Use unsigned 32-bit load for ld/lduw
[qemu/qemu_0_9_1_stable.git] / hw / ne2000.c
blob6d5aa56e17947c3e9577ed6f8520b832777fb8eb
1 /*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 /* debug NE2000 card */
27 //#define DEBUG_NE2000
29 #define MAX_ETH_FRAME_SIZE 1514
31 #define E8390_CMD 0x00 /* The command register (for all pages) */
32 /* Page 0 register offsets. */
33 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
34 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
35 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
36 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
37 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
38 #define EN0_TSR 0x04 /* Transmit status reg RD */
39 #define EN0_TPSR 0x04 /* Transmit starting page WR */
40 #define EN0_NCR 0x05 /* Number of collision reg RD */
41 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
42 #define EN0_FIFO 0x06 /* FIFO RD */
43 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
44 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
45 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
46 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
47 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
48 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
49 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
50 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
51 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
52 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
53 #define EN0_RSR 0x0c /* rx status reg RD */
54 #define EN0_RXCR 0x0c /* RX configuration reg WR */
55 #define EN0_TXCR 0x0d /* TX configuration reg WR */
56 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
57 #define EN0_DCFG 0x0e /* Data configuration reg WR */
58 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
59 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
60 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
62 #define EN1_PHYS 0x11
63 #define EN1_CURPAG 0x17
64 #define EN1_MULT 0x18
66 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
67 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
69 #define EN3_CONFIG0 0x33
70 #define EN3_CONFIG1 0x34
71 #define EN3_CONFIG2 0x35
72 #define EN3_CONFIG3 0x36
74 /* Register accessed at EN_CMD, the 8390 base addr. */
75 #define E8390_STOP 0x01 /* Stop and reset the chip */
76 #define E8390_START 0x02 /* Start the chip, clear reset */
77 #define E8390_TRANS 0x04 /* Transmit a frame */
78 #define E8390_RREAD 0x08 /* Remote read */
79 #define E8390_RWRITE 0x10 /* Remote write */
80 #define E8390_NODMA 0x20 /* Remote DMA */
81 #define E8390_PAGE0 0x00 /* Select page chip registers */
82 #define E8390_PAGE1 0x40 /* using the two high-order bits */
83 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
85 /* Bits in EN0_ISR - Interrupt status register */
86 #define ENISR_RX 0x01 /* Receiver, no error */
87 #define ENISR_TX 0x02 /* Transmitter, no error */
88 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
89 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
90 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
91 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
92 #define ENISR_RDC 0x40 /* remote dma complete */
93 #define ENISR_RESET 0x80 /* Reset completed */
94 #define ENISR_ALL 0x3f /* Interrupts we will enable */
96 /* Bits in received packet status byte and EN0_RSR*/
97 #define ENRSR_RXOK 0x01 /* Received a good packet */
98 #define ENRSR_CRC 0x02 /* CRC error */
99 #define ENRSR_FAE 0x04 /* frame alignment error */
100 #define ENRSR_FO 0x08 /* FIFO overrun */
101 #define ENRSR_MPA 0x10 /* missed pkt */
102 #define ENRSR_PHY 0x20 /* physical/multicast address */
103 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
104 #define ENRSR_DEF 0x80 /* deferring */
106 /* Transmitted packet status, EN0_TSR. */
107 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
108 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
109 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
110 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
111 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
112 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
113 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
114 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
116 #define NE2000_PMEM_SIZE (32*1024)
117 #define NE2000_PMEM_START (16*1024)
118 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
119 #define NE2000_MEM_SIZE NE2000_PMEM_END
121 typedef struct NE2000State {
122 uint8_t cmd;
123 uint32_t start;
124 uint32_t stop;
125 uint8_t boundary;
126 uint8_t tsr;
127 uint8_t tpsr;
128 uint16_t tcnt;
129 uint16_t rcnt;
130 uint32_t rsar;
131 uint8_t rsr;
132 uint8_t rxcr;
133 uint8_t isr;
134 uint8_t dcfg;
135 uint8_t imr;
136 uint8_t phys[6]; /* mac address */
137 uint8_t curpag;
138 uint8_t mult[8]; /* multicast mask array */
139 qemu_irq irq;
140 PCIDevice *pci_dev;
141 VLANClientState *vc;
142 uint8_t macaddr[6];
143 uint8_t mem[NE2000_MEM_SIZE];
144 } NE2000State;
146 static void ne2000_reset(NE2000State *s)
148 int i;
150 s->isr = ENISR_RESET;
151 memcpy(s->mem, s->macaddr, 6);
152 s->mem[14] = 0x57;
153 s->mem[15] = 0x57;
155 /* duplicate prom data */
156 for(i = 15;i >= 0; i--) {
157 s->mem[2 * i] = s->mem[i];
158 s->mem[2 * i + 1] = s->mem[i];
162 static void ne2000_update_irq(NE2000State *s)
164 int isr;
165 isr = (s->isr & s->imr) & 0x7f;
166 #if defined(DEBUG_NE2000)
167 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
168 isr ? 1 : 0, s->isr, s->imr);
169 #endif
170 qemu_set_irq(s->irq, (isr != 0));
173 #define POLYNOMIAL 0x04c11db6
175 /* From FreeBSD */
176 /* XXX: optimize */
177 static int compute_mcast_idx(const uint8_t *ep)
179 uint32_t crc;
180 int carry, i, j;
181 uint8_t b;
183 crc = 0xffffffff;
184 for (i = 0; i < 6; i++) {
185 b = *ep++;
186 for (j = 0; j < 8; j++) {
187 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
188 crc <<= 1;
189 b >>= 1;
190 if (carry)
191 crc = ((crc ^ POLYNOMIAL) | carry);
194 return (crc >> 26);
197 static int ne2000_buffer_full(NE2000State *s)
199 int avail, index, boundary;
201 index = s->curpag << 8;
202 boundary = s->boundary << 8;
203 if (index < boundary)
204 avail = boundary - index;
205 else
206 avail = (s->stop - s->start) - (index - boundary);
207 if (avail < (MAX_ETH_FRAME_SIZE + 4))
208 return 1;
209 return 0;
212 static int ne2000_can_receive(void *opaque)
214 NE2000State *s = opaque;
216 if (s->cmd & E8390_STOP)
217 return 1;
218 return !ne2000_buffer_full(s);
221 #define MIN_BUF_SIZE 60
223 static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
225 NE2000State *s = opaque;
226 uint8_t *p;
227 unsigned int total_len, next, avail, len, index, mcast_idx;
228 uint8_t buf1[60];
229 static const uint8_t broadcast_macaddr[6] =
230 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
232 #if defined(DEBUG_NE2000)
233 printf("NE2000: received len=%d\n", size);
234 #endif
236 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
237 return;
239 /* XXX: check this */
240 if (s->rxcr & 0x10) {
241 /* promiscuous: receive all */
242 } else {
243 if (!memcmp(buf, broadcast_macaddr, 6)) {
244 /* broadcast address */
245 if (!(s->rxcr & 0x04))
246 return;
247 } else if (buf[0] & 0x01) {
248 /* multicast */
249 if (!(s->rxcr & 0x08))
250 return;
251 mcast_idx = compute_mcast_idx(buf);
252 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
253 return;
254 } else if (s->mem[0] == buf[0] &&
255 s->mem[2] == buf[1] &&
256 s->mem[4] == buf[2] &&
257 s->mem[6] == buf[3] &&
258 s->mem[8] == buf[4] &&
259 s->mem[10] == buf[5]) {
260 /* match */
261 } else {
262 return;
267 /* if too small buffer, then expand it */
268 if (size < MIN_BUF_SIZE) {
269 memcpy(buf1, buf, size);
270 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
271 buf = buf1;
272 size = MIN_BUF_SIZE;
275 index = s->curpag << 8;
276 /* 4 bytes for header */
277 total_len = size + 4;
278 /* address for next packet (4 bytes for CRC) */
279 next = index + ((total_len + 4 + 255) & ~0xff);
280 if (next >= s->stop)
281 next -= (s->stop - s->start);
282 /* prepare packet header */
283 p = s->mem + index;
284 s->rsr = ENRSR_RXOK; /* receive status */
285 /* XXX: check this */
286 if (buf[0] & 0x01)
287 s->rsr |= ENRSR_PHY;
288 p[0] = s->rsr;
289 p[1] = next >> 8;
290 p[2] = total_len;
291 p[3] = total_len >> 8;
292 index += 4;
294 /* write packet data */
295 while (size > 0) {
296 if (index <= s->stop)
297 avail = s->stop - index;
298 else
299 avail = 0;
300 len = size;
301 if (len > avail)
302 len = avail;
303 memcpy(s->mem + index, buf, len);
304 buf += len;
305 index += len;
306 if (index == s->stop)
307 index = s->start;
308 size -= len;
310 s->curpag = next >> 8;
312 /* now we can signal we have received something */
313 s->isr |= ENISR_RX;
314 ne2000_update_irq(s);
317 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
319 NE2000State *s = opaque;
320 int offset, page, index;
322 addr &= 0xf;
323 #ifdef DEBUG_NE2000
324 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
325 #endif
326 if (addr == E8390_CMD) {
327 /* control register */
328 s->cmd = val;
329 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
330 s->isr &= ~ENISR_RESET;
331 /* test specific case: zero length transfer */
332 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
333 s->rcnt == 0) {
334 s->isr |= ENISR_RDC;
335 ne2000_update_irq(s);
337 if (val & E8390_TRANS) {
338 index = (s->tpsr << 8);
339 /* XXX: next 2 lines are a hack to make netware 3.11 work */
340 if (index >= NE2000_PMEM_END)
341 index -= NE2000_PMEM_SIZE;
342 /* fail safe: check range on the transmitted length */
343 if (index + s->tcnt <= NE2000_PMEM_END) {
344 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
346 /* signal end of transfer */
347 s->tsr = ENTSR_PTX;
348 s->isr |= ENISR_TX;
349 s->cmd &= ~E8390_TRANS;
350 ne2000_update_irq(s);
353 } else {
354 page = s->cmd >> 6;
355 offset = addr | (page << 4);
356 switch(offset) {
357 case EN0_STARTPG:
358 s->start = val << 8;
359 break;
360 case EN0_STOPPG:
361 s->stop = val << 8;
362 break;
363 case EN0_BOUNDARY:
364 s->boundary = val;
365 break;
366 case EN0_IMR:
367 s->imr = val;
368 ne2000_update_irq(s);
369 break;
370 case EN0_TPSR:
371 s->tpsr = val;
372 break;
373 case EN0_TCNTLO:
374 s->tcnt = (s->tcnt & 0xff00) | val;
375 break;
376 case EN0_TCNTHI:
377 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
378 break;
379 case EN0_RSARLO:
380 s->rsar = (s->rsar & 0xff00) | val;
381 break;
382 case EN0_RSARHI:
383 s->rsar = (s->rsar & 0x00ff) | (val << 8);
384 break;
385 case EN0_RCNTLO:
386 s->rcnt = (s->rcnt & 0xff00) | val;
387 break;
388 case EN0_RCNTHI:
389 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
390 break;
391 case EN0_RXCR:
392 s->rxcr = val;
393 break;
394 case EN0_DCFG:
395 s->dcfg = val;
396 break;
397 case EN0_ISR:
398 s->isr &= ~(val & 0x7f);
399 ne2000_update_irq(s);
400 break;
401 case EN1_PHYS ... EN1_PHYS + 5:
402 s->phys[offset - EN1_PHYS] = val;
403 break;
404 case EN1_CURPAG:
405 s->curpag = val;
406 break;
407 case EN1_MULT ... EN1_MULT + 7:
408 s->mult[offset - EN1_MULT] = val;
409 break;
414 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
416 NE2000State *s = opaque;
417 int offset, page, ret;
419 addr &= 0xf;
420 if (addr == E8390_CMD) {
421 ret = s->cmd;
422 } else {
423 page = s->cmd >> 6;
424 offset = addr | (page << 4);
425 switch(offset) {
426 case EN0_TSR:
427 ret = s->tsr;
428 break;
429 case EN0_BOUNDARY:
430 ret = s->boundary;
431 break;
432 case EN0_ISR:
433 ret = s->isr;
434 break;
435 case EN0_RSARLO:
436 ret = s->rsar & 0x00ff;
437 break;
438 case EN0_RSARHI:
439 ret = s->rsar >> 8;
440 break;
441 case EN1_PHYS ... EN1_PHYS + 5:
442 ret = s->phys[offset - EN1_PHYS];
443 break;
444 case EN1_CURPAG:
445 ret = s->curpag;
446 break;
447 case EN1_MULT ... EN1_MULT + 7:
448 ret = s->mult[offset - EN1_MULT];
449 break;
450 case EN0_RSR:
451 ret = s->rsr;
452 break;
453 case EN2_STARTPG:
454 ret = s->start >> 8;
455 break;
456 case EN2_STOPPG:
457 ret = s->stop >> 8;
458 break;
459 case EN0_RTL8029ID0:
460 ret = 0x50;
461 break;
462 case EN0_RTL8029ID1:
463 ret = 0x43;
464 break;
465 case EN3_CONFIG0:
466 ret = 0; /* 10baseT media */
467 break;
468 case EN3_CONFIG2:
469 ret = 0x40; /* 10baseT active */
470 break;
471 case EN3_CONFIG3:
472 ret = 0x40; /* Full duplex */
473 break;
474 default:
475 ret = 0x00;
476 break;
479 #ifdef DEBUG_NE2000
480 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
481 #endif
482 return ret;
485 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
486 uint32_t val)
488 if (addr < 32 ||
489 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
490 s->mem[addr] = val;
494 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
495 uint32_t val)
497 addr &= ~1; /* XXX: check exact behaviour if not even */
498 if (addr < 32 ||
499 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
500 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
504 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
505 uint32_t val)
507 addr &= ~1; /* XXX: check exact behaviour if not even */
508 if (addr < 32 ||
509 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
510 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
514 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
516 if (addr < 32 ||
517 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
518 return s->mem[addr];
519 } else {
520 return 0xff;
524 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
526 addr &= ~1; /* XXX: check exact behaviour if not even */
527 if (addr < 32 ||
528 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
529 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
530 } else {
531 return 0xffff;
535 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
537 addr &= ~1; /* XXX: check exact behaviour if not even */
538 if (addr < 32 ||
539 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
540 return le32_to_cpupu((uint32_t *)(s->mem + addr));
541 } else {
542 return 0xffffffff;
546 static inline void ne2000_dma_update(NE2000State *s, int len)
548 s->rsar += len;
549 /* wrap */
550 /* XXX: check what to do if rsar > stop */
551 if (s->rsar == s->stop)
552 s->rsar = s->start;
554 if (s->rcnt <= len) {
555 s->rcnt = 0;
556 /* signal end of transfer */
557 s->isr |= ENISR_RDC;
558 ne2000_update_irq(s);
559 } else {
560 s->rcnt -= len;
564 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
566 NE2000State *s = opaque;
568 #ifdef DEBUG_NE2000
569 printf("NE2000: asic write val=0x%04x\n", val);
570 #endif
571 if (s->rcnt == 0)
572 return;
573 if (s->dcfg & 0x01) {
574 /* 16 bit access */
575 ne2000_mem_writew(s, s->rsar, val);
576 ne2000_dma_update(s, 2);
577 } else {
578 /* 8 bit access */
579 ne2000_mem_writeb(s, s->rsar, val);
580 ne2000_dma_update(s, 1);
584 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
586 NE2000State *s = opaque;
587 int ret;
589 if (s->dcfg & 0x01) {
590 /* 16 bit access */
591 ret = ne2000_mem_readw(s, s->rsar);
592 ne2000_dma_update(s, 2);
593 } else {
594 /* 8 bit access */
595 ret = ne2000_mem_readb(s, s->rsar);
596 ne2000_dma_update(s, 1);
598 #ifdef DEBUG_NE2000
599 printf("NE2000: asic read val=0x%04x\n", ret);
600 #endif
601 return ret;
604 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
606 NE2000State *s = opaque;
608 #ifdef DEBUG_NE2000
609 printf("NE2000: asic writel val=0x%04x\n", val);
610 #endif
611 if (s->rcnt == 0)
612 return;
613 /* 32 bit access */
614 ne2000_mem_writel(s, s->rsar, val);
615 ne2000_dma_update(s, 4);
618 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
620 NE2000State *s = opaque;
621 int ret;
623 /* 32 bit access */
624 ret = ne2000_mem_readl(s, s->rsar);
625 ne2000_dma_update(s, 4);
626 #ifdef DEBUG_NE2000
627 printf("NE2000: asic readl val=0x%04x\n", ret);
628 #endif
629 return ret;
632 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
634 /* nothing to do (end of reset pulse) */
637 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
639 NE2000State *s = opaque;
640 ne2000_reset(s);
641 return 0;
644 static void ne2000_save(QEMUFile* f,void* opaque)
646 NE2000State* s=(NE2000State*)opaque;
647 int tmp;
649 if (s->pci_dev)
650 pci_device_save(s->pci_dev, f);
652 qemu_put_8s(f, &s->rxcr);
654 qemu_put_8s(f, &s->cmd);
655 qemu_put_be32s(f, &s->start);
656 qemu_put_be32s(f, &s->stop);
657 qemu_put_8s(f, &s->boundary);
658 qemu_put_8s(f, &s->tsr);
659 qemu_put_8s(f, &s->tpsr);
660 qemu_put_be16s(f, &s->tcnt);
661 qemu_put_be16s(f, &s->rcnt);
662 qemu_put_be32s(f, &s->rsar);
663 qemu_put_8s(f, &s->rsr);
664 qemu_put_8s(f, &s->isr);
665 qemu_put_8s(f, &s->dcfg);
666 qemu_put_8s(f, &s->imr);
667 qemu_put_buffer(f, s->phys, 6);
668 qemu_put_8s(f, &s->curpag);
669 qemu_put_buffer(f, s->mult, 8);
670 tmp = 0;
671 qemu_put_be32s(f, &tmp); /* ignored, was irq */
672 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
675 static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
677 NE2000State* s=(NE2000State*)opaque;
678 int ret;
679 int tmp;
681 if (version_id > 3)
682 return -EINVAL;
684 if (s->pci_dev && version_id >= 3) {
685 ret = pci_device_load(s->pci_dev, f);
686 if (ret < 0)
687 return ret;
690 if (version_id >= 2) {
691 qemu_get_8s(f, &s->rxcr);
692 } else {
693 s->rxcr = 0x0c;
696 qemu_get_8s(f, &s->cmd);
697 qemu_get_be32s(f, &s->start);
698 qemu_get_be32s(f, &s->stop);
699 qemu_get_8s(f, &s->boundary);
700 qemu_get_8s(f, &s->tsr);
701 qemu_get_8s(f, &s->tpsr);
702 qemu_get_be16s(f, &s->tcnt);
703 qemu_get_be16s(f, &s->rcnt);
704 qemu_get_be32s(f, &s->rsar);
705 qemu_get_8s(f, &s->rsr);
706 qemu_get_8s(f, &s->isr);
707 qemu_get_8s(f, &s->dcfg);
708 qemu_get_8s(f, &s->imr);
709 qemu_get_buffer(f, s->phys, 6);
710 qemu_get_8s(f, &s->curpag);
711 qemu_get_buffer(f, s->mult, 8);
712 qemu_get_be32s(f, &tmp); /* ignored */
713 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
715 return 0;
718 void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
720 NE2000State *s;
722 s = qemu_mallocz(sizeof(NE2000State));
723 if (!s)
724 return;
726 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
727 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
729 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
730 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
731 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
732 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
734 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
735 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
736 s->irq = irq;
737 memcpy(s->macaddr, nd->macaddr, 6);
739 ne2000_reset(s);
741 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
742 ne2000_can_receive, s);
744 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
745 "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
746 s->macaddr[0],
747 s->macaddr[1],
748 s->macaddr[2],
749 s->macaddr[3],
750 s->macaddr[4],
751 s->macaddr[5]);
753 register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
756 /***********************************************************/
757 /* PCI NE2000 definitions */
759 typedef struct PCINE2000State {
760 PCIDevice dev;
761 NE2000State ne2000;
762 } PCINE2000State;
764 static void ne2000_map(PCIDevice *pci_dev, int region_num,
765 uint32_t addr, uint32_t size, int type)
767 PCINE2000State *d = (PCINE2000State *)pci_dev;
768 NE2000State *s = &d->ne2000;
770 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
771 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
773 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
774 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
775 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
776 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
777 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
778 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
780 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
781 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
784 void pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
786 PCINE2000State *d;
787 NE2000State *s;
788 uint8_t *pci_conf;
790 d = (PCINE2000State *)pci_register_device(bus,
791 "NE2000", sizeof(PCINE2000State),
792 devfn,
793 NULL, NULL);
794 pci_conf = d->dev.config;
795 pci_conf[0x00] = 0xec; // Realtek 8029
796 pci_conf[0x01] = 0x10;
797 pci_conf[0x02] = 0x29;
798 pci_conf[0x03] = 0x80;
799 pci_conf[0x0a] = 0x00; // ethernet network controller
800 pci_conf[0x0b] = 0x02;
801 pci_conf[0x0e] = 0x00; // header_type
802 pci_conf[0x3d] = 1; // interrupt pin 0
804 pci_register_io_region(&d->dev, 0, 0x100,
805 PCI_ADDRESS_SPACE_IO, ne2000_map);
806 s = &d->ne2000;
807 s->irq = d->dev.irq[0];
808 s->pci_dev = (PCIDevice *)d;
809 memcpy(s->macaddr, nd->macaddr, 6);
810 ne2000_reset(s);
811 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
812 ne2000_can_receive, s);
814 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
815 "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
816 s->macaddr[0],
817 s->macaddr[1],
818 s->macaddr[2],
819 s->macaddr[3],
820 s->macaddr[4],
821 s->macaddr[5]);
823 /* XXX: instance number ? */
824 register_savevm("ne2000", 0, 3, ne2000_save, ne2000_load, s);