level[cputimer];
378 slavio_intctl_reset(s);
379 return s;