Use the shiny new clz helpers.
[qemu/qemu_0_9_1_stable.git] / exec.c
blob0daeaabe2524911ffdaf0345e7eb9074f6d3e7ba
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
35 #include "cpu.h"
36 #include "exec-all.h"
37 #if defined(CONFIG_USER_ONLY)
38 #include <qemu.h>
39 #endif
41 //#define DEBUG_TB_INVALIDATE
42 //#define DEBUG_FLUSH
43 //#define DEBUG_TLB
44 //#define DEBUG_UNASSIGNED
46 /* make various TB consistency checks */
47 //#define DEBUG_TB_CHECK
48 //#define DEBUG_TLB_CHECK
50 //#define DEBUG_IOPORT
51 //#define DEBUG_SUBPAGE
53 #if !defined(CONFIG_USER_ONLY)
54 /* TB consistency checks only implemented for usermode emulation. */
55 #undef DEBUG_TB_CHECK
56 #endif
58 /* threshold to flush the translated code buffer */
59 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
61 #define SMC_BITMAP_USE_THRESHOLD 10
63 #define MMAP_AREA_START 0x00000000
64 #define MMAP_AREA_END 0xa8000000
66 #if defined(TARGET_SPARC64)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 41
68 #elif defined(TARGET_SPARC)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 36
70 #elif defined(TARGET_ALPHA)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 42
72 #define TARGET_VIRT_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_PPC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #else
76 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
77 #define TARGET_PHYS_ADDR_SPACE_BITS 32
78 #endif
80 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
86 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
87 uint8_t *code_gen_ptr;
89 int phys_ram_size;
90 int phys_ram_fd;
91 uint8_t *phys_ram_base;
92 uint8_t *phys_ram_dirty;
93 static ram_addr_t phys_ram_alloc_offset = 0;
95 CPUState *first_cpu;
96 /* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
98 CPUState *cpu_single_env;
100 typedef struct PageDesc {
101 /* list of TBs intersecting this ram page */
102 TranslationBlock *first_tb;
103 /* in order to optimize self modifying code, we count the number
104 of lookups we do to a given page to use a bitmap */
105 unsigned int code_write_count;
106 uint8_t *code_bitmap;
107 #if defined(CONFIG_USER_ONLY)
108 unsigned long flags;
109 #endif
110 } PageDesc;
112 typedef struct PhysPageDesc {
113 /* offset in host memory of the page + io_index in the low 12 bits */
114 uint32_t phys_offset;
115 } PhysPageDesc;
117 #define L2_BITS 10
118 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
119 /* XXX: this is a temporary hack for alpha target.
120 * In the future, this is to be replaced by a multi-level table
121 * to actually be able to handle the complete 64 bits address space.
123 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
124 #else
125 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
126 #endif
128 #define L1_SIZE (1 << L1_BITS)
129 #define L2_SIZE (1 << L2_BITS)
131 static void io_mem_init(void);
133 unsigned long qemu_real_host_page_size;
134 unsigned long qemu_host_page_bits;
135 unsigned long qemu_host_page_size;
136 unsigned long qemu_host_page_mask;
138 /* XXX: for system emulation, it could just be an array */
139 static PageDesc *l1_map[L1_SIZE];
140 PhysPageDesc **l1_phys_map;
142 /* io memory support */
143 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
144 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
145 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
146 static int io_mem_nb;
147 #if defined(CONFIG_SOFTMMU)
148 static int io_mem_watch;
149 #endif
151 /* log support */
152 char *logfilename = "/tmp/qemu.log";
153 FILE *logfile;
154 int loglevel;
155 static int log_append = 0;
157 /* statistics */
158 static int tlb_flush_count;
159 static int tb_flush_count;
160 static int tb_phys_invalidate_count;
162 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
163 typedef struct subpage_t {
164 target_phys_addr_t base;
165 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
166 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
167 void *opaque[TARGET_PAGE_SIZE];
168 } subpage_t;
170 static void page_init(void)
172 /* NOTE: we can always suppose that qemu_host_page_size >=
173 TARGET_PAGE_SIZE */
174 #ifdef _WIN32
176 SYSTEM_INFO system_info;
177 DWORD old_protect;
179 GetSystemInfo(&system_info);
180 qemu_real_host_page_size = system_info.dwPageSize;
182 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
183 PAGE_EXECUTE_READWRITE, &old_protect);
185 #else
186 qemu_real_host_page_size = getpagesize();
188 unsigned long start, end;
190 start = (unsigned long)code_gen_buffer;
191 start &= ~(qemu_real_host_page_size - 1);
193 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
200 #endif
202 if (qemu_host_page_size == 0)
203 qemu_host_page_size = qemu_real_host_page_size;
204 if (qemu_host_page_size < TARGET_PAGE_SIZE)
205 qemu_host_page_size = TARGET_PAGE_SIZE;
206 qemu_host_page_bits = 0;
207 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
208 qemu_host_page_bits++;
209 qemu_host_page_mask = ~(qemu_host_page_size - 1);
210 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
211 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
214 static inline PageDesc *page_find_alloc(unsigned int index)
216 PageDesc **lp, *p;
218 lp = &l1_map[index >> L2_BITS];
219 p = *lp;
220 if (!p) {
221 /* allocate if not found */
222 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
223 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
224 *lp = p;
226 return p + (index & (L2_SIZE - 1));
229 static inline PageDesc *page_find(unsigned int index)
231 PageDesc *p;
233 p = l1_map[index >> L2_BITS];
234 if (!p)
235 return 0;
236 return p + (index & (L2_SIZE - 1));
239 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
241 void **lp, **p;
242 PhysPageDesc *pd;
244 p = (void **)l1_phys_map;
245 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
247 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
248 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
249 #endif
250 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
251 p = *lp;
252 if (!p) {
253 /* allocate if not found */
254 if (!alloc)
255 return NULL;
256 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
257 memset(p, 0, sizeof(void *) * L1_SIZE);
258 *lp = p;
260 #endif
261 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
262 pd = *lp;
263 if (!pd) {
264 int i;
265 /* allocate if not found */
266 if (!alloc)
267 return NULL;
268 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
269 *lp = pd;
270 for (i = 0; i < L2_SIZE; i++)
271 pd[i].phys_offset = IO_MEM_UNASSIGNED;
273 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
276 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
278 return phys_page_find_alloc(index, 0);
281 #if !defined(CONFIG_USER_ONLY)
282 static void tlb_protect_code(ram_addr_t ram_addr);
283 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
284 target_ulong vaddr);
285 #endif
287 void cpu_exec_init(CPUState *env)
289 CPUState **penv;
290 int cpu_index;
292 if (!code_gen_ptr) {
293 code_gen_ptr = code_gen_buffer;
294 page_init();
295 io_mem_init();
297 env->next_cpu = NULL;
298 penv = &first_cpu;
299 cpu_index = 0;
300 while (*penv != NULL) {
301 penv = (CPUState **)&(*penv)->next_cpu;
302 cpu_index++;
304 env->cpu_index = cpu_index;
305 env->nb_watchpoints = 0;
306 *penv = env;
309 static inline void invalidate_page_bitmap(PageDesc *p)
311 if (p->code_bitmap) {
312 qemu_free(p->code_bitmap);
313 p->code_bitmap = NULL;
315 p->code_write_count = 0;
318 /* set to NULL all the 'first_tb' fields in all PageDescs */
319 static void page_flush_tb(void)
321 int i, j;
322 PageDesc *p;
324 for(i = 0; i < L1_SIZE; i++) {
325 p = l1_map[i];
326 if (p) {
327 for(j = 0; j < L2_SIZE; j++) {
328 p->first_tb = NULL;
329 invalidate_page_bitmap(p);
330 p++;
336 /* flush all the translation blocks */
337 /* XXX: tb_flush is currently not thread safe */
338 void tb_flush(CPUState *env1)
340 CPUState *env;
341 #if defined(DEBUG_FLUSH)
342 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
343 code_gen_ptr - code_gen_buffer,
344 nb_tbs,
345 nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
346 #endif
347 nb_tbs = 0;
349 for(env = first_cpu; env != NULL; env = env->next_cpu) {
350 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
353 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
354 page_flush_tb();
356 code_gen_ptr = code_gen_buffer;
357 /* XXX: flush processor icache at this point if cache flush is
358 expensive */
359 tb_flush_count++;
362 #ifdef DEBUG_TB_CHECK
364 static void tb_invalidate_check(target_ulong address)
366 TranslationBlock *tb;
367 int i;
368 address &= TARGET_PAGE_MASK;
369 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
370 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
371 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
372 address >= tb->pc + tb->size)) {
373 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
374 address, (long)tb->pc, tb->size);
380 /* verify that all the pages have correct rights for code */
381 static void tb_page_check(void)
383 TranslationBlock *tb;
384 int i, flags1, flags2;
386 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
387 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
388 flags1 = page_get_flags(tb->pc);
389 flags2 = page_get_flags(tb->pc + tb->size - 1);
390 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
391 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
392 (long)tb->pc, tb->size, flags1, flags2);
398 void tb_jmp_check(TranslationBlock *tb)
400 TranslationBlock *tb1;
401 unsigned int n1;
403 /* suppress any remaining jumps to this TB */
404 tb1 = tb->jmp_first;
405 for(;;) {
406 n1 = (long)tb1 & 3;
407 tb1 = (TranslationBlock *)((long)tb1 & ~3);
408 if (n1 == 2)
409 break;
410 tb1 = tb1->jmp_next[n1];
412 /* check end of list */
413 if (tb1 != tb) {
414 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
418 #endif
420 /* invalidate one TB */
421 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
422 int next_offset)
424 TranslationBlock *tb1;
425 for(;;) {
426 tb1 = *ptb;
427 if (tb1 == tb) {
428 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
429 break;
431 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
435 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
437 TranslationBlock *tb1;
438 unsigned int n1;
440 for(;;) {
441 tb1 = *ptb;
442 n1 = (long)tb1 & 3;
443 tb1 = (TranslationBlock *)((long)tb1 & ~3);
444 if (tb1 == tb) {
445 *ptb = tb1->page_next[n1];
446 break;
448 ptb = &tb1->page_next[n1];
452 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
454 TranslationBlock *tb1, **ptb;
455 unsigned int n1;
457 ptb = &tb->jmp_next[n];
458 tb1 = *ptb;
459 if (tb1) {
460 /* find tb(n) in circular list */
461 for(;;) {
462 tb1 = *ptb;
463 n1 = (long)tb1 & 3;
464 tb1 = (TranslationBlock *)((long)tb1 & ~3);
465 if (n1 == n && tb1 == tb)
466 break;
467 if (n1 == 2) {
468 ptb = &tb1->jmp_first;
469 } else {
470 ptb = &tb1->jmp_next[n1];
473 /* now we can suppress tb(n) from the list */
474 *ptb = tb->jmp_next[n];
476 tb->jmp_next[n] = NULL;
480 /* reset the jump entry 'n' of a TB so that it is not chained to
481 another TB */
482 static inline void tb_reset_jump(TranslationBlock *tb, int n)
484 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
487 static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
489 CPUState *env;
490 PageDesc *p;
491 unsigned int h, n1;
492 target_ulong phys_pc;
493 TranslationBlock *tb1, *tb2;
495 /* remove the TB from the hash list */
496 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
497 h = tb_phys_hash_func(phys_pc);
498 tb_remove(&tb_phys_hash[h], tb,
499 offsetof(TranslationBlock, phys_hash_next));
501 /* remove the TB from the page list */
502 if (tb->page_addr[0] != page_addr) {
503 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
504 tb_page_remove(&p->first_tb, tb);
505 invalidate_page_bitmap(p);
507 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
508 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
509 tb_page_remove(&p->first_tb, tb);
510 invalidate_page_bitmap(p);
513 tb_invalidated_flag = 1;
515 /* remove the TB from the hash list */
516 h = tb_jmp_cache_hash_func(tb->pc);
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 if (env->tb_jmp_cache[h] == tb)
519 env->tb_jmp_cache[h] = NULL;
522 /* suppress this TB from the two jump lists */
523 tb_jmp_remove(tb, 0);
524 tb_jmp_remove(tb, 1);
526 /* suppress any remaining jumps to this TB */
527 tb1 = tb->jmp_first;
528 for(;;) {
529 n1 = (long)tb1 & 3;
530 if (n1 == 2)
531 break;
532 tb1 = (TranslationBlock *)((long)tb1 & ~3);
533 tb2 = tb1->jmp_next[n1];
534 tb_reset_jump(tb1, n1);
535 tb1->jmp_next[n1] = NULL;
536 tb1 = tb2;
538 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
540 tb_phys_invalidate_count++;
543 static inline void set_bits(uint8_t *tab, int start, int len)
545 int end, mask, end1;
547 end = start + len;
548 tab += start >> 3;
549 mask = 0xff << (start & 7);
550 if ((start & ~7) == (end & ~7)) {
551 if (start < end) {
552 mask &= ~(0xff << (end & 7));
553 *tab |= mask;
555 } else {
556 *tab++ |= mask;
557 start = (start + 8) & ~7;
558 end1 = end & ~7;
559 while (start < end1) {
560 *tab++ = 0xff;
561 start += 8;
563 if (start < end) {
564 mask = ~(0xff << (end & 7));
565 *tab |= mask;
570 static void build_page_bitmap(PageDesc *p)
572 int n, tb_start, tb_end;
573 TranslationBlock *tb;
575 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
576 if (!p->code_bitmap)
577 return;
578 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
580 tb = p->first_tb;
581 while (tb != NULL) {
582 n = (long)tb & 3;
583 tb = (TranslationBlock *)((long)tb & ~3);
584 /* NOTE: this is subtle as a TB may span two physical pages */
585 if (n == 0) {
586 /* NOTE: tb_end may be after the end of the page, but
587 it is not a problem */
588 tb_start = tb->pc & ~TARGET_PAGE_MASK;
589 tb_end = tb_start + tb->size;
590 if (tb_end > TARGET_PAGE_SIZE)
591 tb_end = TARGET_PAGE_SIZE;
592 } else {
593 tb_start = 0;
594 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
596 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
597 tb = tb->page_next[n];
601 #ifdef TARGET_HAS_PRECISE_SMC
603 static void tb_gen_code(CPUState *env,
604 target_ulong pc, target_ulong cs_base, int flags,
605 int cflags)
607 TranslationBlock *tb;
608 uint8_t *tc_ptr;
609 target_ulong phys_pc, phys_page2, virt_page2;
610 int code_gen_size;
612 phys_pc = get_phys_addr_code(env, pc);
613 tb = tb_alloc(pc);
614 if (!tb) {
615 /* flush must be done */
616 tb_flush(env);
617 /* cannot fail at this point */
618 tb = tb_alloc(pc);
620 tc_ptr = code_gen_ptr;
621 tb->tc_ptr = tc_ptr;
622 tb->cs_base = cs_base;
623 tb->flags = flags;
624 tb->cflags = cflags;
625 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
626 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
628 /* check next page if needed */
629 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
630 phys_page2 = -1;
631 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
632 phys_page2 = get_phys_addr_code(env, virt_page2);
634 tb_link_phys(tb, phys_pc, phys_page2);
636 #endif
638 /* invalidate all TBs which intersect with the target physical page
639 starting in range [start;end[. NOTE: start and end must refer to
640 the same physical page. 'is_cpu_write_access' should be true if called
641 from a real cpu write access: the virtual CPU will exit the current
642 TB if code is modified inside this TB. */
643 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
644 int is_cpu_write_access)
646 int n, current_tb_modified, current_tb_not_found, current_flags;
647 CPUState *env = cpu_single_env;
648 PageDesc *p;
649 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
650 target_ulong tb_start, tb_end;
651 target_ulong current_pc, current_cs_base;
653 p = page_find(start >> TARGET_PAGE_BITS);
654 if (!p)
655 return;
656 if (!p->code_bitmap &&
657 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
658 is_cpu_write_access) {
659 /* build code bitmap */
660 build_page_bitmap(p);
663 /* we remove all the TBs in the range [start, end[ */
664 /* XXX: see if in some cases it could be faster to invalidate all the code */
665 current_tb_not_found = is_cpu_write_access;
666 current_tb_modified = 0;
667 current_tb = NULL; /* avoid warning */
668 current_pc = 0; /* avoid warning */
669 current_cs_base = 0; /* avoid warning */
670 current_flags = 0; /* avoid warning */
671 tb = p->first_tb;
672 while (tb != NULL) {
673 n = (long)tb & 3;
674 tb = (TranslationBlock *)((long)tb & ~3);
675 tb_next = tb->page_next[n];
676 /* NOTE: this is subtle as a TB may span two physical pages */
677 if (n == 0) {
678 /* NOTE: tb_end may be after the end of the page, but
679 it is not a problem */
680 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
681 tb_end = tb_start + tb->size;
682 } else {
683 tb_start = tb->page_addr[1];
684 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
686 if (!(tb_end <= start || tb_start >= end)) {
687 #ifdef TARGET_HAS_PRECISE_SMC
688 if (current_tb_not_found) {
689 current_tb_not_found = 0;
690 current_tb = NULL;
691 if (env->mem_write_pc) {
692 /* now we have a real cpu fault */
693 current_tb = tb_find_pc(env->mem_write_pc);
696 if (current_tb == tb &&
697 !(current_tb->cflags & CF_SINGLE_INSN)) {
698 /* If we are modifying the current TB, we must stop
699 its execution. We could be more precise by checking
700 that the modification is after the current PC, but it
701 would require a specialized function to partially
702 restore the CPU state */
704 current_tb_modified = 1;
705 cpu_restore_state(current_tb, env,
706 env->mem_write_pc, NULL);
707 #if defined(TARGET_I386)
708 current_flags = env->hflags;
709 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
710 current_cs_base = (target_ulong)env->segs[R_CS].base;
711 current_pc = current_cs_base + env->eip;
712 #else
713 #error unsupported CPU
714 #endif
716 #endif /* TARGET_HAS_PRECISE_SMC */
717 /* we need to do that to handle the case where a signal
718 occurs while doing tb_phys_invalidate() */
719 saved_tb = NULL;
720 if (env) {
721 saved_tb = env->current_tb;
722 env->current_tb = NULL;
724 tb_phys_invalidate(tb, -1);
725 if (env) {
726 env->current_tb = saved_tb;
727 if (env->interrupt_request && env->current_tb)
728 cpu_interrupt(env, env->interrupt_request);
731 tb = tb_next;
733 #if !defined(CONFIG_USER_ONLY)
734 /* if no code remaining, no need to continue to use slow writes */
735 if (!p->first_tb) {
736 invalidate_page_bitmap(p);
737 if (is_cpu_write_access) {
738 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
741 #endif
742 #ifdef TARGET_HAS_PRECISE_SMC
743 if (current_tb_modified) {
744 /* we generate a block containing just the instruction
745 modifying the memory. It will ensure that it cannot modify
746 itself */
747 env->current_tb = NULL;
748 tb_gen_code(env, current_pc, current_cs_base, current_flags,
749 CF_SINGLE_INSN);
750 cpu_resume_from_signal(env, NULL);
752 #endif
755 /* len must be <= 8 and start must be a multiple of len */
756 static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
758 PageDesc *p;
759 int offset, b;
760 #if 0
761 if (1) {
762 if (loglevel) {
763 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
764 cpu_single_env->mem_write_vaddr, len,
765 cpu_single_env->eip,
766 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
769 #endif
770 p = page_find(start >> TARGET_PAGE_BITS);
771 if (!p)
772 return;
773 if (p->code_bitmap) {
774 offset = start & ~TARGET_PAGE_MASK;
775 b = p->code_bitmap[offset >> 3] >> (offset & 7);
776 if (b & ((1 << len) - 1))
777 goto do_invalidate;
778 } else {
779 do_invalidate:
780 tb_invalidate_phys_page_range(start, start + len, 1);
784 #if !defined(CONFIG_SOFTMMU)
785 static void tb_invalidate_phys_page(target_ulong addr,
786 unsigned long pc, void *puc)
788 int n, current_flags, current_tb_modified;
789 target_ulong current_pc, current_cs_base;
790 PageDesc *p;
791 TranslationBlock *tb, *current_tb;
792 #ifdef TARGET_HAS_PRECISE_SMC
793 CPUState *env = cpu_single_env;
794 #endif
796 addr &= TARGET_PAGE_MASK;
797 p = page_find(addr >> TARGET_PAGE_BITS);
798 if (!p)
799 return;
800 tb = p->first_tb;
801 current_tb_modified = 0;
802 current_tb = NULL;
803 current_pc = 0; /* avoid warning */
804 current_cs_base = 0; /* avoid warning */
805 current_flags = 0; /* avoid warning */
806 #ifdef TARGET_HAS_PRECISE_SMC
807 if (tb && pc != 0) {
808 current_tb = tb_find_pc(pc);
810 #endif
811 while (tb != NULL) {
812 n = (long)tb & 3;
813 tb = (TranslationBlock *)((long)tb & ~3);
814 #ifdef TARGET_HAS_PRECISE_SMC
815 if (current_tb == tb &&
816 !(current_tb->cflags & CF_SINGLE_INSN)) {
817 /* If we are modifying the current TB, we must stop
818 its execution. We could be more precise by checking
819 that the modification is after the current PC, but it
820 would require a specialized function to partially
821 restore the CPU state */
823 current_tb_modified = 1;
824 cpu_restore_state(current_tb, env, pc, puc);
825 #if defined(TARGET_I386)
826 current_flags = env->hflags;
827 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
828 current_cs_base = (target_ulong)env->segs[R_CS].base;
829 current_pc = current_cs_base + env->eip;
830 #else
831 #error unsupported CPU
832 #endif
834 #endif /* TARGET_HAS_PRECISE_SMC */
835 tb_phys_invalidate(tb, addr);
836 tb = tb->page_next[n];
838 p->first_tb = NULL;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 if (current_tb_modified) {
841 /* we generate a block containing just the instruction
842 modifying the memory. It will ensure that it cannot modify
843 itself */
844 env->current_tb = NULL;
845 tb_gen_code(env, current_pc, current_cs_base, current_flags,
846 CF_SINGLE_INSN);
847 cpu_resume_from_signal(env, puc);
849 #endif
851 #endif
853 /* add the tb in the target page and protect it if necessary */
854 static inline void tb_alloc_page(TranslationBlock *tb,
855 unsigned int n, target_ulong page_addr)
857 PageDesc *p;
858 TranslationBlock *last_first_tb;
860 tb->page_addr[n] = page_addr;
861 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
862 tb->page_next[n] = p->first_tb;
863 last_first_tb = p->first_tb;
864 p->first_tb = (TranslationBlock *)((long)tb | n);
865 invalidate_page_bitmap(p);
867 #if defined(TARGET_HAS_SMC) || 1
869 #if defined(CONFIG_USER_ONLY)
870 if (p->flags & PAGE_WRITE) {
871 target_ulong addr;
872 PageDesc *p2;
873 int prot;
875 /* force the host page as non writable (writes will have a
876 page fault + mprotect overhead) */
877 page_addr &= qemu_host_page_mask;
878 prot = 0;
879 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
880 addr += TARGET_PAGE_SIZE) {
882 p2 = page_find (addr >> TARGET_PAGE_BITS);
883 if (!p2)
884 continue;
885 prot |= p2->flags;
886 p2->flags &= ~PAGE_WRITE;
887 page_get_flags(addr);
889 mprotect(g2h(page_addr), qemu_host_page_size,
890 (prot & PAGE_BITS) & ~PAGE_WRITE);
891 #ifdef DEBUG_TB_INVALIDATE
892 printf("protecting code page: 0x%08lx\n",
893 page_addr);
894 #endif
896 #else
897 /* if some code is already present, then the pages are already
898 protected. So we handle the case where only the first TB is
899 allocated in a physical page */
900 if (!last_first_tb) {
901 tlb_protect_code(page_addr);
903 #endif
905 #endif /* TARGET_HAS_SMC */
908 /* Allocate a new translation block. Flush the translation buffer if
909 too many translation blocks or too much generated code. */
910 TranslationBlock *tb_alloc(target_ulong pc)
912 TranslationBlock *tb;
914 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
915 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
916 return NULL;
917 tb = &tbs[nb_tbs++];
918 tb->pc = pc;
919 tb->cflags = 0;
920 return tb;
923 /* add a new TB and link it to the physical page tables. phys_page2 is
924 (-1) to indicate that only one page contains the TB. */
925 void tb_link_phys(TranslationBlock *tb,
926 target_ulong phys_pc, target_ulong phys_page2)
928 unsigned int h;
929 TranslationBlock **ptb;
931 /* add in the physical hash table */
932 h = tb_phys_hash_func(phys_pc);
933 ptb = &tb_phys_hash[h];
934 tb->phys_hash_next = *ptb;
935 *ptb = tb;
937 /* add in the page list */
938 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
939 if (phys_page2 != -1)
940 tb_alloc_page(tb, 1, phys_page2);
941 else
942 tb->page_addr[1] = -1;
944 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
945 tb->jmp_next[0] = NULL;
946 tb->jmp_next[1] = NULL;
947 #ifdef USE_CODE_COPY
948 tb->cflags &= ~CF_FP_USED;
949 if (tb->cflags & CF_TB_FP_USED)
950 tb->cflags |= CF_FP_USED;
951 #endif
953 /* init original jump addresses */
954 if (tb->tb_next_offset[0] != 0xffff)
955 tb_reset_jump(tb, 0);
956 if (tb->tb_next_offset[1] != 0xffff)
957 tb_reset_jump(tb, 1);
959 #ifdef DEBUG_TB_CHECK
960 tb_page_check();
961 #endif
964 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
965 tb[1].tc_ptr. Return NULL if not found */
966 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
968 int m_min, m_max, m;
969 unsigned long v;
970 TranslationBlock *tb;
972 if (nb_tbs <= 0)
973 return NULL;
974 if (tc_ptr < (unsigned long)code_gen_buffer ||
975 tc_ptr >= (unsigned long)code_gen_ptr)
976 return NULL;
977 /* binary search (cf Knuth) */
978 m_min = 0;
979 m_max = nb_tbs - 1;
980 while (m_min <= m_max) {
981 m = (m_min + m_max) >> 1;
982 tb = &tbs[m];
983 v = (unsigned long)tb->tc_ptr;
984 if (v == tc_ptr)
985 return tb;
986 else if (tc_ptr < v) {
987 m_max = m - 1;
988 } else {
989 m_min = m + 1;
992 return &tbs[m_max];
995 static void tb_reset_jump_recursive(TranslationBlock *tb);
997 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
999 TranslationBlock *tb1, *tb_next, **ptb;
1000 unsigned int n1;
1002 tb1 = tb->jmp_next[n];
1003 if (tb1 != NULL) {
1004 /* find head of list */
1005 for(;;) {
1006 n1 = (long)tb1 & 3;
1007 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1008 if (n1 == 2)
1009 break;
1010 tb1 = tb1->jmp_next[n1];
1012 /* we are now sure now that tb jumps to tb1 */
1013 tb_next = tb1;
1015 /* remove tb from the jmp_first list */
1016 ptb = &tb_next->jmp_first;
1017 for(;;) {
1018 tb1 = *ptb;
1019 n1 = (long)tb1 & 3;
1020 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1021 if (n1 == n && tb1 == tb)
1022 break;
1023 ptb = &tb1->jmp_next[n1];
1025 *ptb = tb->jmp_next[n];
1026 tb->jmp_next[n] = NULL;
1028 /* suppress the jump to next tb in generated code */
1029 tb_reset_jump(tb, n);
1031 /* suppress jumps in the tb on which we could have jumped */
1032 tb_reset_jump_recursive(tb_next);
1036 static void tb_reset_jump_recursive(TranslationBlock *tb)
1038 tb_reset_jump_recursive2(tb, 0);
1039 tb_reset_jump_recursive2(tb, 1);
1042 #if defined(TARGET_HAS_ICE)
1043 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1045 target_phys_addr_t addr;
1046 target_ulong pd;
1047 ram_addr_t ram_addr;
1048 PhysPageDesc *p;
1050 addr = cpu_get_phys_page_debug(env, pc);
1051 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1052 if (!p) {
1053 pd = IO_MEM_UNASSIGNED;
1054 } else {
1055 pd = p->phys_offset;
1057 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1058 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1060 #endif
1062 /* Add a watchpoint. */
1063 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1065 int i;
1067 for (i = 0; i < env->nb_watchpoints; i++) {
1068 if (addr == env->watchpoint[i].vaddr)
1069 return 0;
1071 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1072 return -1;
1074 i = env->nb_watchpoints++;
1075 env->watchpoint[i].vaddr = addr;
1076 tlb_flush_page(env, addr);
1077 /* FIXME: This flush is needed because of the hack to make memory ops
1078 terminate the TB. It can be removed once the proper IO trap and
1079 re-execute bits are in. */
1080 tb_flush(env);
1081 return i;
1084 /* Remove a watchpoint. */
1085 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1087 int i;
1089 for (i = 0; i < env->nb_watchpoints; i++) {
1090 if (addr == env->watchpoint[i].vaddr) {
1091 env->nb_watchpoints--;
1092 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1093 tlb_flush_page(env, addr);
1094 return 0;
1097 return -1;
1100 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1101 breakpoint is reached */
1102 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1104 #if defined(TARGET_HAS_ICE)
1105 int i;
1107 for(i = 0; i < env->nb_breakpoints; i++) {
1108 if (env->breakpoints[i] == pc)
1109 return 0;
1112 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1113 return -1;
1114 env->breakpoints[env->nb_breakpoints++] = pc;
1116 breakpoint_invalidate(env, pc);
1117 return 0;
1118 #else
1119 return -1;
1120 #endif
1123 /* remove a breakpoint */
1124 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1126 #if defined(TARGET_HAS_ICE)
1127 int i;
1128 for(i = 0; i < env->nb_breakpoints; i++) {
1129 if (env->breakpoints[i] == pc)
1130 goto found;
1132 return -1;
1133 found:
1134 env->nb_breakpoints--;
1135 if (i < env->nb_breakpoints)
1136 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1138 breakpoint_invalidate(env, pc);
1139 return 0;
1140 #else
1141 return -1;
1142 #endif
1145 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1146 CPU loop after each instruction */
1147 void cpu_single_step(CPUState *env, int enabled)
1149 #if defined(TARGET_HAS_ICE)
1150 if (env->singlestep_enabled != enabled) {
1151 env->singlestep_enabled = enabled;
1152 /* must flush all the translated code to avoid inconsistancies */
1153 /* XXX: only flush what is necessary */
1154 tb_flush(env);
1156 #endif
1159 /* enable or disable low levels log */
1160 void cpu_set_log(int log_flags)
1162 loglevel = log_flags;
1163 if (loglevel && !logfile) {
1164 logfile = fopen(logfilename, log_append ? "a" : "w");
1165 if (!logfile) {
1166 perror(logfilename);
1167 _exit(1);
1169 #if !defined(CONFIG_SOFTMMU)
1170 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1172 static uint8_t logfile_buf[4096];
1173 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1175 #else
1176 setvbuf(logfile, NULL, _IOLBF, 0);
1177 #endif
1178 log_append = 1;
1180 if (!loglevel && logfile) {
1181 fclose(logfile);
1182 logfile = NULL;
1186 void cpu_set_log_filename(const char *filename)
1188 logfilename = strdup(filename);
1189 if (logfile) {
1190 fclose(logfile);
1191 logfile = NULL;
1193 cpu_set_log(loglevel);
1196 /* mask must never be zero, except for A20 change call */
1197 void cpu_interrupt(CPUState *env, int mask)
1199 TranslationBlock *tb;
1200 static int interrupt_lock;
1202 env->interrupt_request |= mask;
1203 /* if the cpu is currently executing code, we must unlink it and
1204 all the potentially executing TB */
1205 tb = env->current_tb;
1206 if (tb && !testandset(&interrupt_lock)) {
1207 env->current_tb = NULL;
1208 tb_reset_jump_recursive(tb);
1209 interrupt_lock = 0;
1213 void cpu_reset_interrupt(CPUState *env, int mask)
1215 env->interrupt_request &= ~mask;
1218 CPULogItem cpu_log_items[] = {
1219 { CPU_LOG_TB_OUT_ASM, "out_asm",
1220 "show generated host assembly code for each compiled TB" },
1221 { CPU_LOG_TB_IN_ASM, "in_asm",
1222 "show target assembly code for each compiled TB" },
1223 { CPU_LOG_TB_OP, "op",
1224 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1225 #ifdef TARGET_I386
1226 { CPU_LOG_TB_OP_OPT, "op_opt",
1227 "show micro ops after optimization for each compiled TB" },
1228 #endif
1229 { CPU_LOG_INT, "int",
1230 "show interrupts/exceptions in short format" },
1231 { CPU_LOG_EXEC, "exec",
1232 "show trace before each executed TB (lots of logs)" },
1233 { CPU_LOG_TB_CPU, "cpu",
1234 "show CPU state before block translation" },
1235 #ifdef TARGET_I386
1236 { CPU_LOG_PCALL, "pcall",
1237 "show protected mode far calls/returns/exceptions" },
1238 #endif
1239 #ifdef DEBUG_IOPORT
1240 { CPU_LOG_IOPORT, "ioport",
1241 "show all i/o ports accesses" },
1242 #endif
1243 { 0, NULL, NULL },
1246 static int cmp1(const char *s1, int n, const char *s2)
1248 if (strlen(s2) != n)
1249 return 0;
1250 return memcmp(s1, s2, n) == 0;
1253 /* takes a comma separated list of log masks. Return 0 if error. */
1254 int cpu_str_to_log_mask(const char *str)
1256 CPULogItem *item;
1257 int mask;
1258 const char *p, *p1;
1260 p = str;
1261 mask = 0;
1262 for(;;) {
1263 p1 = strchr(p, ',');
1264 if (!p1)
1265 p1 = p + strlen(p);
1266 if(cmp1(p,p1-p,"all")) {
1267 for(item = cpu_log_items; item->mask != 0; item++) {
1268 mask |= item->mask;
1270 } else {
1271 for(item = cpu_log_items; item->mask != 0; item++) {
1272 if (cmp1(p, p1 - p, item->name))
1273 goto found;
1275 return 0;
1277 found:
1278 mask |= item->mask;
1279 if (*p1 != ',')
1280 break;
1281 p = p1 + 1;
1283 return mask;
1286 void cpu_abort(CPUState *env, const char *fmt, ...)
1288 va_list ap;
1290 va_start(ap, fmt);
1291 fprintf(stderr, "qemu: fatal: ");
1292 vfprintf(stderr, fmt, ap);
1293 fprintf(stderr, "\n");
1294 #ifdef TARGET_I386
1295 if(env->intercept & INTERCEPT_SVM_MASK) {
1296 /* most probably the virtual machine should not
1297 be shut down but rather caught by the VMM */
1298 vmexit(SVM_EXIT_SHUTDOWN, 0);
1300 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1301 #else
1302 cpu_dump_state(env, stderr, fprintf, 0);
1303 #endif
1304 if (logfile) {
1305 fprintf(logfile, "qemu: fatal: ");
1306 vfprintf(logfile, fmt, ap);
1307 fprintf(logfile, "\n");
1308 #ifdef TARGET_I386
1309 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1310 #else
1311 cpu_dump_state(env, logfile, fprintf, 0);
1312 #endif
1313 fflush(logfile);
1314 fclose(logfile);
1316 va_end(ap);
1317 abort();
1320 CPUState *cpu_copy(CPUState *env)
1322 CPUState *new_env = cpu_init();
1323 /* preserve chaining and index */
1324 CPUState *next_cpu = new_env->next_cpu;
1325 int cpu_index = new_env->cpu_index;
1326 memcpy(new_env, env, sizeof(CPUState));
1327 new_env->next_cpu = next_cpu;
1328 new_env->cpu_index = cpu_index;
1329 return new_env;
1332 #if !defined(CONFIG_USER_ONLY)
1334 /* NOTE: if flush_global is true, also flush global entries (not
1335 implemented yet) */
1336 void tlb_flush(CPUState *env, int flush_global)
1338 int i;
1340 #if defined(DEBUG_TLB)
1341 printf("tlb_flush:\n");
1342 #endif
1343 /* must reset current TB so that interrupts cannot modify the
1344 links while we are modifying them */
1345 env->current_tb = NULL;
1347 for(i = 0; i < CPU_TLB_SIZE; i++) {
1348 env->tlb_table[0][i].addr_read = -1;
1349 env->tlb_table[0][i].addr_write = -1;
1350 env->tlb_table[0][i].addr_code = -1;
1351 env->tlb_table[1][i].addr_read = -1;
1352 env->tlb_table[1][i].addr_write = -1;
1353 env->tlb_table[1][i].addr_code = -1;
1354 #if (NB_MMU_MODES >= 3)
1355 env->tlb_table[2][i].addr_read = -1;
1356 env->tlb_table[2][i].addr_write = -1;
1357 env->tlb_table[2][i].addr_code = -1;
1358 #if (NB_MMU_MODES == 4)
1359 env->tlb_table[3][i].addr_read = -1;
1360 env->tlb_table[3][i].addr_write = -1;
1361 env->tlb_table[3][i].addr_code = -1;
1362 #endif
1363 #endif
1366 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1368 #if !defined(CONFIG_SOFTMMU)
1369 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1370 #endif
1371 #ifdef USE_KQEMU
1372 if (env->kqemu_enabled) {
1373 kqemu_flush(env, flush_global);
1375 #endif
1376 tlb_flush_count++;
1379 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1381 if (addr == (tlb_entry->addr_read &
1382 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1383 addr == (tlb_entry->addr_write &
1384 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1385 addr == (tlb_entry->addr_code &
1386 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1387 tlb_entry->addr_read = -1;
1388 tlb_entry->addr_write = -1;
1389 tlb_entry->addr_code = -1;
1393 void tlb_flush_page(CPUState *env, target_ulong addr)
1395 int i;
1396 TranslationBlock *tb;
1398 #if defined(DEBUG_TLB)
1399 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1400 #endif
1401 /* must reset current TB so that interrupts cannot modify the
1402 links while we are modifying them */
1403 env->current_tb = NULL;
1405 addr &= TARGET_PAGE_MASK;
1406 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1407 tlb_flush_entry(&env->tlb_table[0][i], addr);
1408 tlb_flush_entry(&env->tlb_table[1][i], addr);
1409 #if (NB_MMU_MODES >= 3)
1410 tlb_flush_entry(&env->tlb_table[2][i], addr);
1411 #if (NB_MMU_MODES == 4)
1412 tlb_flush_entry(&env->tlb_table[3][i], addr);
1413 #endif
1414 #endif
1416 /* Discard jump cache entries for any tb which might potentially
1417 overlap the flushed page. */
1418 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1419 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1421 i = tb_jmp_cache_hash_page(addr);
1422 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1424 #if !defined(CONFIG_SOFTMMU)
1425 if (addr < MMAP_AREA_END)
1426 munmap((void *)addr, TARGET_PAGE_SIZE);
1427 #endif
1428 #ifdef USE_KQEMU
1429 if (env->kqemu_enabled) {
1430 kqemu_flush_page(env, addr);
1432 #endif
1435 /* update the TLBs so that writes to code in the virtual page 'addr'
1436 can be detected */
1437 static void tlb_protect_code(ram_addr_t ram_addr)
1439 cpu_physical_memory_reset_dirty(ram_addr,
1440 ram_addr + TARGET_PAGE_SIZE,
1441 CODE_DIRTY_FLAG);
1444 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1445 tested for self modifying code */
1446 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1447 target_ulong vaddr)
1449 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1452 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1453 unsigned long start, unsigned long length)
1455 unsigned long addr;
1456 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1457 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1458 if ((addr - start) < length) {
1459 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1464 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1465 int dirty_flags)
1467 CPUState *env;
1468 unsigned long length, start1;
1469 int i, mask, len;
1470 uint8_t *p;
1472 start &= TARGET_PAGE_MASK;
1473 end = TARGET_PAGE_ALIGN(end);
1475 length = end - start;
1476 if (length == 0)
1477 return;
1478 len = length >> TARGET_PAGE_BITS;
1479 #ifdef USE_KQEMU
1480 /* XXX: should not depend on cpu context */
1481 env = first_cpu;
1482 if (env->kqemu_enabled) {
1483 ram_addr_t addr;
1484 addr = start;
1485 for(i = 0; i < len; i++) {
1486 kqemu_set_notdirty(env, addr);
1487 addr += TARGET_PAGE_SIZE;
1490 #endif
1491 mask = ~dirty_flags;
1492 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1493 for(i = 0; i < len; i++)
1494 p[i] &= mask;
1496 /* we modify the TLB cache so that the dirty bit will be set again
1497 when accessing the range */
1498 start1 = start + (unsigned long)phys_ram_base;
1499 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1500 for(i = 0; i < CPU_TLB_SIZE; i++)
1501 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1502 for(i = 0; i < CPU_TLB_SIZE; i++)
1503 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1504 #if (NB_MMU_MODES >= 3)
1505 for(i = 0; i < CPU_TLB_SIZE; i++)
1506 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1507 #if (NB_MMU_MODES == 4)
1508 for(i = 0; i < CPU_TLB_SIZE; i++)
1509 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1510 #endif
1511 #endif
1514 #if !defined(CONFIG_SOFTMMU)
1515 /* XXX: this is expensive */
1517 VirtPageDesc *p;
1518 int j;
1519 target_ulong addr;
1521 for(i = 0; i < L1_SIZE; i++) {
1522 p = l1_virt_map[i];
1523 if (p) {
1524 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1525 for(j = 0; j < L2_SIZE; j++) {
1526 if (p->valid_tag == virt_valid_tag &&
1527 p->phys_addr >= start && p->phys_addr < end &&
1528 (p->prot & PROT_WRITE)) {
1529 if (addr < MMAP_AREA_END) {
1530 mprotect((void *)addr, TARGET_PAGE_SIZE,
1531 p->prot & ~PROT_WRITE);
1534 addr += TARGET_PAGE_SIZE;
1535 p++;
1540 #endif
1543 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1545 ram_addr_t ram_addr;
1547 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1548 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1549 tlb_entry->addend - (unsigned long)phys_ram_base;
1550 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1551 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1556 /* update the TLB according to the current state of the dirty bits */
1557 void cpu_tlb_update_dirty(CPUState *env)
1559 int i;
1560 for(i = 0; i < CPU_TLB_SIZE; i++)
1561 tlb_update_dirty(&env->tlb_table[0][i]);
1562 for(i = 0; i < CPU_TLB_SIZE; i++)
1563 tlb_update_dirty(&env->tlb_table[1][i]);
1564 #if (NB_MMU_MODES >= 3)
1565 for(i = 0; i < CPU_TLB_SIZE; i++)
1566 tlb_update_dirty(&env->tlb_table[2][i]);
1567 #if (NB_MMU_MODES == 4)
1568 for(i = 0; i < CPU_TLB_SIZE; i++)
1569 tlb_update_dirty(&env->tlb_table[3][i]);
1570 #endif
1571 #endif
1574 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1575 unsigned long start)
1577 unsigned long addr;
1578 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1579 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1580 if (addr == start) {
1581 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1586 /* update the TLB corresponding to virtual page vaddr and phys addr
1587 addr so that it is no longer dirty */
1588 static inline void tlb_set_dirty(CPUState *env,
1589 unsigned long addr, target_ulong vaddr)
1591 int i;
1593 addr &= TARGET_PAGE_MASK;
1594 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1595 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1596 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1597 #if (NB_MMU_MODES >= 3)
1598 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1599 #if (NB_MMU_MODES == 4)
1600 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1601 #endif
1602 #endif
1605 /* add a new TLB entry. At most one entry for a given virtual address
1606 is permitted. Return 0 if OK or 2 if the page could not be mapped
1607 (can only happen in non SOFTMMU mode for I/O pages or pages
1608 conflicting with the host address space). */
1609 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1610 target_phys_addr_t paddr, int prot,
1611 int mmu_idx, int is_softmmu)
1613 PhysPageDesc *p;
1614 unsigned long pd;
1615 unsigned int index;
1616 target_ulong address;
1617 target_phys_addr_t addend;
1618 int ret;
1619 CPUTLBEntry *te;
1620 int i;
1622 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1623 if (!p) {
1624 pd = IO_MEM_UNASSIGNED;
1625 } else {
1626 pd = p->phys_offset;
1628 #if defined(DEBUG_TLB)
1629 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1630 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1631 #endif
1633 ret = 0;
1634 #if !defined(CONFIG_SOFTMMU)
1635 if (is_softmmu)
1636 #endif
1638 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1639 /* IO memory case */
1640 address = vaddr | pd;
1641 addend = paddr;
1642 } else {
1643 /* standard memory */
1644 address = vaddr;
1645 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1648 /* Make accesses to pages with watchpoints go via the
1649 watchpoint trap routines. */
1650 for (i = 0; i < env->nb_watchpoints; i++) {
1651 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1652 if (address & ~TARGET_PAGE_MASK) {
1653 env->watchpoint[i].addend = 0;
1654 address = vaddr | io_mem_watch;
1655 } else {
1656 env->watchpoint[i].addend = pd - paddr +
1657 (unsigned long) phys_ram_base;
1658 /* TODO: Figure out how to make read watchpoints coexist
1659 with code. */
1660 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1665 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1666 addend -= vaddr;
1667 te = &env->tlb_table[mmu_idx][index];
1668 te->addend = addend;
1669 if (prot & PAGE_READ) {
1670 te->addr_read = address;
1671 } else {
1672 te->addr_read = -1;
1674 if (prot & PAGE_EXEC) {
1675 te->addr_code = address;
1676 } else {
1677 te->addr_code = -1;
1679 if (prot & PAGE_WRITE) {
1680 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1681 (pd & IO_MEM_ROMD)) {
1682 /* write access calls the I/O callback */
1683 te->addr_write = vaddr |
1684 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1685 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1686 !cpu_physical_memory_is_dirty(pd)) {
1687 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1688 } else {
1689 te->addr_write = address;
1691 } else {
1692 te->addr_write = -1;
1695 #if !defined(CONFIG_SOFTMMU)
1696 else {
1697 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1698 /* IO access: no mapping is done as it will be handled by the
1699 soft MMU */
1700 if (!(env->hflags & HF_SOFTMMU_MASK))
1701 ret = 2;
1702 } else {
1703 void *map_addr;
1705 if (vaddr >= MMAP_AREA_END) {
1706 ret = 2;
1707 } else {
1708 if (prot & PROT_WRITE) {
1709 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1710 #if defined(TARGET_HAS_SMC) || 1
1711 first_tb ||
1712 #endif
1713 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1714 !cpu_physical_memory_is_dirty(pd))) {
1715 /* ROM: we do as if code was inside */
1716 /* if code is present, we only map as read only and save the
1717 original mapping */
1718 VirtPageDesc *vp;
1720 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1721 vp->phys_addr = pd;
1722 vp->prot = prot;
1723 vp->valid_tag = virt_valid_tag;
1724 prot &= ~PAGE_WRITE;
1727 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1728 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1729 if (map_addr == MAP_FAILED) {
1730 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1731 paddr, vaddr);
1736 #endif
1737 return ret;
1740 /* called from signal handler: invalidate the code and unprotect the
1741 page. Return TRUE if the fault was succesfully handled. */
1742 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1744 #if !defined(CONFIG_SOFTMMU)
1745 VirtPageDesc *vp;
1747 #if defined(DEBUG_TLB)
1748 printf("page_unprotect: addr=0x%08x\n", addr);
1749 #endif
1750 addr &= TARGET_PAGE_MASK;
1752 /* if it is not mapped, no need to worry here */
1753 if (addr >= MMAP_AREA_END)
1754 return 0;
1755 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1756 if (!vp)
1757 return 0;
1758 /* NOTE: in this case, validate_tag is _not_ tested as it
1759 validates only the code TLB */
1760 if (vp->valid_tag != virt_valid_tag)
1761 return 0;
1762 if (!(vp->prot & PAGE_WRITE))
1763 return 0;
1764 #if defined(DEBUG_TLB)
1765 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1766 addr, vp->phys_addr, vp->prot);
1767 #endif
1768 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1769 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1770 (unsigned long)addr, vp->prot);
1771 /* set the dirty bit */
1772 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1773 /* flush the code inside */
1774 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1775 return 1;
1776 #else
1777 return 0;
1778 #endif
1781 #else
1783 void tlb_flush(CPUState *env, int flush_global)
1787 void tlb_flush_page(CPUState *env, target_ulong addr)
1791 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1792 target_phys_addr_t paddr, int prot,
1793 int mmu_idx, int is_softmmu)
1795 return 0;
1798 /* dump memory mappings */
1799 void page_dump(FILE *f)
1801 unsigned long start, end;
1802 int i, j, prot, prot1;
1803 PageDesc *p;
1805 fprintf(f, "%-8s %-8s %-8s %s\n",
1806 "start", "end", "size", "prot");
1807 start = -1;
1808 end = -1;
1809 prot = 0;
1810 for(i = 0; i <= L1_SIZE; i++) {
1811 if (i < L1_SIZE)
1812 p = l1_map[i];
1813 else
1814 p = NULL;
1815 for(j = 0;j < L2_SIZE; j++) {
1816 if (!p)
1817 prot1 = 0;
1818 else
1819 prot1 = p[j].flags;
1820 if (prot1 != prot) {
1821 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1822 if (start != -1) {
1823 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1824 start, end, end - start,
1825 prot & PAGE_READ ? 'r' : '-',
1826 prot & PAGE_WRITE ? 'w' : '-',
1827 prot & PAGE_EXEC ? 'x' : '-');
1829 if (prot1 != 0)
1830 start = end;
1831 else
1832 start = -1;
1833 prot = prot1;
1835 if (!p)
1836 break;
1841 int page_get_flags(target_ulong address)
1843 PageDesc *p;
1845 p = page_find(address >> TARGET_PAGE_BITS);
1846 if (!p)
1847 return 0;
1848 return p->flags;
1851 /* modify the flags of a page and invalidate the code if
1852 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1853 depending on PAGE_WRITE */
1854 void page_set_flags(target_ulong start, target_ulong end, int flags)
1856 PageDesc *p;
1857 target_ulong addr;
1859 start = start & TARGET_PAGE_MASK;
1860 end = TARGET_PAGE_ALIGN(end);
1861 if (flags & PAGE_WRITE)
1862 flags |= PAGE_WRITE_ORG;
1863 spin_lock(&tb_lock);
1864 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1865 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1866 /* if the write protection is set, then we invalidate the code
1867 inside */
1868 if (!(p->flags & PAGE_WRITE) &&
1869 (flags & PAGE_WRITE) &&
1870 p->first_tb) {
1871 tb_invalidate_phys_page(addr, 0, NULL);
1873 p->flags = flags;
1875 spin_unlock(&tb_lock);
1878 /* called from signal handler: invalidate the code and unprotect the
1879 page. Return TRUE if the fault was succesfully handled. */
1880 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1882 unsigned int page_index, prot, pindex;
1883 PageDesc *p, *p1;
1884 target_ulong host_start, host_end, addr;
1886 host_start = address & qemu_host_page_mask;
1887 page_index = host_start >> TARGET_PAGE_BITS;
1888 p1 = page_find(page_index);
1889 if (!p1)
1890 return 0;
1891 host_end = host_start + qemu_host_page_size;
1892 p = p1;
1893 prot = 0;
1894 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1895 prot |= p->flags;
1896 p++;
1898 /* if the page was really writable, then we change its
1899 protection back to writable */
1900 if (prot & PAGE_WRITE_ORG) {
1901 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1902 if (!(p1[pindex].flags & PAGE_WRITE)) {
1903 mprotect((void *)g2h(host_start), qemu_host_page_size,
1904 (prot & PAGE_BITS) | PAGE_WRITE);
1905 p1[pindex].flags |= PAGE_WRITE;
1906 /* and since the content will be modified, we must invalidate
1907 the corresponding translated code. */
1908 tb_invalidate_phys_page(address, pc, puc);
1909 #ifdef DEBUG_TB_CHECK
1910 tb_invalidate_check(address);
1911 #endif
1912 return 1;
1915 return 0;
1918 /* call this function when system calls directly modify a memory area */
1919 /* ??? This should be redundant now we have lock_user. */
1920 void page_unprotect_range(target_ulong data, target_ulong data_size)
1922 target_ulong start, end, addr;
1924 start = data;
1925 end = start + data_size;
1926 start &= TARGET_PAGE_MASK;
1927 end = TARGET_PAGE_ALIGN(end);
1928 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1929 page_unprotect(addr, 0, NULL);
1933 static inline void tlb_set_dirty(CPUState *env,
1934 unsigned long addr, target_ulong vaddr)
1937 #endif /* defined(CONFIG_USER_ONLY) */
1939 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1940 int memory);
1941 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
1942 int orig_memory);
1943 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1944 need_subpage) \
1945 do { \
1946 if (addr > start_addr) \
1947 start_addr2 = 0; \
1948 else { \
1949 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
1950 if (start_addr2 > 0) \
1951 need_subpage = 1; \
1954 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
1955 end_addr2 = TARGET_PAGE_SIZE - 1; \
1956 else { \
1957 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
1958 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
1959 need_subpage = 1; \
1961 } while (0)
1963 /* register physical memory. 'size' must be a multiple of the target
1964 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1965 io memory page */
1966 void cpu_register_physical_memory(target_phys_addr_t start_addr,
1967 unsigned long size,
1968 unsigned long phys_offset)
1970 target_phys_addr_t addr, end_addr;
1971 PhysPageDesc *p;
1972 CPUState *env;
1973 unsigned long orig_size = size;
1974 void *subpage;
1976 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
1977 end_addr = start_addr + (target_phys_addr_t)size;
1978 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
1979 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1980 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
1981 unsigned long orig_memory = p->phys_offset;
1982 target_phys_addr_t start_addr2, end_addr2;
1983 int need_subpage = 0;
1985 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
1986 need_subpage);
1987 if (need_subpage) {
1988 if (!(orig_memory & IO_MEM_SUBPAGE)) {
1989 subpage = subpage_init((addr & TARGET_PAGE_MASK),
1990 &p->phys_offset, orig_memory);
1991 } else {
1992 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
1993 >> IO_MEM_SHIFT];
1995 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
1996 } else {
1997 p->phys_offset = phys_offset;
1998 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
1999 (phys_offset & IO_MEM_ROMD))
2000 phys_offset += TARGET_PAGE_SIZE;
2002 } else {
2003 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2004 p->phys_offset = phys_offset;
2005 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2006 (phys_offset & IO_MEM_ROMD))
2007 phys_offset += TARGET_PAGE_SIZE;
2008 else {
2009 target_phys_addr_t start_addr2, end_addr2;
2010 int need_subpage = 0;
2012 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2013 end_addr2, need_subpage);
2015 if (need_subpage) {
2016 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2017 &p->phys_offset, IO_MEM_UNASSIGNED);
2018 subpage_register(subpage, start_addr2, end_addr2,
2019 phys_offset);
2025 /* since each CPU stores ram addresses in its TLB cache, we must
2026 reset the modified entries */
2027 /* XXX: slow ! */
2028 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2029 tlb_flush(env, 1);
2033 /* XXX: temporary until new memory mapping API */
2034 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2036 PhysPageDesc *p;
2038 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2039 if (!p)
2040 return IO_MEM_UNASSIGNED;
2041 return p->phys_offset;
2044 /* XXX: better than nothing */
2045 ram_addr_t qemu_ram_alloc(unsigned int size)
2047 ram_addr_t addr;
2048 if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
2049 fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
2050 size, phys_ram_size);
2051 abort();
2053 addr = phys_ram_alloc_offset;
2054 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2055 return addr;
2058 void qemu_ram_free(ram_addr_t addr)
2062 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2064 #ifdef DEBUG_UNASSIGNED
2065 printf("Unassigned mem read " TARGET_FMT_lx "\n", addr);
2066 #endif
2067 #ifdef TARGET_SPARC
2068 do_unassigned_access(addr, 0, 0, 0);
2069 #elif TARGET_CRIS
2070 do_unassigned_access(addr, 0, 0, 0);
2071 #endif
2072 return 0;
2075 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2077 #ifdef DEBUG_UNASSIGNED
2078 printf("Unassigned mem write " TARGET_FMT_lx " = 0x%x\n", addr, val);
2079 #endif
2080 #ifdef TARGET_SPARC
2081 do_unassigned_access(addr, 1, 0, 0);
2082 #elif TARGET_CRIS
2083 do_unassigned_access(addr, 1, 0, 0);
2084 #endif
2087 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2088 unassigned_mem_readb,
2089 unassigned_mem_readb,
2090 unassigned_mem_readb,
2093 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2094 unassigned_mem_writeb,
2095 unassigned_mem_writeb,
2096 unassigned_mem_writeb,
2099 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2101 unsigned long ram_addr;
2102 int dirty_flags;
2103 ram_addr = addr - (unsigned long)phys_ram_base;
2104 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2105 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2106 #if !defined(CONFIG_USER_ONLY)
2107 tb_invalidate_phys_page_fast(ram_addr, 1);
2108 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2109 #endif
2111 stb_p((uint8_t *)(long)addr, val);
2112 #ifdef USE_KQEMU
2113 if (cpu_single_env->kqemu_enabled &&
2114 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2115 kqemu_modify_page(cpu_single_env, ram_addr);
2116 #endif
2117 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2118 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2119 /* we remove the notdirty callback only if the code has been
2120 flushed */
2121 if (dirty_flags == 0xff)
2122 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2125 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2127 unsigned long ram_addr;
2128 int dirty_flags;
2129 ram_addr = addr - (unsigned long)phys_ram_base;
2130 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2131 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2132 #if !defined(CONFIG_USER_ONLY)
2133 tb_invalidate_phys_page_fast(ram_addr, 2);
2134 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2135 #endif
2137 stw_p((uint8_t *)(long)addr, val);
2138 #ifdef USE_KQEMU
2139 if (cpu_single_env->kqemu_enabled &&
2140 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2141 kqemu_modify_page(cpu_single_env, ram_addr);
2142 #endif
2143 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2144 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2145 /* we remove the notdirty callback only if the code has been
2146 flushed */
2147 if (dirty_flags == 0xff)
2148 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2151 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2153 unsigned long ram_addr;
2154 int dirty_flags;
2155 ram_addr = addr - (unsigned long)phys_ram_base;
2156 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2157 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2158 #if !defined(CONFIG_USER_ONLY)
2159 tb_invalidate_phys_page_fast(ram_addr, 4);
2160 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2161 #endif
2163 stl_p((uint8_t *)(long)addr, val);
2164 #ifdef USE_KQEMU
2165 if (cpu_single_env->kqemu_enabled &&
2166 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2167 kqemu_modify_page(cpu_single_env, ram_addr);
2168 #endif
2169 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2170 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2171 /* we remove the notdirty callback only if the code has been
2172 flushed */
2173 if (dirty_flags == 0xff)
2174 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2177 static CPUReadMemoryFunc *error_mem_read[3] = {
2178 NULL, /* never used */
2179 NULL, /* never used */
2180 NULL, /* never used */
2183 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2184 notdirty_mem_writeb,
2185 notdirty_mem_writew,
2186 notdirty_mem_writel,
2189 #if defined(CONFIG_SOFTMMU)
2190 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2191 so these check for a hit then pass through to the normal out-of-line
2192 phys routines. */
2193 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2195 return ldub_phys(addr);
2198 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2200 return lduw_phys(addr);
2203 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2205 return ldl_phys(addr);
2208 /* Generate a debug exception if a watchpoint has been hit.
2209 Returns the real physical address of the access. addr will be a host
2210 address in case of a RAM location. */
2211 static target_ulong check_watchpoint(target_phys_addr_t addr)
2213 CPUState *env = cpu_single_env;
2214 target_ulong watch;
2215 target_ulong retaddr;
2216 int i;
2218 retaddr = addr;
2219 for (i = 0; i < env->nb_watchpoints; i++) {
2220 watch = env->watchpoint[i].vaddr;
2221 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2222 retaddr = addr - env->watchpoint[i].addend;
2223 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2224 cpu_single_env->watchpoint_hit = i + 1;
2225 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2226 break;
2230 return retaddr;
2233 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2234 uint32_t val)
2236 addr = check_watchpoint(addr);
2237 stb_phys(addr, val);
2240 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2241 uint32_t val)
2243 addr = check_watchpoint(addr);
2244 stw_phys(addr, val);
2247 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2248 uint32_t val)
2250 addr = check_watchpoint(addr);
2251 stl_phys(addr, val);
2254 static CPUReadMemoryFunc *watch_mem_read[3] = {
2255 watch_mem_readb,
2256 watch_mem_readw,
2257 watch_mem_readl,
2260 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2261 watch_mem_writeb,
2262 watch_mem_writew,
2263 watch_mem_writel,
2265 #endif
2267 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2268 unsigned int len)
2270 CPUReadMemoryFunc **mem_read;
2271 uint32_t ret;
2272 unsigned int idx;
2274 idx = SUBPAGE_IDX(addr - mmio->base);
2275 #if defined(DEBUG_SUBPAGE)
2276 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2277 mmio, len, addr, idx);
2278 #endif
2279 mem_read = mmio->mem_read[idx];
2280 ret = (*mem_read[len])(mmio->opaque[idx], addr);
2282 return ret;
2285 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2286 uint32_t value, unsigned int len)
2288 CPUWriteMemoryFunc **mem_write;
2289 unsigned int idx;
2291 idx = SUBPAGE_IDX(addr - mmio->base);
2292 #if defined(DEBUG_SUBPAGE)
2293 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2294 mmio, len, addr, idx, value);
2295 #endif
2296 mem_write = mmio->mem_write[idx];
2297 (*mem_write[len])(mmio->opaque[idx], addr, value);
2300 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2302 #if defined(DEBUG_SUBPAGE)
2303 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2304 #endif
2306 return subpage_readlen(opaque, addr, 0);
2309 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2310 uint32_t value)
2312 #if defined(DEBUG_SUBPAGE)
2313 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2314 #endif
2315 subpage_writelen(opaque, addr, value, 0);
2318 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2320 #if defined(DEBUG_SUBPAGE)
2321 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2322 #endif
2324 return subpage_readlen(opaque, addr, 1);
2327 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2328 uint32_t value)
2330 #if defined(DEBUG_SUBPAGE)
2331 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2332 #endif
2333 subpage_writelen(opaque, addr, value, 1);
2336 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2338 #if defined(DEBUG_SUBPAGE)
2339 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2340 #endif
2342 return subpage_readlen(opaque, addr, 2);
2345 static void subpage_writel (void *opaque,
2346 target_phys_addr_t addr, uint32_t value)
2348 #if defined(DEBUG_SUBPAGE)
2349 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2350 #endif
2351 subpage_writelen(opaque, addr, value, 2);
2354 static CPUReadMemoryFunc *subpage_read[] = {
2355 &subpage_readb,
2356 &subpage_readw,
2357 &subpage_readl,
2360 static CPUWriteMemoryFunc *subpage_write[] = {
2361 &subpage_writeb,
2362 &subpage_writew,
2363 &subpage_writel,
2366 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2367 int memory)
2369 int idx, eidx;
2371 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2372 return -1;
2373 idx = SUBPAGE_IDX(start);
2374 eidx = SUBPAGE_IDX(end);
2375 #if defined(DEBUG_SUBPAGE)
2376 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2377 mmio, start, end, idx, eidx, memory);
2378 #endif
2379 memory >>= IO_MEM_SHIFT;
2380 for (; idx <= eidx; idx++) {
2381 mmio->mem_read[idx] = io_mem_read[memory];
2382 mmio->mem_write[idx] = io_mem_write[memory];
2383 mmio->opaque[idx] = io_mem_opaque[memory];
2386 return 0;
2389 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
2390 int orig_memory)
2392 subpage_t *mmio;
2393 int subpage_memory;
2395 mmio = qemu_mallocz(sizeof(subpage_t));
2396 if (mmio != NULL) {
2397 mmio->base = base;
2398 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2399 #if defined(DEBUG_SUBPAGE)
2400 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2401 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2402 #endif
2403 *phys = subpage_memory | IO_MEM_SUBPAGE;
2404 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2407 return mmio;
2410 static void io_mem_init(void)
2412 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2413 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2414 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2415 io_mem_nb = 5;
2417 #if defined(CONFIG_SOFTMMU)
2418 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2419 watch_mem_write, NULL);
2420 #endif
2421 /* alloc dirty bits array */
2422 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2423 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2426 /* mem_read and mem_write are arrays of functions containing the
2427 function to access byte (index 0), word (index 1) and dword (index
2428 2). All functions must be supplied. If io_index is non zero, the
2429 corresponding io zone is modified. If it is zero, a new io zone is
2430 allocated. The return value can be used with
2431 cpu_register_physical_memory(). (-1) is returned if error. */
2432 int cpu_register_io_memory(int io_index,
2433 CPUReadMemoryFunc **mem_read,
2434 CPUWriteMemoryFunc **mem_write,
2435 void *opaque)
2437 int i;
2439 if (io_index <= 0) {
2440 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2441 return -1;
2442 io_index = io_mem_nb++;
2443 } else {
2444 if (io_index >= IO_MEM_NB_ENTRIES)
2445 return -1;
2448 for(i = 0;i < 3; i++) {
2449 io_mem_read[io_index][i] = mem_read[i];
2450 io_mem_write[io_index][i] = mem_write[i];
2452 io_mem_opaque[io_index] = opaque;
2453 return io_index << IO_MEM_SHIFT;
2456 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2458 return io_mem_write[io_index >> IO_MEM_SHIFT];
2461 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2463 return io_mem_read[io_index >> IO_MEM_SHIFT];
2466 /* physical memory access (slow version, mainly for debug) */
2467 #if defined(CONFIG_USER_ONLY)
2468 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2469 int len, int is_write)
2471 int l, flags;
2472 target_ulong page;
2473 void * p;
2475 while (len > 0) {
2476 page = addr & TARGET_PAGE_MASK;
2477 l = (page + TARGET_PAGE_SIZE) - addr;
2478 if (l > len)
2479 l = len;
2480 flags = page_get_flags(page);
2481 if (!(flags & PAGE_VALID))
2482 return;
2483 if (is_write) {
2484 if (!(flags & PAGE_WRITE))
2485 return;
2486 p = lock_user(addr, len, 0);
2487 memcpy(p, buf, len);
2488 unlock_user(p, addr, len);
2489 } else {
2490 if (!(flags & PAGE_READ))
2491 return;
2492 p = lock_user(addr, len, 1);
2493 memcpy(buf, p, len);
2494 unlock_user(p, addr, 0);
2496 len -= l;
2497 buf += l;
2498 addr += l;
2502 #else
2503 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2504 int len, int is_write)
2506 int l, io_index;
2507 uint8_t *ptr;
2508 uint32_t val;
2509 target_phys_addr_t page;
2510 unsigned long pd;
2511 PhysPageDesc *p;
2513 while (len > 0) {
2514 page = addr & TARGET_PAGE_MASK;
2515 l = (page + TARGET_PAGE_SIZE) - addr;
2516 if (l > len)
2517 l = len;
2518 p = phys_page_find(page >> TARGET_PAGE_BITS);
2519 if (!p) {
2520 pd = IO_MEM_UNASSIGNED;
2521 } else {
2522 pd = p->phys_offset;
2525 if (is_write) {
2526 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2527 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2528 /* XXX: could force cpu_single_env to NULL to avoid
2529 potential bugs */
2530 if (l >= 4 && ((addr & 3) == 0)) {
2531 /* 32 bit write access */
2532 val = ldl_p(buf);
2533 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2534 l = 4;
2535 } else if (l >= 2 && ((addr & 1) == 0)) {
2536 /* 16 bit write access */
2537 val = lduw_p(buf);
2538 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2539 l = 2;
2540 } else {
2541 /* 8 bit write access */
2542 val = ldub_p(buf);
2543 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2544 l = 1;
2546 } else {
2547 unsigned long addr1;
2548 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2549 /* RAM case */
2550 ptr = phys_ram_base + addr1;
2551 memcpy(ptr, buf, l);
2552 if (!cpu_physical_memory_is_dirty(addr1)) {
2553 /* invalidate code */
2554 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2555 /* set dirty bit */
2556 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2557 (0xff & ~CODE_DIRTY_FLAG);
2560 } else {
2561 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2562 !(pd & IO_MEM_ROMD)) {
2563 /* I/O case */
2564 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2565 if (l >= 4 && ((addr & 3) == 0)) {
2566 /* 32 bit read access */
2567 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2568 stl_p(buf, val);
2569 l = 4;
2570 } else if (l >= 2 && ((addr & 1) == 0)) {
2571 /* 16 bit read access */
2572 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2573 stw_p(buf, val);
2574 l = 2;
2575 } else {
2576 /* 8 bit read access */
2577 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2578 stb_p(buf, val);
2579 l = 1;
2581 } else {
2582 /* RAM case */
2583 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2584 (addr & ~TARGET_PAGE_MASK);
2585 memcpy(buf, ptr, l);
2588 len -= l;
2589 buf += l;
2590 addr += l;
2594 /* used for ROM loading : can write in RAM and ROM */
2595 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2596 const uint8_t *buf, int len)
2598 int l;
2599 uint8_t *ptr;
2600 target_phys_addr_t page;
2601 unsigned long pd;
2602 PhysPageDesc *p;
2604 while (len > 0) {
2605 page = addr & TARGET_PAGE_MASK;
2606 l = (page + TARGET_PAGE_SIZE) - addr;
2607 if (l > len)
2608 l = len;
2609 p = phys_page_find(page >> TARGET_PAGE_BITS);
2610 if (!p) {
2611 pd = IO_MEM_UNASSIGNED;
2612 } else {
2613 pd = p->phys_offset;
2616 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2617 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2618 !(pd & IO_MEM_ROMD)) {
2619 /* do nothing */
2620 } else {
2621 unsigned long addr1;
2622 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2623 /* ROM/RAM case */
2624 ptr = phys_ram_base + addr1;
2625 memcpy(ptr, buf, l);
2627 len -= l;
2628 buf += l;
2629 addr += l;
2634 /* warning: addr must be aligned */
2635 uint32_t ldl_phys(target_phys_addr_t addr)
2637 int io_index;
2638 uint8_t *ptr;
2639 uint32_t val;
2640 unsigned long pd;
2641 PhysPageDesc *p;
2643 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2644 if (!p) {
2645 pd = IO_MEM_UNASSIGNED;
2646 } else {
2647 pd = p->phys_offset;
2650 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2651 !(pd & IO_MEM_ROMD)) {
2652 /* I/O case */
2653 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2654 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2655 } else {
2656 /* RAM case */
2657 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2658 (addr & ~TARGET_PAGE_MASK);
2659 val = ldl_p(ptr);
2661 return val;
2664 /* warning: addr must be aligned */
2665 uint64_t ldq_phys(target_phys_addr_t addr)
2667 int io_index;
2668 uint8_t *ptr;
2669 uint64_t val;
2670 unsigned long pd;
2671 PhysPageDesc *p;
2673 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2674 if (!p) {
2675 pd = IO_MEM_UNASSIGNED;
2676 } else {
2677 pd = p->phys_offset;
2680 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2681 !(pd & IO_MEM_ROMD)) {
2682 /* I/O case */
2683 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2684 #ifdef TARGET_WORDS_BIGENDIAN
2685 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2686 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2687 #else
2688 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2689 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2690 #endif
2691 } else {
2692 /* RAM case */
2693 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2694 (addr & ~TARGET_PAGE_MASK);
2695 val = ldq_p(ptr);
2697 return val;
2700 /* XXX: optimize */
2701 uint32_t ldub_phys(target_phys_addr_t addr)
2703 uint8_t val;
2704 cpu_physical_memory_read(addr, &val, 1);
2705 return val;
2708 /* XXX: optimize */
2709 uint32_t lduw_phys(target_phys_addr_t addr)
2711 uint16_t val;
2712 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2713 return tswap16(val);
2716 /* warning: addr must be aligned. The ram page is not masked as dirty
2717 and the code inside is not invalidated. It is useful if the dirty
2718 bits are used to track modified PTEs */
2719 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2721 int io_index;
2722 uint8_t *ptr;
2723 unsigned long pd;
2724 PhysPageDesc *p;
2726 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2727 if (!p) {
2728 pd = IO_MEM_UNASSIGNED;
2729 } else {
2730 pd = p->phys_offset;
2733 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2734 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2735 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2736 } else {
2737 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2738 (addr & ~TARGET_PAGE_MASK);
2739 stl_p(ptr, val);
2743 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2745 int io_index;
2746 uint8_t *ptr;
2747 unsigned long pd;
2748 PhysPageDesc *p;
2750 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2751 if (!p) {
2752 pd = IO_MEM_UNASSIGNED;
2753 } else {
2754 pd = p->phys_offset;
2757 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2758 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2759 #ifdef TARGET_WORDS_BIGENDIAN
2760 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2761 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2762 #else
2763 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2764 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2765 #endif
2766 } else {
2767 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2768 (addr & ~TARGET_PAGE_MASK);
2769 stq_p(ptr, val);
2773 /* warning: addr must be aligned */
2774 void stl_phys(target_phys_addr_t addr, uint32_t val)
2776 int io_index;
2777 uint8_t *ptr;
2778 unsigned long pd;
2779 PhysPageDesc *p;
2781 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2782 if (!p) {
2783 pd = IO_MEM_UNASSIGNED;
2784 } else {
2785 pd = p->phys_offset;
2788 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2789 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2790 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2791 } else {
2792 unsigned long addr1;
2793 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2794 /* RAM case */
2795 ptr = phys_ram_base + addr1;
2796 stl_p(ptr, val);
2797 if (!cpu_physical_memory_is_dirty(addr1)) {
2798 /* invalidate code */
2799 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2800 /* set dirty bit */
2801 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2802 (0xff & ~CODE_DIRTY_FLAG);
2807 /* XXX: optimize */
2808 void stb_phys(target_phys_addr_t addr, uint32_t val)
2810 uint8_t v = val;
2811 cpu_physical_memory_write(addr, &v, 1);
2814 /* XXX: optimize */
2815 void stw_phys(target_phys_addr_t addr, uint32_t val)
2817 uint16_t v = tswap16(val);
2818 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2821 /* XXX: optimize */
2822 void stq_phys(target_phys_addr_t addr, uint64_t val)
2824 val = tswap64(val);
2825 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2828 #endif
2830 /* virtual memory access for debug */
2831 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2832 uint8_t *buf, int len, int is_write)
2834 int l;
2835 target_phys_addr_t phys_addr;
2836 target_ulong page;
2838 while (len > 0) {
2839 page = addr & TARGET_PAGE_MASK;
2840 phys_addr = cpu_get_phys_page_debug(env, page);
2841 /* if no physical page mapped, return an error */
2842 if (phys_addr == -1)
2843 return -1;
2844 l = (page + TARGET_PAGE_SIZE) - addr;
2845 if (l > len)
2846 l = len;
2847 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2848 buf, l, is_write);
2849 len -= l;
2850 buf += l;
2851 addr += l;
2853 return 0;
2856 void dump_exec_info(FILE *f,
2857 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2859 int i, target_code_size, max_target_code_size;
2860 int direct_jmp_count, direct_jmp2_count, cross_page;
2861 TranslationBlock *tb;
2863 target_code_size = 0;
2864 max_target_code_size = 0;
2865 cross_page = 0;
2866 direct_jmp_count = 0;
2867 direct_jmp2_count = 0;
2868 for(i = 0; i < nb_tbs; i++) {
2869 tb = &tbs[i];
2870 target_code_size += tb->size;
2871 if (tb->size > max_target_code_size)
2872 max_target_code_size = tb->size;
2873 if (tb->page_addr[1] != -1)
2874 cross_page++;
2875 if (tb->tb_next_offset[0] != 0xffff) {
2876 direct_jmp_count++;
2877 if (tb->tb_next_offset[1] != 0xffff) {
2878 direct_jmp2_count++;
2882 /* XXX: avoid using doubles ? */
2883 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2884 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2885 nb_tbs ? target_code_size / nb_tbs : 0,
2886 max_target_code_size);
2887 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2888 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2889 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2890 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2891 cross_page,
2892 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2893 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2894 direct_jmp_count,
2895 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2896 direct_jmp2_count,
2897 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2898 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2899 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2900 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2903 #if !defined(CONFIG_USER_ONLY)
2905 #define MMUSUFFIX _cmmu
2906 #define GETPC() NULL
2907 #define env cpu_single_env
2908 #define SOFTMMU_CODE_ACCESS
2910 #define SHIFT 0
2911 #include "softmmu_template.h"
2913 #define SHIFT 1
2914 #include "softmmu_template.h"
2916 #define SHIFT 2
2917 #include "softmmu_template.h"
2919 #define SHIFT 3
2920 #include "softmmu_template.h"
2922 #undef env
2924 #endif