Name the magic constants, wrap long lines
[qemu/qemu_0_9_1_stable.git] / hw / slavio_timer.c
blob7d9ee4b2ae14c7c289b2bb442636e3ab1aef40e1
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "qemu-timer.h"
28 //#define DEBUG_TIMER
30 #ifdef DEBUG_TIMER
31 #define DPRINTF(fmt, args...) \
32 do { printf("TIMER: " fmt , ##args); } while (0)
33 #else
34 #define DPRINTF(fmt, args...)
35 #endif
38 * Registers of hardware timer in sun4m.
40 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41 * produced as NCR89C105. See
42 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45 * are zero. Bit 31 is 1 when count has been reached.
47 * Per-CPU timers interrupt local CPU, system timer uses normal
48 * interrupt routing.
52 #define MAX_CPUS 16
54 typedef struct SLAVIO_TIMERState {
55 qemu_irq irq;
56 ptimer_state *timer;
57 uint32_t count, counthigh, reached;
58 uint64_t limit;
59 // processor only
60 int running;
61 struct SLAVIO_TIMERState *master;
62 int slave_index;
63 // system only
64 struct SLAVIO_TIMERState *slave[MAX_CPUS];
65 uint32_t slave_mode;
66 } SLAVIO_TIMERState;
68 #define TIMER_MAXADDR 0x1f
69 #define SYS_TIMER_SIZE 0x14
70 #define CPU_TIMER_SIZE 0x10
72 #define SYS_TIMER_OFFSET 0x10000ULL
73 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
75 #define TIMER_LIMIT 0
76 #define TIMER_COUNTER 1
77 #define TIMER_COUNTER_NORST 2
78 #define TIMER_STATUS 3
79 #define TIMER_MODE 4
81 #define TIMER_COUNT_MASK32 0xfffffe00
82 #define TIMER_LIMIT_MASK32 0x7fffffff
83 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
84 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
85 #define TIMER_REACHED 0x80000000
86 #define TIMER_PERIOD 500ULL // 500ns
87 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
88 #define PERIODS_TO_LIMIT(l) ((l) << 9)
90 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
92 return s->master && (s->master->slave_mode & (1 << s->slave_index));
95 // Update count, set irq, update expire_time
96 // Convert from ptimer countdown units
97 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
99 uint64_t count;
101 count = s->limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
102 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
103 s->counthigh, s->count);
104 s->count = count & TIMER_COUNT_MASK32;
105 s->counthigh = count >> 32;
108 // timer callback
109 static void slavio_timer_irq(void *opaque)
111 SLAVIO_TIMERState *s = opaque;
113 slavio_timer_get_out(s);
114 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
115 if (!slavio_timer_is_user(s)) {
116 s->reached = TIMER_REACHED;
117 qemu_irq_raise(s->irq);
121 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
123 SLAVIO_TIMERState *s = opaque;
124 uint32_t saddr, ret;
126 saddr = (addr & TIMER_MAXADDR) >> 2;
127 switch (saddr) {
128 case TIMER_LIMIT:
129 // read limit (system counter mode) or read most signifying
130 // part of counter (user mode)
131 if (slavio_timer_is_user(s)) {
132 // read user timer MSW
133 slavio_timer_get_out(s);
134 ret = s->counthigh;
135 } else {
136 // read limit
137 // clear irq
138 qemu_irq_lower(s->irq);
139 s->reached = 0;
140 ret = s->limit & TIMER_LIMIT_MASK32;
142 break;
143 case TIMER_COUNTER:
144 // read counter and reached bit (system mode) or read lsbits
145 // of counter (user mode)
146 slavio_timer_get_out(s);
147 if (slavio_timer_is_user(s)) // read user timer LSW
148 ret = s->count & TIMER_COUNT_MASK32;
149 else // read limit
150 ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
151 break;
152 case TIMER_STATUS:
153 // only available in processor counter/timer
154 // read start/stop status
155 ret = s->running;
156 break;
157 case TIMER_MODE:
158 // only available in system counter
159 // read user/system mode
160 ret = s->slave_mode;
161 break;
162 default:
163 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
164 ret = 0;
165 break;
167 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
169 return ret;
172 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
173 uint32_t val)
175 SLAVIO_TIMERState *s = opaque;
176 uint32_t saddr;
177 int reload = 0;
179 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
180 saddr = (addr & TIMER_MAXADDR) >> 2;
181 switch (saddr) {
182 case TIMER_LIMIT:
183 if (slavio_timer_is_user(s)) {
184 // set user counter MSW, reset counter
185 qemu_irq_lower(s->irq);
186 s->limit = TIMER_MAX_COUNT64;
187 DPRINTF("processor %d user timer reset\n", s->slave_index);
188 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
189 } else {
190 // set limit, reset counter
191 qemu_irq_lower(s->irq);
192 s->limit = val & TIMER_MAX_COUNT32;
193 if (!s->limit)
194 s->limit = TIMER_MAX_COUNT32;
195 ptimer_set_limit(s->timer, s->limit >> 9, 1);
197 break;
198 case TIMER_COUNTER:
199 if (slavio_timer_is_user(s)) {
200 // set user counter LSW, reset counter
201 qemu_irq_lower(s->irq);
202 s->limit = TIMER_MAX_COUNT64;
203 DPRINTF("processor %d user timer reset\n", s->slave_index);
204 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
205 } else
206 DPRINTF("not user timer\n");
207 break;
208 case TIMER_COUNTER_NORST:
209 // set limit without resetting counter
210 s->limit = val & TIMER_MAX_COUNT32;
211 if (!s->limit)
212 s->limit = TIMER_MAX_COUNT32;
213 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), reload);
214 break;
215 case TIMER_STATUS:
216 if (slavio_timer_is_user(s)) {
217 // start/stop user counter
218 if ((val & 1) && !s->running) {
219 DPRINTF("processor %d user timer started\n", s->slave_index);
220 ptimer_run(s->timer, 0);
221 s->running = 1;
222 } else if (!(val & 1) && s->running) {
223 DPRINTF("processor %d user timer stopped\n", s->slave_index);
224 ptimer_stop(s->timer);
225 s->running = 0;
228 break;
229 case TIMER_MODE:
230 if (s->master == NULL) {
231 unsigned int i;
233 for (i = 0; i < MAX_CPUS; i++) {
234 if (val & (1 << i)) {
235 qemu_irq_lower(s->slave[i]->irq);
236 s->slave[i]->limit = -1ULL;
238 if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
239 ptimer_stop(s->slave[i]->timer);
240 ptimer_set_limit(s->slave[i]->timer,
241 LIMIT_TO_PERIODS(s->slave[i]->limit), 1);
242 DPRINTF("processor %d timer changed\n",
243 s->slave[i]->slave_index);
244 ptimer_run(s->slave[i]->timer, 0);
247 s->slave_mode = val & ((1 << MAX_CPUS) - 1);
248 } else
249 DPRINTF("not system timer\n");
250 break;
251 default:
252 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
253 break;
257 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
258 slavio_timer_mem_readl,
259 slavio_timer_mem_readl,
260 slavio_timer_mem_readl,
263 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
264 slavio_timer_mem_writel,
265 slavio_timer_mem_writel,
266 slavio_timer_mem_writel,
269 static void slavio_timer_save(QEMUFile *f, void *opaque)
271 SLAVIO_TIMERState *s = opaque;
273 qemu_put_be64s(f, &s->limit);
274 qemu_put_be32s(f, &s->count);
275 qemu_put_be32s(f, &s->counthigh);
276 qemu_put_be32(f, 0); // Was irq
277 qemu_put_be32s(f, &s->reached);
278 qemu_put_be32s(f, &s->running);
279 qemu_put_be32s(f, 0); // Was mode
280 qemu_put_ptimer(f, s->timer);
283 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
285 SLAVIO_TIMERState *s = opaque;
286 uint32_t tmp;
288 if (version_id != 2)
289 return -EINVAL;
291 qemu_get_be64s(f, &s->limit);
292 qemu_get_be32s(f, &s->count);
293 qemu_get_be32s(f, &s->counthigh);
294 qemu_get_be32s(f, &tmp); // Was irq
295 qemu_get_be32s(f, &s->reached);
296 qemu_get_be32s(f, &s->running);
297 qemu_get_be32s(f, &tmp); // Was mode
298 qemu_get_ptimer(f, s->timer);
300 return 0;
303 static void slavio_timer_reset(void *opaque)
305 SLAVIO_TIMERState *s = opaque;
307 if (slavio_timer_is_user(s))
308 s->limit = TIMER_MAX_COUNT64;
309 else
310 s->limit = TIMER_MAX_COUNT32;
311 s->count = 0;
312 s->reached = 0;
313 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
314 ptimer_run(s->timer, 0);
315 s->running = 1;
316 qemu_irq_lower(s->irq);
319 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
320 qemu_irq irq,
321 SLAVIO_TIMERState *master,
322 int slave_index)
324 int slavio_timer_io_memory;
325 SLAVIO_TIMERState *s;
326 QEMUBH *bh;
328 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
329 if (!s)
330 return s;
331 s->irq = irq;
332 s->master = master;
333 s->slave_index = slave_index;
334 bh = qemu_bh_new(slavio_timer_irq, s);
335 s->timer = ptimer_init(bh);
336 ptimer_set_period(s->timer, TIMER_PERIOD);
338 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
339 slavio_timer_mem_write, s);
340 if (master)
341 cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
342 slavio_timer_io_memory);
343 else
344 cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
345 slavio_timer_io_memory);
346 register_savevm("slavio_timer", addr, 2, slavio_timer_save,
347 slavio_timer_load, s);
348 qemu_register_reset(slavio_timer_reset, s);
349 slavio_timer_reset(s);
351 return s;
354 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
355 qemu_irq *cpu_irqs)
357 SLAVIO_TIMERState *master;
358 unsigned int i;
360 master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
362 for (i = 0; i < MAX_CPUS; i++) {
363 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
364 CPU_TIMER_OFFSET(i),
365 cpu_irqs[i], master, i);