4 * Copyright (c) 2003 Fabrice Bellard
5 * Copyright (c) 2005-2007 CodeSourcery, LLC
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define REG (env->regs[0])
25 #include "op_template.h"
28 #define REG (env->regs[1])
29 #include "op_template.h"
32 #define REG (env->regs[2])
33 #include "op_template.h"
36 #define REG (env->regs[3])
37 #include "op_template.h"
40 #define REG (env->regs[4])
41 #include "op_template.h"
44 #define REG (env->regs[5])
45 #include "op_template.h"
48 #define REG (env->regs[6])
49 #include "op_template.h"
52 #define REG (env->regs[7])
53 #include "op_template.h"
56 #define REG (env->regs[8])
57 #include "op_template.h"
60 #define REG (env->regs[9])
61 #include "op_template.h"
64 #define REG (env->regs[10])
65 #include "op_template.h"
68 #define REG (env->regs[11])
69 #include "op_template.h"
72 #define REG (env->regs[12])
73 #include "op_template.h"
76 #define REG (env->regs[13])
77 #include "op_template.h"
80 #define REG (env->regs[14])
81 #include "op_template.h"
84 #define REG (env->regs[15])
85 #define SET_REG(x) REG = x & ~(uint32_t)1
86 #include "op_template.h"
88 void OPPROTO
op_bx_T0(void)
90 env
->regs
[15] = T0
& ~(uint32_t)1;
91 env
->thumb
= (T0
& 1) != 0;
94 void OPPROTO
op_movl_T0_0(void)
99 void OPPROTO
op_movl_T0_im(void)
104 void OPPROTO
op_movl_T1_im(void)
109 void OPPROTO
op_mov_CF_T1(void)
111 env
->CF
= ((uint32_t)T1
) >> 31;
114 void OPPROTO
op_movl_T2_im(void)
119 void OPPROTO
op_addl_T1_im(void)
124 void OPPROTO
op_addl_T1_T2(void)
129 void OPPROTO
op_subl_T1_T2(void)
134 void OPPROTO
op_addl_T0_T1(void)
139 void OPPROTO
op_addl_T0_T1_cc(void)
146 env
->VF
= (src1
^ T1
^ -1) & (src1
^ T0
);
149 void OPPROTO
op_adcl_T0_T1(void)
154 void OPPROTO
op_adcl_T0_T1_cc(void)
163 env
->CF
= T0
<= src1
;
165 env
->VF
= (src1
^ T1
^ -1) & (src1
^ T0
);
170 #define OPSUB(sub, sbc, res, T0, T1) \
172 void OPPROTO op_ ## sub ## l_T0_T1(void) \
177 void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
183 env->CF = src1 >= T1; \
184 env->VF = (src1 ^ T1) & (src1 ^ T0); \
188 void OPPROTO op_ ## sbc ## l_T0_T1(void) \
190 res = T0 - T1 + env->CF - 1; \
193 void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
199 env->CF = src1 > T1; \
202 env->CF = src1 >= T1; \
204 env->VF = (src1 ^ T1) & (src1 ^ T0); \
210 OPSUB(sub
, sbc
, T0
, T0
, T1
)
212 OPSUB(rsb
, rsc
, T0
, T1
, T0
)
214 void OPPROTO
op_andl_T0_T1(void)
219 void OPPROTO
op_xorl_T0_T1(void)
224 void OPPROTO
op_orl_T0_T1(void)
229 void OPPROTO
op_bicl_T0_T1(void)
234 void OPPROTO
op_notl_T0(void)
239 void OPPROTO
op_notl_T1(void)
244 void OPPROTO
op_logic_T0_cc(void)
249 void OPPROTO
op_logic_T1_cc(void)
254 #define EIP (env->regs[15])
256 void OPPROTO
op_test_eq(void)
259 GOTO_LABEL_PARAM(1);;
263 void OPPROTO
op_test_ne(void)
266 GOTO_LABEL_PARAM(1);;
270 void OPPROTO
op_test_cs(void)
277 void OPPROTO
op_test_cc(void)
284 void OPPROTO
op_test_mi(void)
286 if ((env
->NZF
& 0x80000000) != 0)
291 void OPPROTO
op_test_pl(void)
293 if ((env
->NZF
& 0x80000000) == 0)
298 void OPPROTO
op_test_vs(void)
300 if ((env
->VF
& 0x80000000) != 0)
305 void OPPROTO
op_test_vc(void)
307 if ((env
->VF
& 0x80000000) == 0)
312 void OPPROTO
op_test_hi(void)
314 if (env
->CF
!= 0 && env
->NZF
!= 0)
319 void OPPROTO
op_test_ls(void)
321 if (env
->CF
== 0 || env
->NZF
== 0)
326 void OPPROTO
op_test_ge(void)
328 if (((env
->VF
^ env
->NZF
) & 0x80000000) == 0)
333 void OPPROTO
op_test_lt(void)
335 if (((env
->VF
^ env
->NZF
) & 0x80000000) != 0)
340 void OPPROTO
op_test_gt(void)
342 if (env
->NZF
!= 0 && ((env
->VF
^ env
->NZF
) & 0x80000000) == 0)
347 void OPPROTO
op_test_le(void)
349 if (env
->NZF
== 0 || ((env
->VF
^ env
->NZF
) & 0x80000000) != 0)
354 void OPPROTO
op_test_T0(void)
360 void OPPROTO
op_testn_T0(void)
367 void OPPROTO
op_goto_tb0(void)
369 GOTO_TB(op_goto_tb0
, PARAM1
, 0);
372 void OPPROTO
op_goto_tb1(void)
374 GOTO_TB(op_goto_tb1
, PARAM1
, 1);
377 void OPPROTO
op_exit_tb(void)
382 void OPPROTO
op_movl_T0_cpsr(void)
384 /* Execution state bits always read as zero. */
385 T0
= cpsr_read(env
) & ~CPSR_EXEC
;
389 void OPPROTO
op_movl_T0_spsr(void)
394 void OPPROTO
op_movl_spsr_T0(void)
396 uint32_t mask
= PARAM1
;
397 env
->spsr
= (env
->spsr
& ~mask
) | (T0
& mask
);
400 void OPPROTO
op_movl_cpsr_T0(void)
402 cpsr_write(env
, T0
, PARAM1
);
406 void OPPROTO
op_mul_T0_T1(void)
411 /* 64 bit unsigned mul */
412 void OPPROTO
op_mull_T0_T1(void)
415 res
= (uint64_t)T0
* (uint64_t)T1
;
420 /* 64 bit signed mul */
421 void OPPROTO
op_imull_T0_T1(void)
424 res
= (int64_t)((int32_t)T0
) * (int64_t)((int32_t)T1
);
429 /* 48 bit signed mul, top 32 bits */
430 void OPPROTO
op_imulw_T0_T1(void)
433 res
= (int64_t)((int32_t)T0
) * (int64_t)((int32_t)T1
);
437 void OPPROTO
op_addq_T0_T1(void)
440 res
= ((uint64_t)T1
<< 32) | T0
;
441 res
+= ((uint64_t)(env
->regs
[PARAM2
]) << 32) | (env
->regs
[PARAM1
]);
446 void OPPROTO
op_addq_lo_T0_T1(void)
449 res
= ((uint64_t)T1
<< 32) | T0
;
450 res
+= (uint64_t)(env
->regs
[PARAM1
]);
455 /* Dual 16-bit accumulate. */
456 void OPPROTO
op_addq_T0_T1_dual(void)
459 res
= ((uint64_t)(env
->regs
[PARAM2
]) << 32) | (env
->regs
[PARAM1
]);
462 env
->regs
[PARAM1
] = (uint32_t)res
;
463 env
->regs
[PARAM2
] = res
>> 32;
466 /* Dual 16-bit subtract accumulate. */
467 void OPPROTO
op_subq_T0_T1_dual(void)
470 res
= ((uint64_t)(env
->regs
[PARAM2
]) << 32) | (env
->regs
[PARAM1
]);
473 env
->regs
[PARAM1
] = (uint32_t)res
;
474 env
->regs
[PARAM2
] = res
>> 32;
477 void OPPROTO
op_logicq_cc(void)
479 env
->NZF
= (T1
& 0x80000000) | ((T0
| T1
) != 0);
484 #define MEMSUFFIX _raw
487 #if !defined(CONFIG_USER_ONLY)
488 #define MEMSUFFIX _user
490 #define MEMSUFFIX _kernel
494 void OPPROTO
op_clrex(void)
504 void OPPROTO
op_shll_T0_im(void)
511 void OPPROTO
op_shll_T1_im(void)
516 void OPPROTO
op_shrl_T1_im(void)
518 T1
= (uint32_t)T1
>> PARAM1
;
521 void OPPROTO
op_shrl_T1_0(void)
526 void OPPROTO
op_sarl_T1_im(void)
528 T1
= (int32_t)T1
>> PARAM1
;
531 void OPPROTO
op_sarl_T1_0(void)
533 T1
= (int32_t)T1
>> 31;
536 void OPPROTO
op_rorl_T1_im(void)
540 T1
= ((uint32_t)T1
>> shift
) | (T1
<< (32 - shift
));
543 void OPPROTO
op_rrxl_T1(void)
545 T1
= ((uint32_t)T1
>> 1) | ((uint32_t)env
->CF
<< 31);
548 /* T1 based, set C flag */
549 void OPPROTO
op_shll_T1_im_cc(void)
551 env
->CF
= (T1
>> (32 - PARAM1
)) & 1;
555 void OPPROTO
op_shrl_T1_im_cc(void)
557 env
->CF
= (T1
>> (PARAM1
- 1)) & 1;
558 T1
= (uint32_t)T1
>> PARAM1
;
561 void OPPROTO
op_shrl_T1_0_cc(void)
563 env
->CF
= (T1
>> 31) & 1;
567 void OPPROTO
op_sarl_T1_im_cc(void)
569 env
->CF
= (T1
>> (PARAM1
- 1)) & 1;
570 T1
= (int32_t)T1
>> PARAM1
;
573 void OPPROTO
op_sarl_T1_0_cc(void)
575 env
->CF
= (T1
>> 31) & 1;
576 T1
= (int32_t)T1
>> 31;
579 void OPPROTO
op_rorl_T1_im_cc(void)
583 env
->CF
= (T1
>> (shift
- 1)) & 1;
584 T1
= ((uint32_t)T1
>> shift
) | (T1
<< (32 - shift
));
587 void OPPROTO
op_rrxl_T1_cc(void)
591 T1
= ((uint32_t)T1
>> 1) | ((uint32_t)env
->CF
<< 31);
596 void OPPROTO
op_shll_T2_im(void)
601 void OPPROTO
op_shrl_T2_im(void)
603 T2
= (uint32_t)T2
>> PARAM1
;
606 void OPPROTO
op_shrl_T2_0(void)
611 void OPPROTO
op_sarl_T2_im(void)
613 T2
= (int32_t)T2
>> PARAM1
;
616 void OPPROTO
op_sarl_T2_0(void)
618 T2
= (int32_t)T2
>> 31;
621 void OPPROTO
op_rorl_T2_im(void)
625 T2
= ((uint32_t)T2
>> shift
) | (T2
<< (32 - shift
));
628 void OPPROTO
op_rrxl_T2(void)
630 T2
= ((uint32_t)T2
>> 1) | ((uint32_t)env
->CF
<< 31);
633 /* T1 based, use T0 as shift count */
635 void OPPROTO
op_shll_T1_T0(void)
646 void OPPROTO
op_shrl_T1_T0(void)
653 T1
= (uint32_t)T1
>> shift
;
657 void OPPROTO
op_sarl_T1_T0(void)
663 T1
= (int32_t)T1
>> shift
;
666 void OPPROTO
op_rorl_T1_T0(void)
671 T1
= ((uint32_t)T1
>> shift
) | (T1
<< (32 - shift
));
676 /* T1 based, use T0 as shift count and compute CF */
678 void OPPROTO
op_shll_T1_T0_cc(void)
688 } else if (shift
!= 0) {
689 env
->CF
= (T1
>> (32 - shift
)) & 1;
695 void OPPROTO
op_shrl_T1_T0_cc(void)
701 env
->CF
= (T1
>> 31) & 1;
705 } else if (shift
!= 0) {
706 env
->CF
= (T1
>> (shift
- 1)) & 1;
707 T1
= (uint32_t)T1
>> shift
;
712 void OPPROTO
op_sarl_T1_T0_cc(void)
717 env
->CF
= (T1
>> 31) & 1;
718 T1
= (int32_t)T1
>> 31;
719 } else if (shift
!= 0) {
720 env
->CF
= (T1
>> (shift
- 1)) & 1;
721 T1
= (int32_t)T1
>> shift
;
726 void OPPROTO
op_rorl_T1_T0_cc(void)
730 shift
= shift1
& 0x1f;
733 env
->CF
= (T1
>> 31) & 1;
735 env
->CF
= (T1
>> (shift
- 1)) & 1;
736 T1
= ((uint32_t)T1
>> shift
) | (T1
<< (32 - shift
));
742 void OPPROTO
op_clz_T0(void)
745 for (count
= 32; T0
> 0; count
--)
751 void OPPROTO
op_sarl_T0_im(void)
753 T0
= (int32_t)T0
>> PARAM1
;
756 /* Sign/zero extend */
757 void OPPROTO
op_sxth_T0(void)
762 void OPPROTO
op_sxth_T1(void)
767 void OPPROTO
op_sxtb_T1(void)
772 void OPPROTO
op_uxtb_T1(void)
777 void OPPROTO
op_uxth_T1(void)
782 void OPPROTO
op_sxtb16_T1(void)
785 res
= (uint16_t)(int8_t)T1
;
786 res
|= (uint32_t)(int8_t)(T1
>> 16) << 16;
790 void OPPROTO
op_uxtb16_T1(void)
793 res
= (uint16_t)(uint8_t)T1
;
794 res
|= (uint32_t)(uint8_t)(T1
>> 16) << 16;
798 #define SIGNBIT (uint32_t)0x80000000
799 /* saturating arithmetic */
800 void OPPROTO
op_addl_T0_T1_setq(void)
805 if (((res
^ T0
) & SIGNBIT
) && !((T0
^ T1
) & SIGNBIT
))
812 void OPPROTO
op_addl_T0_T1_saturate(void)
817 if (((res
^ T0
) & SIGNBIT
) && !((T0
^ T1
) & SIGNBIT
)) {
830 void OPPROTO
op_subl_T0_T1_saturate(void)
835 if (((res
^ T0
) & SIGNBIT
) && ((T0
^ T1
) & SIGNBIT
)) {
848 void OPPROTO
op_double_T1_saturate(void)
853 if (val
>= 0x40000000) {
856 } else if (val
<= (int32_t)0xc0000000) {
865 /* Unsigned saturating arithmetic for NEON. */
866 void OPPROTO
op_addl_T0_T1_usaturate(void)
881 void OPPROTO
op_subl_T0_T1_usaturate(void)
896 /* Thumb shift by immediate */
897 void OPPROTO
op_shll_T0_im_thumb_cc(void)
902 env
->CF
= (T0
>> (32 - shift
)) & 1;
909 void OPPROTO
op_shll_T0_im_thumb(void)
915 void OPPROTO
op_shrl_T0_im_thumb_cc(void)
921 env
->CF
= ((uint32_t)T0
) >> 31;
924 env
->CF
= (T0
>> (shift
- 1)) & 1;
931 void OPPROTO
op_shrl_T0_im_thumb(void)
944 void OPPROTO
op_sarl_T0_im_thumb_cc(void)
950 T0
= ((int32_t)T0
) >> 31;
953 env
->CF
= (T0
>> (shift
- 1)) & 1;
954 T0
= ((int32_t)T0
) >> shift
;
960 void OPPROTO
op_sarl_T0_im_thumb(void)
968 T0
= ((int32_t)T0
) >> shift
;
975 void OPPROTO
op_swi(void)
977 env
->exception_index
= EXCP_SWI
;
981 void OPPROTO
op_undef_insn(void)
983 env
->exception_index
= EXCP_UDEF
;
987 void OPPROTO
op_debug(void)
989 env
->exception_index
= EXCP_DEBUG
;
993 void OPPROTO
op_wfi(void)
995 env
->exception_index
= EXCP_HLT
;
1000 void OPPROTO
op_bkpt(void)
1002 env
->exception_index
= EXCP_BKPT
;
1006 void OPPROTO
op_exception_exit(void)
1008 env
->exception_index
= EXCP_EXCEPTION_EXIT
;
1012 /* VFP support. We follow the convention used for VFP instrunctions:
1013 Single precition routines have a "s" suffix, double precision a
1016 #define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
1018 #define VFP_BINOP(name) \
1021 FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
1025 FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
1033 #define VFP_HELPER(name) \
1036 do_vfp_##name##s(); \
1040 do_vfp_##name##d(); \
1048 /* XXX: Will this do the right thing for NANs. Should invert the signbit
1049 without looking at the rest of the value. */
1052 FT0s
= float32_chs(FT0s
);
1057 FT0d
= float64_chs(FT0d
);
1080 /* Helper routines to perform bitwise copies between float and int. */
1081 static inline float32
vfp_itos(uint32_t i
)
1092 static inline uint32_t vfp_stoi(float32 s
)
1103 static inline float64
vfp_itod(uint64_t i
)
1114 static inline uint64_t vfp_dtoi(float64 d
)
1125 /* Integer to float conversion. */
1128 FT0s
= uint32_to_float32(vfp_stoi(FT0s
), &env
->vfp
.fp_status
);
1133 FT0d
= uint32_to_float64(vfp_stoi(FT0s
), &env
->vfp
.fp_status
);
1138 FT0s
= int32_to_float32(vfp_stoi(FT0s
), &env
->vfp
.fp_status
);
1143 FT0d
= int32_to_float64(vfp_stoi(FT0s
), &env
->vfp
.fp_status
);
1146 /* Float to integer conversion. */
1149 FT0s
= vfp_itos(float32_to_uint32(FT0s
, &env
->vfp
.fp_status
));
1154 FT0s
= vfp_itos(float64_to_uint32(FT0d
, &env
->vfp
.fp_status
));
1159 FT0s
= vfp_itos(float32_to_int32(FT0s
, &env
->vfp
.fp_status
));
1164 FT0s
= vfp_itos(float64_to_int32(FT0d
, &env
->vfp
.fp_status
));
1167 /* TODO: Set rounding mode properly. */
1170 FT0s
= vfp_itos(float32_to_uint32_round_to_zero(FT0s
, &env
->vfp
.fp_status
));
1175 FT0s
= vfp_itos(float64_to_uint32_round_to_zero(FT0d
, &env
->vfp
.fp_status
));
1180 FT0s
= vfp_itos(float32_to_int32_round_to_zero(FT0s
, &env
->vfp
.fp_status
));
1185 FT0s
= vfp_itos(float64_to_int32_round_to_zero(FT0d
, &env
->vfp
.fp_status
));
1188 /* floating point conversion */
1191 FT0d
= float32_to_float64(FT0s
, &env
->vfp
.fp_status
);
1196 FT0s
= float64_to_float32(FT0d
, &env
->vfp
.fp_status
);
1199 /* VFP3 fixed point conversion. */
1200 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
1201 VFP_OP(name##to, p) \
1204 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(FT0##p), \
1205 &env->vfp.fp_status); \
1206 FT0##p = ftype##_scalbn(tmp, PARAM1, &env->vfp.fp_status); \
1208 VFP_OP(to##name, p) \
1211 tmp = ftype##_scalbn(FT0##p, PARAM1, &env->vfp.fp_status); \
1212 FT0##p = vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
1213 &env->vfp.fp_status)); \
1216 VFP_CONV_FIX(sh
, d
, float64
, int16
, )
1217 VFP_CONV_FIX(sl
, d
, float64
, int32
, )
1218 VFP_CONV_FIX(uh
, d
, float64
, uint16
, u
)
1219 VFP_CONV_FIX(ul
, d
, float64
, uint32
, u
)
1220 VFP_CONV_FIX(sh
, s
, float32
, int16
, )
1221 VFP_CONV_FIX(sl
, s
, float32
, int32
, )
1222 VFP_CONV_FIX(uh
, s
, float32
, uint16
, u
)
1223 VFP_CONV_FIX(ul
, s
, float32
, uint32
, u
)
1225 /* Get and Put values from registers. */
1226 VFP_OP(getreg_F0
, d
)
1228 FT0d
= *(float64
*)((char *) env
+ PARAM1
);
1231 VFP_OP(getreg_F0
, s
)
1233 FT0s
= *(float32
*)((char *) env
+ PARAM1
);
1236 VFP_OP(getreg_F1
, d
)
1238 FT1d
= *(float64
*)((char *) env
+ PARAM1
);
1241 VFP_OP(getreg_F1
, s
)
1243 FT1s
= *(float32
*)((char *) env
+ PARAM1
);
1246 VFP_OP(setreg_F0
, d
)
1248 *(float64
*)((char *) env
+ PARAM1
) = FT0d
;
1251 VFP_OP(setreg_F0
, s
)
1253 *(float32
*)((char *) env
+ PARAM1
) = FT0s
;
1256 void OPPROTO
op_vfp_movl_T0_fpscr(void)
1258 do_vfp_get_fpscr ();
1261 void OPPROTO
op_vfp_movl_T0_fpscr_flags(void)
1263 T0
= env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (0xf << 28);
1266 void OPPROTO
op_vfp_movl_fpscr_T0(void)
1271 void OPPROTO
op_vfp_movl_T0_xreg(void)
1273 T0
= env
->vfp
.xregs
[PARAM1
];
1276 void OPPROTO
op_vfp_movl_xreg_T0(void)
1278 env
->vfp
.xregs
[PARAM1
] = T0
;
1281 /* Move between FT0s to T0 */
1282 void OPPROTO
op_vfp_mrs(void)
1284 T0
= vfp_stoi(FT0s
);
1287 void OPPROTO
op_vfp_msr(void)
1289 FT0s
= vfp_itos(T0
);
1292 /* Move between FT0d and {T0,T1} */
1293 void OPPROTO
op_vfp_mrrd(void)
1302 void OPPROTO
op_vfp_mdrr(void)
1311 /* Load immediate. PARAM1 is the 32 most significant bits of the value. */
1312 void OPPROTO
op_vfp_fconstd(void)
1320 void OPPROTO
op_vfp_fconsts(void)
1322 FT0s
= vfp_itos(PARAM1
);
1325 /* Copy the most significant bit of T0 to all bits of T1. */
1326 void OPPROTO
op_signbit_T1_T0(void)
1328 T1
= (int32_t)T0
>> 31;
1331 void OPPROTO
op_movl_cp_T0(void)
1333 helper_set_cp(env
, PARAM1
, T0
);
1337 void OPPROTO
op_movl_T0_cp(void)
1339 T0
= helper_get_cp(env
, PARAM1
);
1343 void OPPROTO
op_movl_cp15_T0(void)
1345 helper_set_cp15(env
, PARAM1
, T0
);
1349 void OPPROTO
op_movl_T0_cp15(void)
1351 T0
= helper_get_cp15(env
, PARAM1
);
1355 /* Access to user mode registers from privileged modes. */
1356 void OPPROTO
op_movl_T0_user(void)
1360 T0
= env
->banked_r13
[0];
1361 } else if (regno
== 14) {
1362 T0
= env
->banked_r14
[0];
1363 } else if ((env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
1364 T0
= env
->usr_regs
[regno
- 8];
1366 T0
= env
->regs
[regno
];
1372 void OPPROTO
op_movl_user_T0(void)
1376 env
->banked_r13
[0] = T0
;
1377 } else if (regno
== 14) {
1378 env
->banked_r14
[0] = T0
;
1379 } else if ((env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
1380 env
->usr_regs
[regno
- 8] = T0
;
1382 env
->regs
[regno
] = T0
;
1387 void OPPROTO
op_movl_T0_T1(void)
1392 void OPPROTO
op_movl_T0_T2(void)
1397 void OPPROTO
op_movl_T1_T0(void)
1402 void OPPROTO
op_movl_T1_T2(void)
1407 void OPPROTO
op_movl_T2_T0(void)
1412 /* ARMv6 Media instructions. */
1414 /* Note that signed overflow is undefined in C. The following routines are
1415 careful to use unsigned types where modulo arithmetic is required.
1416 Failure to do so _will_ break on newer gcc. */
1418 /* Signed saturating arithmetic. */
1420 /* Perform 16-bit signed satruating addition. */
1421 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
1426 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
1435 /* Perform 8-bit signed satruating addition. */
1436 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
1441 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
1450 /* Perform 16-bit signed satruating subtraction. */
1451 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
1456 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
1465 /* Perform 8-bit signed satruating subtraction. */
1466 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
1471 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
1480 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
1481 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
1482 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
1483 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
1486 #include "op_addsub.h"
1488 /* Unsigned saturating arithmetic. */
1489 static inline uint16_t add16_usat(uint16_t a
, uint8_t b
)
1498 static inline uint16_t sub16_usat(uint16_t a
, uint8_t b
)
1506 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
1515 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
1523 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
1524 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
1525 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
1526 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
1529 #include "op_addsub.h"
1531 /* Signed modulo arithmetic. */
1532 #define SARITH16(a, b, n, op) do { \
1534 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
1535 RESULT(sum, n, 16); \
1537 ge |= 3 << (n * 2); \
1540 #define SARITH8(a, b, n, op) do { \
1542 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
1543 RESULT(sum, n, 8); \
1549 #define ADD16(a, b, n) SARITH16(a, b, n, +)
1550 #define SUB16(a, b, n) SARITH16(a, b, n, -)
1551 #define ADD8(a, b, n) SARITH8(a, b, n, +)
1552 #define SUB8(a, b, n) SARITH8(a, b, n, -)
1556 #include "op_addsub.h"
1558 /* Unsigned modulo arithmetic. */
1559 #define ADD16(a, b, n) do { \
1561 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
1562 RESULT(sum, n, 16); \
1563 if ((sum >> 16) == 0) \
1564 ge |= 3 << (n * 2); \
1567 #define ADD8(a, b, n) do { \
1569 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
1570 RESULT(sum, n, 8); \
1571 if ((sum >> 8) == 0) \
1572 ge |= 3 << (n * 2); \
1575 #define SUB16(a, b, n) do { \
1577 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
1578 RESULT(sum, n, 16); \
1579 if ((sum >> 16) == 0) \
1580 ge |= 3 << (n * 2); \
1583 #define SUB8(a, b, n) do { \
1585 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
1586 RESULT(sum, n, 8); \
1587 if ((sum >> 8) == 0) \
1588 ge |= 3 << (n * 2); \
1594 #include "op_addsub.h"
1596 /* Halved signed arithmetic. */
1597 #define ADD16(a, b, n) \
1598 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
1599 #define SUB16(a, b, n) \
1600 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
1601 #define ADD8(a, b, n) \
1602 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
1603 #define SUB8(a, b, n) \
1604 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
1607 #include "op_addsub.h"
1609 /* Halved unsigned arithmetic. */
1610 #define ADD16(a, b, n) \
1611 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
1612 #define SUB16(a, b, n) \
1613 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
1614 #define ADD8(a, b, n) \
1615 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
1616 #define SUB8(a, b, n) \
1617 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
1620 #include "op_addsub.h"
1622 void OPPROTO
op_pkhtb_T0_T1(void)
1624 T0
= (T0
& 0xffff0000) | (T1
& 0xffff);
1627 void OPPROTO
op_pkhbt_T0_T1(void)
1629 T0
= (T0
& 0xffff) | (T1
& 0xffff0000);
1631 void OPPROTO
op_rev_T0(void)
1633 T0
= ((T0
& 0xff000000) >> 24)
1634 | ((T0
& 0x00ff0000) >> 8)
1635 | ((T0
& 0x0000ff00) << 8)
1636 | ((T0
& 0x000000ff) << 24);
1639 void OPPROTO
op_revh_T0(void)
1641 T0
= (T0
>> 16) | (T0
<< 16);
1644 void OPPROTO
op_rev16_T0(void)
1646 T0
= ((T0
& 0xff000000) >> 8)
1647 | ((T0
& 0x00ff0000) << 8)
1648 | ((T0
& 0x0000ff00) >> 8)
1649 | ((T0
& 0x000000ff) << 8);
1652 void OPPROTO
op_revsh_T0(void)
1654 T0
= (int16_t)( ((T0
& 0x0000ff00) >> 8)
1655 | ((T0
& 0x000000ff) << 8));
1658 void OPPROTO
op_rbit_T0(void)
1660 T0
= ((T0
& 0xff000000) >> 24)
1661 | ((T0
& 0x00ff0000) >> 8)
1662 | ((T0
& 0x0000ff00) << 8)
1663 | ((T0
& 0x000000ff) << 24);
1664 T0
= ((T0
& 0xf0f0f0f0) >> 4)
1665 | ((T0
& 0x0f0f0f0f) << 4);
1666 T0
= ((T0
& 0x88888888) >> 3)
1667 | ((T0
& 0x44444444) >> 1)
1668 | ((T0
& 0x22222222) << 1)
1669 | ((T0
& 0x11111111) << 3);
1672 /* Swap low and high halfwords. */
1673 void OPPROTO
op_swap_half_T1(void)
1675 T1
= (T1
>> 16) | (T1
<< 16);
1679 /* Dual 16-bit signed multiply. */
1680 void OPPROTO
op_mul_dual_T0_T1(void)
1684 low
= (int32_t)(int16_t)T0
* (int32_t)(int16_t)T1
;
1685 high
= (((int32_t)T0
) >> 16) * (((int32_t)T1
) >> 16);
1690 void OPPROTO
op_sel_T0_T1(void)
1705 T0
= (T0
& mask
) | (T1
& ~mask
);
1709 void OPPROTO
op_roundqd_T0_T1(void)
1711 T0
= T1
+ ((uint32_t)T0
>> 31);
1714 /* Signed saturation. */
1715 static inline uint32_t do_ssat(int32_t val
, int shift
)
1722 mask
= (1u << shift
) - 1;
1726 } else if (top
< -1) {
1733 /* Unsigned saturation. */
1734 static inline uint32_t do_usat(int32_t val
, int shift
)
1739 max
= (1u << shift
) - 1;
1743 } else if (val
> max
) {
1750 /* Signed saturate. */
1751 void OPPROTO
op_ssat_T1(void)
1753 T0
= do_ssat(T0
, PARAM1
);
1757 /* Dual halfword signed saturate. */
1758 void OPPROTO
op_ssat16_T1(void)
1762 res
= (uint16_t)do_ssat((int16_t)T0
, PARAM1
);
1763 res
|= do_ssat(((int32_t)T0
) >> 16, PARAM1
) << 16;
1768 /* Unsigned saturate. */
1769 void OPPROTO
op_usat_T1(void)
1771 T0
= do_usat(T0
, PARAM1
);
1775 /* Dual halfword unsigned saturate. */
1776 void OPPROTO
op_usat16_T1(void)
1780 res
= (uint16_t)do_usat((int16_t)T0
, PARAM1
);
1781 res
|= do_usat(((int32_t)T0
) >> 16, PARAM1
) << 16;
1786 /* Dual 16-bit add. */
1787 void OPPROTO
op_add16_T1_T2(void)
1790 mask
= (T0
& T1
) & 0x8000;
1793 T0
= (T0
+ T1
) ^ mask
;
1796 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
1804 /* Unsigned sum of absolute byte differences. */
1805 void OPPROTO
op_usad8_T0_T1(void)
1808 sum
= do_usad(T0
, T1
);
1809 sum
+= do_usad(T0
>> 8, T1
>> 8);
1810 sum
+= do_usad(T0
>> 16, T1
>>16);
1811 sum
+= do_usad(T0
>> 24, T1
>> 24);
1815 /* Thumb-2 instructions. */
1817 /* Insert T1 into T0. Result goes in T1. */
1818 void OPPROTO
op_bfi_T1_T0(void)
1821 uint32_t mask
= PARAM2
;
1824 bits
= (T1
<< shift
) & mask
;
1825 T1
= (T0
& ~mask
) | bits
;
1828 /* Unsigned bitfield extract. */
1829 void OPPROTO
op_ubfx_T1(void)
1831 uint32_t shift
= PARAM1
;
1832 uint32_t mask
= PARAM2
;
1838 /* Signed bitfield extract. */
1839 void OPPROTO
op_sbfx_T1(void)
1841 uint32_t shift
= PARAM1
;
1842 uint32_t width
= PARAM2
;
1845 val
= T1
<< (32 - (shift
+ width
));
1846 T1
= val
>> (32 - width
);
1849 void OPPROTO
op_movtop_T0_im(void)
1851 T0
= (T0
& 0xffff) | PARAM1
;
1854 /* Used by table branch instructions. */
1855 void OPPROTO
op_jmp_T0_im(void)
1857 env
->regs
[15] = PARAM1
+ (T0
<< 1);
1860 void OPPROTO
op_set_condexec(void)
1862 env
->condexec_bits
= PARAM1
;
1865 void OPPROTO
op_sdivl_T0_T1(void)
1878 void OPPROTO
op_udivl_T0_T1(void)
1891 void OPPROTO
op_movl_T1_r13_banked(void)
1893 T1
= helper_get_r13_banked(env
, PARAM1
);
1896 void OPPROTO
op_movl_r13_T1_banked(void)
1898 helper_set_r13_banked(env
, PARAM1
, T1
);
1901 void OPPROTO
op_v7m_mrs_T0(void)
1903 T0
= helper_v7m_mrs(env
, PARAM1
);
1906 void OPPROTO
op_v7m_msr_T0(void)
1908 helper_v7m_msr(env
, PARAM1
, T0
);
1911 void OPPROTO
op_movl_T0_sp(void)
1913 if (PARAM1
== env
->v7m
.current_sp
)
1916 T0
= env
->v7m
.other_sp
;
1920 #include "op_neon.h"
1922 /* iwMMXt support */
1923 #include "op_iwmmxt.c"