Remove unnecessary register masking (Robert Reif)
[qemu/qemu_0_9_1_stable.git] / target-arm / helper.c
blob038025dac02bac5c197f6a4bc92fbab12666826f
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
9 static uint32_t cortexa8_cp15_c0_c1[8] =
10 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
12 static uint32_t cortexa8_cp15_c0_c2[8] =
13 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
15 static uint32_t mpcore_cp15_c0_c1[8] =
16 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
18 static uint32_t mpcore_cp15_c0_c2[8] =
19 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
21 static uint32_t arm1136_cp15_c0_c1[8] =
22 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
24 static uint32_t arm1136_cp15_c0_c2[8] =
25 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
27 static uint32_t cpu_arm_find_by_name(const char *name);
29 static inline void set_feature(CPUARMState *env, int feature)
31 env->features |= 1u << feature;
34 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
36 env->cp15.c0_cpuid = id;
37 switch (id) {
38 case ARM_CPUID_ARM926:
39 set_feature(env, ARM_FEATURE_VFP);
40 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
41 env->cp15.c0_cachetype = 0x1dd20d2;
42 env->cp15.c1_sys = 0x00090078;
43 break;
44 case ARM_CPUID_ARM946:
45 set_feature(env, ARM_FEATURE_MPU);
46 env->cp15.c0_cachetype = 0x0f004006;
47 env->cp15.c1_sys = 0x00000078;
48 break;
49 case ARM_CPUID_ARM1026:
50 set_feature(env, ARM_FEATURE_VFP);
51 set_feature(env, ARM_FEATURE_AUXCR);
52 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
53 env->cp15.c0_cachetype = 0x1dd20d2;
54 env->cp15.c1_sys = 0x00090078;
55 break;
56 case ARM_CPUID_ARM1136:
57 set_feature(env, ARM_FEATURE_V6);
58 set_feature(env, ARM_FEATURE_VFP);
59 set_feature(env, ARM_FEATURE_AUXCR);
60 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
61 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
62 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
63 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
64 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
65 env->cp15.c0_cachetype = 0x1dd20d2;
66 break;
67 case ARM_CPUID_ARM11MPCORE:
68 set_feature(env, ARM_FEATURE_V6);
69 set_feature(env, ARM_FEATURE_V6K);
70 set_feature(env, ARM_FEATURE_VFP);
71 set_feature(env, ARM_FEATURE_AUXCR);
72 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
73 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
74 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
75 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
76 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
77 env->cp15.c0_cachetype = 0x1dd20d2;
78 break;
79 case ARM_CPUID_CORTEXA8:
80 set_feature(env, ARM_FEATURE_V6);
81 set_feature(env, ARM_FEATURE_V6K);
82 set_feature(env, ARM_FEATURE_V7);
83 set_feature(env, ARM_FEATURE_AUXCR);
84 set_feature(env, ARM_FEATURE_THUMB2);
85 set_feature(env, ARM_FEATURE_VFP);
86 set_feature(env, ARM_FEATURE_VFP3);
87 set_feature(env, ARM_FEATURE_NEON);
88 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
89 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
90 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
91 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
92 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
93 env->cp15.c0_cachetype = 0x1dd20d2;
94 break;
95 case ARM_CPUID_CORTEXM3:
96 set_feature(env, ARM_FEATURE_V6);
97 set_feature(env, ARM_FEATURE_THUMB2);
98 set_feature(env, ARM_FEATURE_V7);
99 set_feature(env, ARM_FEATURE_M);
100 set_feature(env, ARM_FEATURE_DIV);
101 break;
102 case ARM_CPUID_ANY: /* For userspace emulation. */
103 set_feature(env, ARM_FEATURE_V6);
104 set_feature(env, ARM_FEATURE_V6K);
105 set_feature(env, ARM_FEATURE_V7);
106 set_feature(env, ARM_FEATURE_THUMB2);
107 set_feature(env, ARM_FEATURE_VFP);
108 set_feature(env, ARM_FEATURE_VFP3);
109 set_feature(env, ARM_FEATURE_NEON);
110 set_feature(env, ARM_FEATURE_DIV);
111 break;
112 case ARM_CPUID_TI915T:
113 case ARM_CPUID_TI925T:
114 set_feature(env, ARM_FEATURE_OMAPCP);
115 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
116 env->cp15.c0_cachetype = 0x5109149;
117 env->cp15.c1_sys = 0x00000070;
118 env->cp15.c15_i_max = 0x000;
119 env->cp15.c15_i_min = 0xff0;
120 break;
121 case ARM_CPUID_PXA250:
122 case ARM_CPUID_PXA255:
123 case ARM_CPUID_PXA260:
124 case ARM_CPUID_PXA261:
125 case ARM_CPUID_PXA262:
126 set_feature(env, ARM_FEATURE_XSCALE);
127 /* JTAG_ID is ((id << 28) | 0x09265013) */
128 env->cp15.c0_cachetype = 0xd172172;
129 env->cp15.c1_sys = 0x00000078;
130 break;
131 case ARM_CPUID_PXA270_A0:
132 case ARM_CPUID_PXA270_A1:
133 case ARM_CPUID_PXA270_B0:
134 case ARM_CPUID_PXA270_B1:
135 case ARM_CPUID_PXA270_C0:
136 case ARM_CPUID_PXA270_C5:
137 set_feature(env, ARM_FEATURE_XSCALE);
138 /* JTAG_ID is ((id << 28) | 0x09265013) */
139 set_feature(env, ARM_FEATURE_IWMMXT);
140 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
141 env->cp15.c0_cachetype = 0xd172172;
142 env->cp15.c1_sys = 0x00000078;
143 break;
144 default:
145 cpu_abort(env, "Bad CPU ID: %x\n", id);
146 break;
150 void cpu_reset(CPUARMState *env)
152 uint32_t id;
153 id = env->cp15.c0_cpuid;
154 memset(env, 0, offsetof(CPUARMState, breakpoints));
155 if (id)
156 cpu_reset_model_id(env, id);
157 #if defined (CONFIG_USER_ONLY)
158 env->uncached_cpsr = ARM_CPU_MODE_USR;
159 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
160 #else
161 /* SVC mode with interrupts disabled. */
162 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
163 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
164 clear at reset. */
165 if (IS_M(env))
166 env->uncached_cpsr &= ~CPSR_I;
167 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
168 #endif
169 env->regs[15] = 0;
170 tlb_flush(env, 1);
173 CPUARMState *cpu_arm_init(const char *cpu_model)
175 CPUARMState *env;
176 uint32_t id;
178 id = cpu_arm_find_by_name(cpu_model);
179 if (id == 0)
180 return NULL;
181 env = qemu_mallocz(sizeof(CPUARMState));
182 if (!env)
183 return NULL;
184 cpu_exec_init(env);
185 env->cp15.c0_cpuid = id;
186 cpu_reset(env);
187 return env;
190 struct arm_cpu_t {
191 uint32_t id;
192 const char *name;
195 static const struct arm_cpu_t arm_cpu_names[] = {
196 { ARM_CPUID_ARM926, "arm926"},
197 { ARM_CPUID_ARM946, "arm946"},
198 { ARM_CPUID_ARM1026, "arm1026"},
199 { ARM_CPUID_ARM1136, "arm1136"},
200 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
201 { ARM_CPUID_CORTEXM3, "cortex-m3"},
202 { ARM_CPUID_CORTEXA8, "cortex-a8"},
203 { ARM_CPUID_TI925T, "ti925t" },
204 { ARM_CPUID_PXA250, "pxa250" },
205 { ARM_CPUID_PXA255, "pxa255" },
206 { ARM_CPUID_PXA260, "pxa260" },
207 { ARM_CPUID_PXA261, "pxa261" },
208 { ARM_CPUID_PXA262, "pxa262" },
209 { ARM_CPUID_PXA270, "pxa270" },
210 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
211 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
212 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
213 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
214 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
215 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
216 { ARM_CPUID_ANY, "any"},
217 { 0, NULL}
220 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
222 int i;
224 (*cpu_fprintf)(f, "Available CPUs:\n");
225 for (i = 0; arm_cpu_names[i].name; i++) {
226 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
230 /* return 0 if not found */
231 static uint32_t cpu_arm_find_by_name(const char *name)
233 int i;
234 uint32_t id;
236 id = 0;
237 for (i = 0; arm_cpu_names[i].name; i++) {
238 if (strcmp(name, arm_cpu_names[i].name) == 0) {
239 id = arm_cpu_names[i].id;
240 break;
243 return id;
246 void cpu_arm_close(CPUARMState *env)
248 free(env);
251 /* Polynomial multiplication is like integer multiplcation except the
252 partial products are XORed, not added. */
253 uint32_t helper_neon_mul_p8(uint32_t op1, uint32_t op2)
255 uint32_t mask;
256 uint32_t result;
257 result = 0;
258 while (op1) {
259 mask = 0;
260 if (op1 & 1)
261 mask |= 0xff;
262 if (op1 & (1 << 8))
263 mask |= (0xff << 8);
264 if (op1 & (1 << 16))
265 mask |= (0xff << 16);
266 if (op1 & (1 << 24))
267 mask |= (0xff << 24);
268 result ^= op2 & mask;
269 op1 = (op1 >> 1) & 0x7f7f7f7f;
270 op2 = (op2 << 1) & 0xfefefefe;
272 return result;
275 uint32_t cpsr_read(CPUARMState *env)
277 int ZF;
278 ZF = (env->NZF == 0);
279 return env->uncached_cpsr | (env->NZF & 0x80000000) | (ZF << 30) |
280 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
281 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
282 | ((env->condexec_bits & 0xfc) << 8)
283 | (env->GE << 16);
286 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
288 /* NOTE: N = 1 and Z = 1 cannot be stored currently */
289 if (mask & CPSR_NZCV) {
290 env->NZF = (val & 0xc0000000) ^ 0x40000000;
291 env->CF = (val >> 29) & 1;
292 env->VF = (val << 3) & 0x80000000;
294 if (mask & CPSR_Q)
295 env->QF = ((val & CPSR_Q) != 0);
296 if (mask & CPSR_T)
297 env->thumb = ((val & CPSR_T) != 0);
298 if (mask & CPSR_IT_0_1) {
299 env->condexec_bits &= ~3;
300 env->condexec_bits |= (val >> 25) & 3;
302 if (mask & CPSR_IT_2_7) {
303 env->condexec_bits &= 3;
304 env->condexec_bits |= (val >> 8) & 0xfc;
306 if (mask & CPSR_GE) {
307 env->GE = (val >> 16) & 0xf;
310 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
311 switch_mode(env, val & CPSR_M);
313 mask &= ~CACHED_CPSR_BITS;
314 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
317 #if defined(CONFIG_USER_ONLY)
319 void do_interrupt (CPUState *env)
321 env->exception_index = -1;
324 /* Structure used to record exclusive memory locations. */
325 typedef struct mmon_state {
326 struct mmon_state *next;
327 CPUARMState *cpu_env;
328 uint32_t addr;
329 } mmon_state;
331 /* Chain of current locks. */
332 static mmon_state* mmon_head = NULL;
334 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
335 int mmu_idx, int is_softmmu)
337 if (rw == 2) {
338 env->exception_index = EXCP_PREFETCH_ABORT;
339 env->cp15.c6_insn = address;
340 } else {
341 env->exception_index = EXCP_DATA_ABORT;
342 env->cp15.c6_data = address;
344 return 1;
347 static void allocate_mmon_state(CPUState *env)
349 env->mmon_entry = malloc(sizeof (mmon_state));
350 if (!env->mmon_entry)
351 abort();
352 memset (env->mmon_entry, 0, sizeof (mmon_state));
353 env->mmon_entry->cpu_env = env;
354 mmon_head = env->mmon_entry;
357 /* Flush any monitor locks for the specified address. */
358 static void flush_mmon(uint32_t addr)
360 mmon_state *mon;
362 for (mon = mmon_head; mon; mon = mon->next)
364 if (mon->addr != addr)
365 continue;
367 mon->addr = 0;
368 break;
372 /* Mark an address for exclusive access. */
373 void helper_mark_exclusive(CPUState *env, uint32_t addr)
375 if (!env->mmon_entry)
376 allocate_mmon_state(env);
377 /* Clear any previous locks. */
378 flush_mmon(addr);
379 env->mmon_entry->addr = addr;
382 /* Test if an exclusive address is still exclusive. Returns zero
383 if the address is still exclusive. */
384 int helper_test_exclusive(CPUState *env, uint32_t addr)
386 int res;
388 if (!env->mmon_entry)
389 return 1;
390 if (env->mmon_entry->addr == addr)
391 res = 0;
392 else
393 res = 1;
394 flush_mmon(addr);
395 return res;
398 void helper_clrex(CPUState *env)
400 if (!(env->mmon_entry && env->mmon_entry->addr))
401 return;
402 flush_mmon(env->mmon_entry->addr);
405 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
407 return addr;
410 /* These should probably raise undefined insn exceptions. */
411 void helper_set_cp(CPUState *env, uint32_t insn, uint32_t val)
413 int op1 = (insn >> 8) & 0xf;
414 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
415 return;
418 uint32_t helper_get_cp(CPUState *env, uint32_t insn)
420 int op1 = (insn >> 8) & 0xf;
421 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
422 return 0;
425 void helper_set_cp15(CPUState *env, uint32_t insn, uint32_t val)
427 cpu_abort(env, "cp15 insn %08x\n", insn);
430 uint32_t helper_get_cp15(CPUState *env, uint32_t insn)
432 cpu_abort(env, "cp15 insn %08x\n", insn);
433 return 0;
436 /* These should probably raise undefined insn exceptions. */
437 void helper_v7m_msr(CPUState *env, int reg, uint32_t val)
439 cpu_abort(env, "v7m_mrs %d\n", reg);
442 uint32_t helper_v7m_mrs(CPUState *env, int reg)
444 cpu_abort(env, "v7m_mrs %d\n", reg);
445 return 0;
448 void switch_mode(CPUState *env, int mode)
450 if (mode != ARM_CPU_MODE_USR)
451 cpu_abort(env, "Tried to switch out of user mode\n");
454 void helper_set_r13_banked(CPUState *env, int mode, uint32_t val)
456 cpu_abort(env, "banked r13 write\n");
459 uint32_t helper_get_r13_banked(CPUState *env, int mode)
461 cpu_abort(env, "banked r13 read\n");
462 return 0;
465 #else
467 extern int semihosting_enabled;
469 /* Map CPU modes onto saved register banks. */
470 static inline int bank_number (int mode)
472 switch (mode) {
473 case ARM_CPU_MODE_USR:
474 case ARM_CPU_MODE_SYS:
475 return 0;
476 case ARM_CPU_MODE_SVC:
477 return 1;
478 case ARM_CPU_MODE_ABT:
479 return 2;
480 case ARM_CPU_MODE_UND:
481 return 3;
482 case ARM_CPU_MODE_IRQ:
483 return 4;
484 case ARM_CPU_MODE_FIQ:
485 return 5;
487 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
488 return -1;
491 void switch_mode(CPUState *env, int mode)
493 int old_mode;
494 int i;
496 old_mode = env->uncached_cpsr & CPSR_M;
497 if (mode == old_mode)
498 return;
500 if (old_mode == ARM_CPU_MODE_FIQ) {
501 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
502 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
503 } else if (mode == ARM_CPU_MODE_FIQ) {
504 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
505 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
508 i = bank_number(old_mode);
509 env->banked_r13[i] = env->regs[13];
510 env->banked_r14[i] = env->regs[14];
511 env->banked_spsr[i] = env->spsr;
513 i = bank_number(mode);
514 env->regs[13] = env->banked_r13[i];
515 env->regs[14] = env->banked_r14[i];
516 env->spsr = env->banked_spsr[i];
519 static void v7m_push(CPUARMState *env, uint32_t val)
521 env->regs[13] -= 4;
522 stl_phys(env->regs[13], val);
525 static uint32_t v7m_pop(CPUARMState *env)
527 uint32_t val;
528 val = ldl_phys(env->regs[13]);
529 env->regs[13] += 4;
530 return val;
533 /* Switch to V7M main or process stack pointer. */
534 static void switch_v7m_sp(CPUARMState *env, int process)
536 uint32_t tmp;
537 if (env->v7m.current_sp != process) {
538 tmp = env->v7m.other_sp;
539 env->v7m.other_sp = env->regs[13];
540 env->regs[13] = tmp;
541 env->v7m.current_sp = process;
545 static void do_v7m_exception_exit(CPUARMState *env)
547 uint32_t type;
548 uint32_t xpsr;
550 type = env->regs[15];
551 if (env->v7m.exception != 0)
552 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
554 /* Switch to the target stack. */
555 switch_v7m_sp(env, (type & 4) != 0);
556 /* Pop registers. */
557 env->regs[0] = v7m_pop(env);
558 env->regs[1] = v7m_pop(env);
559 env->regs[2] = v7m_pop(env);
560 env->regs[3] = v7m_pop(env);
561 env->regs[12] = v7m_pop(env);
562 env->regs[14] = v7m_pop(env);
563 env->regs[15] = v7m_pop(env);
564 xpsr = v7m_pop(env);
565 xpsr_write(env, xpsr, 0xfffffdff);
566 /* Undo stack alignment. */
567 if (xpsr & 0x200)
568 env->regs[13] |= 4;
569 /* ??? The exception return type specifies Thread/Handler mode. However
570 this is also implied by the xPSR value. Not sure what to do
571 if there is a mismatch. */
572 /* ??? Likewise for mismatches between the CONTROL register and the stack
573 pointer. */
576 void do_interrupt_v7m(CPUARMState *env)
578 uint32_t xpsr = xpsr_read(env);
579 uint32_t lr;
580 uint32_t addr;
582 lr = 0xfffffff1;
583 if (env->v7m.current_sp)
584 lr |= 4;
585 if (env->v7m.exception == 0)
586 lr |= 8;
588 /* For exceptions we just mark as pending on the NVIC, and let that
589 handle it. */
590 /* TODO: Need to escalate if the current priority is higher than the
591 one we're raising. */
592 switch (env->exception_index) {
593 case EXCP_UDEF:
594 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
595 return;
596 case EXCP_SWI:
597 env->regs[15] += 2;
598 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
599 return;
600 case EXCP_PREFETCH_ABORT:
601 case EXCP_DATA_ABORT:
602 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
603 return;
604 case EXCP_BKPT:
605 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
606 return;
607 case EXCP_IRQ:
608 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
609 break;
610 case EXCP_EXCEPTION_EXIT:
611 do_v7m_exception_exit(env);
612 return;
613 default:
614 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
615 return; /* Never happens. Keep compiler happy. */
618 /* Align stack pointer. */
619 /* ??? Should only do this if Configuration Control Register
620 STACKALIGN bit is set. */
621 if (env->regs[13] & 4) {
622 env->regs[13] += 4;
623 xpsr |= 0x200;
625 /* Switch to the hander mode. */
626 v7m_push(env, xpsr);
627 v7m_push(env, env->regs[15]);
628 v7m_push(env, env->regs[14]);
629 v7m_push(env, env->regs[12]);
630 v7m_push(env, env->regs[3]);
631 v7m_push(env, env->regs[2]);
632 v7m_push(env, env->regs[1]);
633 v7m_push(env, env->regs[0]);
634 switch_v7m_sp(env, 0);
635 env->uncached_cpsr &= ~CPSR_IT;
636 env->regs[14] = lr;
637 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
638 env->regs[15] = addr & 0xfffffffe;
639 env->thumb = addr & 1;
642 /* Handle a CPU exception. */
643 void do_interrupt(CPUARMState *env)
645 uint32_t addr;
646 uint32_t mask;
647 int new_mode;
648 uint32_t offset;
650 if (IS_M(env)) {
651 do_interrupt_v7m(env);
652 return;
654 /* TODO: Vectored interrupt controller. */
655 switch (env->exception_index) {
656 case EXCP_UDEF:
657 new_mode = ARM_CPU_MODE_UND;
658 addr = 0x04;
659 mask = CPSR_I;
660 if (env->thumb)
661 offset = 2;
662 else
663 offset = 4;
664 break;
665 case EXCP_SWI:
666 if (semihosting_enabled) {
667 /* Check for semihosting interrupt. */
668 if (env->thumb) {
669 mask = lduw_code(env->regs[15] - 2) & 0xff;
670 } else {
671 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
673 /* Only intercept calls from privileged modes, to provide some
674 semblance of security. */
675 if (((mask == 0x123456 && !env->thumb)
676 || (mask == 0xab && env->thumb))
677 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
678 env->regs[0] = do_arm_semihosting(env);
679 return;
682 new_mode = ARM_CPU_MODE_SVC;
683 addr = 0x08;
684 mask = CPSR_I;
685 /* The PC already points to the next instructon. */
686 offset = 0;
687 break;
688 case EXCP_BKPT:
689 /* See if this is a semihosting syscall. */
690 if (env->thumb) {
691 mask = lduw_code(env->regs[15]) & 0xff;
692 if (mask == 0xab
693 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
694 env->regs[15] += 2;
695 env->regs[0] = do_arm_semihosting(env);
696 return;
699 /* Fall through to prefetch abort. */
700 case EXCP_PREFETCH_ABORT:
701 new_mode = ARM_CPU_MODE_ABT;
702 addr = 0x0c;
703 mask = CPSR_A | CPSR_I;
704 offset = 4;
705 break;
706 case EXCP_DATA_ABORT:
707 new_mode = ARM_CPU_MODE_ABT;
708 addr = 0x10;
709 mask = CPSR_A | CPSR_I;
710 offset = 8;
711 break;
712 case EXCP_IRQ:
713 new_mode = ARM_CPU_MODE_IRQ;
714 addr = 0x18;
715 /* Disable IRQ and imprecise data aborts. */
716 mask = CPSR_A | CPSR_I;
717 offset = 4;
718 break;
719 case EXCP_FIQ:
720 new_mode = ARM_CPU_MODE_FIQ;
721 addr = 0x1c;
722 /* Disable FIQ, IRQ and imprecise data aborts. */
723 mask = CPSR_A | CPSR_I | CPSR_F;
724 offset = 4;
725 break;
726 default:
727 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
728 return; /* Never happens. Keep compiler happy. */
730 /* High vectors. */
731 if (env->cp15.c1_sys & (1 << 13)) {
732 addr += 0xffff0000;
734 switch_mode (env, new_mode);
735 env->spsr = cpsr_read(env);
736 /* Clear IT bits. */
737 env->condexec_bits = 0;
738 /* Switch to the new mode, and switch to Arm mode. */
739 /* ??? Thumb interrupt handlers not implemented. */
740 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
741 env->uncached_cpsr |= mask;
742 env->thumb = 0;
743 env->regs[14] = env->regs[15] + offset;
744 env->regs[15] = addr;
745 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
748 /* Check section/page access permissions.
749 Returns the page protection flags, or zero if the access is not
750 permitted. */
751 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
752 int is_user)
754 int prot_ro;
756 if (domain == 3)
757 return PAGE_READ | PAGE_WRITE;
759 if (access_type == 1)
760 prot_ro = 0;
761 else
762 prot_ro = PAGE_READ;
764 switch (ap) {
765 case 0:
766 if (access_type == 1)
767 return 0;
768 switch ((env->cp15.c1_sys >> 8) & 3) {
769 case 1:
770 return is_user ? 0 : PAGE_READ;
771 case 2:
772 return PAGE_READ;
773 default:
774 return 0;
776 case 1:
777 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
778 case 2:
779 if (is_user)
780 return prot_ro;
781 else
782 return PAGE_READ | PAGE_WRITE;
783 case 3:
784 return PAGE_READ | PAGE_WRITE;
785 case 4: case 7: /* Reserved. */
786 return 0;
787 case 5:
788 return is_user ? 0 : prot_ro;
789 case 6:
790 return prot_ro;
791 default:
792 abort();
796 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
797 int is_user, uint32_t *phys_ptr, int *prot)
799 int code;
800 uint32_t table;
801 uint32_t desc;
802 int type;
803 int ap;
804 int domain;
805 uint32_t phys_addr;
807 /* Pagetable walk. */
808 /* Lookup l1 descriptor. */
809 if (address & env->cp15.c2_mask)
810 table = env->cp15.c2_base1;
811 else
812 table = env->cp15.c2_base0;
813 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
814 desc = ldl_phys(table);
815 type = (desc & 3);
816 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
817 if (type == 0) {
818 /* Secton translation fault. */
819 code = 5;
820 goto do_fault;
822 if (domain == 0 || domain == 2) {
823 if (type == 2)
824 code = 9; /* Section domain fault. */
825 else
826 code = 11; /* Page domain fault. */
827 goto do_fault;
829 if (type == 2) {
830 /* 1Mb section. */
831 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
832 ap = (desc >> 10) & 3;
833 code = 13;
834 } else {
835 /* Lookup l2 entry. */
836 if (type == 1) {
837 /* Coarse pagetable. */
838 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
839 } else {
840 /* Fine pagetable. */
841 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
843 desc = ldl_phys(table);
844 switch (desc & 3) {
845 case 0: /* Page translation fault. */
846 code = 7;
847 goto do_fault;
848 case 1: /* 64k page. */
849 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
850 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
851 break;
852 case 2: /* 4k page. */
853 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
854 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
855 break;
856 case 3: /* 1k page. */
857 if (type == 1) {
858 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
859 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
860 } else {
861 /* Page translation fault. */
862 code = 7;
863 goto do_fault;
865 } else {
866 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
868 ap = (desc >> 4) & 3;
869 break;
870 default:
871 /* Never happens, but compiler isn't smart enough to tell. */
872 abort();
874 code = 15;
876 *prot = check_ap(env, ap, domain, access_type, is_user);
877 if (!*prot) {
878 /* Access permission fault. */
879 goto do_fault;
881 *phys_ptr = phys_addr;
882 return 0;
883 do_fault:
884 return code | (domain << 4);
887 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
888 int is_user, uint32_t *phys_ptr, int *prot)
890 int code;
891 uint32_t table;
892 uint32_t desc;
893 uint32_t xn;
894 int type;
895 int ap;
896 int domain;
897 uint32_t phys_addr;
899 /* Pagetable walk. */
900 /* Lookup l1 descriptor. */
901 if (address & env->cp15.c2_mask)
902 table = env->cp15.c2_base1;
903 else
904 table = env->cp15.c2_base0;
905 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
906 desc = ldl_phys(table);
907 type = (desc & 3);
908 if (type == 0) {
909 /* Secton translation fault. */
910 code = 5;
911 domain = 0;
912 goto do_fault;
913 } else if (type == 2 && (desc & (1 << 18))) {
914 /* Supersection. */
915 domain = 0;
916 } else {
917 /* Section or page. */
918 domain = (desc >> 4) & 0x1e;
920 domain = (env->cp15.c3 >> domain) & 3;
921 if (domain == 0 || domain == 2) {
922 if (type == 2)
923 code = 9; /* Section domain fault. */
924 else
925 code = 11; /* Page domain fault. */
926 goto do_fault;
928 if (type == 2) {
929 if (desc & (1 << 18)) {
930 /* Supersection. */
931 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
932 } else {
933 /* Section. */
934 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
936 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
937 xn = desc & (1 << 4);
938 code = 13;
939 } else {
940 /* Lookup l2 entry. */
941 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
942 desc = ldl_phys(table);
943 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
944 switch (desc & 3) {
945 case 0: /* Page translation fault. */
946 code = 7;
947 goto do_fault;
948 case 1: /* 64k page. */
949 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
950 xn = desc & (1 << 15);
951 break;
952 case 2: case 3: /* 4k page. */
953 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
954 xn = desc & 1;
955 break;
956 default:
957 /* Never happens, but compiler isn't smart enough to tell. */
958 abort();
960 code = 15;
962 if (xn && access_type == 2)
963 goto do_fault;
965 *prot = check_ap(env, ap, domain, access_type, is_user);
966 if (!*prot) {
967 /* Access permission fault. */
968 goto do_fault;
970 *phys_ptr = phys_addr;
971 return 0;
972 do_fault:
973 return code | (domain << 4);
976 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
977 int is_user, uint32_t *phys_ptr, int *prot)
979 int n;
980 uint32_t mask;
981 uint32_t base;
983 *phys_ptr = address;
984 for (n = 7; n >= 0; n--) {
985 base = env->cp15.c6_region[n];
986 if ((base & 1) == 0)
987 continue;
988 mask = 1 << ((base >> 1) & 0x1f);
989 /* Keep this shift separate from the above to avoid an
990 (undefined) << 32. */
991 mask = (mask << 1) - 1;
992 if (((base ^ address) & ~mask) == 0)
993 break;
995 if (n < 0)
996 return 2;
998 if (access_type == 2) {
999 mask = env->cp15.c5_insn;
1000 } else {
1001 mask = env->cp15.c5_data;
1003 mask = (mask >> (n * 4)) & 0xf;
1004 switch (mask) {
1005 case 0:
1006 return 1;
1007 case 1:
1008 if (is_user)
1009 return 1;
1010 *prot = PAGE_READ | PAGE_WRITE;
1011 break;
1012 case 2:
1013 *prot = PAGE_READ;
1014 if (!is_user)
1015 *prot |= PAGE_WRITE;
1016 break;
1017 case 3:
1018 *prot = PAGE_READ | PAGE_WRITE;
1019 break;
1020 case 5:
1021 if (is_user)
1022 return 1;
1023 *prot = PAGE_READ;
1024 break;
1025 case 6:
1026 *prot = PAGE_READ;
1027 break;
1028 default:
1029 /* Bad permission. */
1030 return 1;
1032 return 0;
1035 static inline int get_phys_addr(CPUState *env, uint32_t address,
1036 int access_type, int is_user,
1037 uint32_t *phys_ptr, int *prot)
1039 /* Fast Context Switch Extension. */
1040 if (address < 0x02000000)
1041 address += env->cp15.c13_fcse;
1043 if ((env->cp15.c1_sys & 1) == 0) {
1044 /* MMU/MPU disabled. */
1045 *phys_ptr = address;
1046 *prot = PAGE_READ | PAGE_WRITE;
1047 return 0;
1048 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1049 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1050 prot);
1051 } else if (env->cp15.c1_sys & (1 << 23)) {
1052 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1053 prot);
1054 } else {
1055 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1056 prot);
1060 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1061 int access_type, int mmu_idx, int is_softmmu)
1063 uint32_t phys_addr;
1064 int prot;
1065 int ret, is_user;
1067 is_user = mmu_idx == MMU_USER_IDX;
1068 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1069 if (ret == 0) {
1070 /* Map a single [sub]page. */
1071 phys_addr &= ~(uint32_t)0x3ff;
1072 address &= ~(uint32_t)0x3ff;
1073 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1074 is_softmmu);
1077 if (access_type == 2) {
1078 env->cp15.c5_insn = ret;
1079 env->cp15.c6_insn = address;
1080 env->exception_index = EXCP_PREFETCH_ABORT;
1081 } else {
1082 env->cp15.c5_data = ret;
1083 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1084 env->cp15.c5_data |= (1 << 11);
1085 env->cp15.c6_data = address;
1086 env->exception_index = EXCP_DATA_ABORT;
1088 return 1;
1091 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1093 uint32_t phys_addr;
1094 int prot;
1095 int ret;
1097 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1099 if (ret != 0)
1100 return -1;
1102 return phys_addr;
1105 /* Not really implemented. Need to figure out a sane way of doing this.
1106 Maybe add generic watchpoint support and use that. */
1108 void helper_mark_exclusive(CPUState *env, uint32_t addr)
1110 env->mmon_addr = addr;
1113 int helper_test_exclusive(CPUState *env, uint32_t addr)
1115 return (env->mmon_addr != addr);
1118 void helper_clrex(CPUState *env)
1120 env->mmon_addr = -1;
1123 void helper_set_cp(CPUState *env, uint32_t insn, uint32_t val)
1125 int cp_num = (insn >> 8) & 0xf;
1126 int cp_info = (insn >> 5) & 7;
1127 int src = (insn >> 16) & 0xf;
1128 int operand = insn & 0xf;
1130 if (env->cp[cp_num].cp_write)
1131 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1132 cp_info, src, operand, val);
1135 uint32_t helper_get_cp(CPUState *env, uint32_t insn)
1137 int cp_num = (insn >> 8) & 0xf;
1138 int cp_info = (insn >> 5) & 7;
1139 int dest = (insn >> 16) & 0xf;
1140 int operand = insn & 0xf;
1142 if (env->cp[cp_num].cp_read)
1143 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1144 cp_info, dest, operand);
1145 return 0;
1148 /* Return basic MPU access permission bits. */
1149 static uint32_t simple_mpu_ap_bits(uint32_t val)
1151 uint32_t ret;
1152 uint32_t mask;
1153 int i;
1154 ret = 0;
1155 mask = 3;
1156 for (i = 0; i < 16; i += 2) {
1157 ret |= (val >> i) & mask;
1158 mask <<= 2;
1160 return ret;
1163 /* Pad basic MPU access permission bits to extended format. */
1164 static uint32_t extended_mpu_ap_bits(uint32_t val)
1166 uint32_t ret;
1167 uint32_t mask;
1168 int i;
1169 ret = 0;
1170 mask = 3;
1171 for (i = 0; i < 16; i += 2) {
1172 ret |= (val & mask) << i;
1173 mask <<= 2;
1175 return ret;
1178 void helper_set_cp15(CPUState *env, uint32_t insn, uint32_t val)
1180 int op1;
1181 int op2;
1182 int crm;
1184 op1 = (insn >> 21) & 7;
1185 op2 = (insn >> 5) & 7;
1186 crm = insn & 0xf;
1187 switch ((insn >> 16) & 0xf) {
1188 case 0:
1189 if (((insn >> 21) & 7) == 2) {
1190 /* ??? Select cache level. Ignore. */
1191 return;
1193 /* ID codes. */
1194 if (arm_feature(env, ARM_FEATURE_XSCALE))
1195 break;
1196 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1197 break;
1198 goto bad_reg;
1199 case 1: /* System configuration. */
1200 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1201 op2 = 0;
1202 switch (op2) {
1203 case 0:
1204 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1205 env->cp15.c1_sys = val;
1206 /* ??? Lots of these bits are not implemented. */
1207 /* This may enable/disable the MMU, so do a TLB flush. */
1208 tlb_flush(env, 1);
1209 break;
1210 case 1: /* Auxiliary cotrol register. */
1211 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1212 env->cp15.c1_xscaleauxcr = val;
1213 break;
1215 /* Not implemented. */
1216 break;
1217 case 2:
1218 if (arm_feature(env, ARM_FEATURE_XSCALE))
1219 goto bad_reg;
1220 env->cp15.c1_coproc = val;
1221 /* ??? Is this safe when called from within a TB? */
1222 tb_flush(env);
1223 break;
1224 default:
1225 goto bad_reg;
1227 break;
1228 case 2: /* MMU Page table control / MPU cache control. */
1229 if (arm_feature(env, ARM_FEATURE_MPU)) {
1230 switch (op2) {
1231 case 0:
1232 env->cp15.c2_data = val;
1233 break;
1234 case 1:
1235 env->cp15.c2_insn = val;
1236 break;
1237 default:
1238 goto bad_reg;
1240 } else {
1241 switch (op2) {
1242 case 0:
1243 env->cp15.c2_base0 = val;
1244 break;
1245 case 1:
1246 env->cp15.c2_base1 = val;
1247 break;
1248 case 2:
1249 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1250 break;
1251 default:
1252 goto bad_reg;
1255 break;
1256 case 3: /* MMU Domain access control / MPU write buffer control. */
1257 env->cp15.c3 = val;
1258 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1259 break;
1260 case 4: /* Reserved. */
1261 goto bad_reg;
1262 case 5: /* MMU Fault status / MPU access permission. */
1263 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1264 op2 = 0;
1265 switch (op2) {
1266 case 0:
1267 if (arm_feature(env, ARM_FEATURE_MPU))
1268 val = extended_mpu_ap_bits(val);
1269 env->cp15.c5_data = val;
1270 break;
1271 case 1:
1272 if (arm_feature(env, ARM_FEATURE_MPU))
1273 val = extended_mpu_ap_bits(val);
1274 env->cp15.c5_insn = val;
1275 break;
1276 case 2:
1277 if (!arm_feature(env, ARM_FEATURE_MPU))
1278 goto bad_reg;
1279 env->cp15.c5_data = val;
1280 break;
1281 case 3:
1282 if (!arm_feature(env, ARM_FEATURE_MPU))
1283 goto bad_reg;
1284 env->cp15.c5_insn = val;
1285 break;
1286 default:
1287 goto bad_reg;
1289 break;
1290 case 6: /* MMU Fault address / MPU base/size. */
1291 if (arm_feature(env, ARM_FEATURE_MPU)) {
1292 if (crm >= 8)
1293 goto bad_reg;
1294 env->cp15.c6_region[crm] = val;
1295 } else {
1296 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1297 op2 = 0;
1298 switch (op2) {
1299 case 0:
1300 env->cp15.c6_data = val;
1301 break;
1302 case 1: /* ??? This is WFAR on armv6 */
1303 case 2:
1304 env->cp15.c6_insn = val;
1305 break;
1306 default:
1307 goto bad_reg;
1310 break;
1311 case 7: /* Cache control. */
1312 env->cp15.c15_i_max = 0x000;
1313 env->cp15.c15_i_min = 0xff0;
1314 /* No cache, so nothing to do. */
1315 /* ??? MPCore has VA to PA translation functions. */
1316 break;
1317 case 8: /* MMU TLB control. */
1318 switch (op2) {
1319 case 0: /* Invalidate all. */
1320 tlb_flush(env, 0);
1321 break;
1322 case 1: /* Invalidate single TLB entry. */
1323 #if 0
1324 /* ??? This is wrong for large pages and sections. */
1325 /* As an ugly hack to make linux work we always flush a 4K
1326 pages. */
1327 val &= 0xfffff000;
1328 tlb_flush_page(env, val);
1329 tlb_flush_page(env, val + 0x400);
1330 tlb_flush_page(env, val + 0x800);
1331 tlb_flush_page(env, val + 0xc00);
1332 #else
1333 tlb_flush(env, 1);
1334 #endif
1335 break;
1336 case 2: /* Invalidate on ASID. */
1337 tlb_flush(env, val == 0);
1338 break;
1339 case 3: /* Invalidate single entry on MVA. */
1340 /* ??? This is like case 1, but ignores ASID. */
1341 tlb_flush(env, 1);
1342 break;
1343 default:
1344 goto bad_reg;
1346 break;
1347 case 9:
1348 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1349 break;
1350 switch (crm) {
1351 case 0: /* Cache lockdown. */
1352 switch (op1) {
1353 case 0: /* L1 cache. */
1354 switch (op2) {
1355 case 0:
1356 env->cp15.c9_data = val;
1357 break;
1358 case 1:
1359 env->cp15.c9_insn = val;
1360 break;
1361 default:
1362 goto bad_reg;
1364 break;
1365 case 1: /* L2 cache. */
1366 /* Ignore writes to L2 lockdown/auxiliary registers. */
1367 break;
1368 default:
1369 goto bad_reg;
1371 break;
1372 case 1: /* TCM memory region registers. */
1373 /* Not implemented. */
1374 goto bad_reg;
1375 default:
1376 goto bad_reg;
1378 break;
1379 case 10: /* MMU TLB lockdown. */
1380 /* ??? TLB lockdown not implemented. */
1381 break;
1382 case 12: /* Reserved. */
1383 goto bad_reg;
1384 case 13: /* Process ID. */
1385 switch (op2) {
1386 case 0:
1387 /* Unlike real hardware the qemu TLB uses virtual addresses,
1388 not modified virtual addresses, so this causes a TLB flush.
1390 if (env->cp15.c13_fcse != val)
1391 tlb_flush(env, 1);
1392 env->cp15.c13_fcse = val;
1393 break;
1394 case 1:
1395 /* This changes the ASID, so do a TLB flush. */
1396 if (env->cp15.c13_context != val
1397 && !arm_feature(env, ARM_FEATURE_MPU))
1398 tlb_flush(env, 0);
1399 env->cp15.c13_context = val;
1400 break;
1401 case 2:
1402 env->cp15.c13_tls1 = val;
1403 break;
1404 case 3:
1405 env->cp15.c13_tls2 = val;
1406 break;
1407 case 4:
1408 env->cp15.c13_tls3 = val;
1409 break;
1410 default:
1411 goto bad_reg;
1413 break;
1414 case 14: /* Reserved. */
1415 goto bad_reg;
1416 case 15: /* Implementation specific. */
1417 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1418 if (op2 == 0 && crm == 1) {
1419 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1420 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1421 tb_flush(env);
1422 env->cp15.c15_cpar = val & 0x3fff;
1424 break;
1426 goto bad_reg;
1428 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1429 switch (crm) {
1430 case 0:
1431 break;
1432 case 1: /* Set TI925T configuration. */
1433 env->cp15.c15_ticonfig = val & 0xe7;
1434 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1435 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1436 break;
1437 case 2: /* Set I_max. */
1438 env->cp15.c15_i_max = val;
1439 break;
1440 case 3: /* Set I_min. */
1441 env->cp15.c15_i_min = val;
1442 break;
1443 case 4: /* Set thread-ID. */
1444 env->cp15.c15_threadid = val & 0xffff;
1445 break;
1446 case 8: /* Wait-for-interrupt (deprecated). */
1447 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1448 break;
1449 default:
1450 goto bad_reg;
1453 break;
1455 return;
1456 bad_reg:
1457 /* ??? For debugging only. Should raise illegal instruction exception. */
1458 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1459 (insn >> 16) & 0xf, crm, op1, op2);
1462 uint32_t helper_get_cp15(CPUState *env, uint32_t insn)
1464 int op1;
1465 int op2;
1466 int crm;
1468 op1 = (insn >> 21) & 7;
1469 op2 = (insn >> 5) & 7;
1470 crm = insn & 0xf;
1471 switch ((insn >> 16) & 0xf) {
1472 case 0: /* ID codes. */
1473 switch (op1) {
1474 case 0:
1475 switch (crm) {
1476 case 0:
1477 switch (op2) {
1478 case 0: /* Device ID. */
1479 return env->cp15.c0_cpuid;
1480 case 1: /* Cache Type. */
1481 return env->cp15.c0_cachetype;
1482 case 2: /* TCM status. */
1483 return 0;
1484 case 3: /* TLB type register. */
1485 return 0; /* No lockable TLB entries. */
1486 case 5: /* CPU ID */
1487 return env->cpu_index;
1488 default:
1489 goto bad_reg;
1491 case 1:
1492 if (!arm_feature(env, ARM_FEATURE_V6))
1493 goto bad_reg;
1494 return env->cp15.c0_c1[op2];
1495 case 2:
1496 if (!arm_feature(env, ARM_FEATURE_V6))
1497 goto bad_reg;
1498 return env->cp15.c0_c2[op2];
1499 case 3: case 4: case 5: case 6: case 7:
1500 return 0;
1501 default:
1502 goto bad_reg;
1504 case 1:
1505 /* These registers aren't documented on arm11 cores. However
1506 Linux looks at them anyway. */
1507 if (!arm_feature(env, ARM_FEATURE_V6))
1508 goto bad_reg;
1509 if (crm != 0)
1510 goto bad_reg;
1511 if (arm_feature(env, ARM_FEATURE_XSCALE))
1512 goto bad_reg;
1513 return 0;
1514 default:
1515 goto bad_reg;
1517 case 1: /* System configuration. */
1518 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1519 op2 = 0;
1520 switch (op2) {
1521 case 0: /* Control register. */
1522 return env->cp15.c1_sys;
1523 case 1: /* Auxiliary control register. */
1524 if (arm_feature(env, ARM_FEATURE_XSCALE))
1525 return env->cp15.c1_xscaleauxcr;
1526 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1527 goto bad_reg;
1528 switch (ARM_CPUID(env)) {
1529 case ARM_CPUID_ARM1026:
1530 return 1;
1531 case ARM_CPUID_ARM1136:
1532 return 7;
1533 case ARM_CPUID_ARM11MPCORE:
1534 return 1;
1535 case ARM_CPUID_CORTEXA8:
1536 return 0;
1537 default:
1538 goto bad_reg;
1540 case 2: /* Coprocessor access register. */
1541 if (arm_feature(env, ARM_FEATURE_XSCALE))
1542 goto bad_reg;
1543 return env->cp15.c1_coproc;
1544 default:
1545 goto bad_reg;
1547 case 2: /* MMU Page table control / MPU cache control. */
1548 if (arm_feature(env, ARM_FEATURE_MPU)) {
1549 switch (op2) {
1550 case 0:
1551 return env->cp15.c2_data;
1552 break;
1553 case 1:
1554 return env->cp15.c2_insn;
1555 break;
1556 default:
1557 goto bad_reg;
1559 } else {
1560 switch (op2) {
1561 case 0:
1562 return env->cp15.c2_base0;
1563 case 1:
1564 return env->cp15.c2_base1;
1565 case 2:
1567 int n;
1568 uint32_t mask;
1569 n = 0;
1570 mask = env->cp15.c2_mask;
1571 while (mask) {
1572 n++;
1573 mask <<= 1;
1575 return n;
1577 default:
1578 goto bad_reg;
1581 case 3: /* MMU Domain access control / MPU write buffer control. */
1582 return env->cp15.c3;
1583 case 4: /* Reserved. */
1584 goto bad_reg;
1585 case 5: /* MMU Fault status / MPU access permission. */
1586 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1587 op2 = 0;
1588 switch (op2) {
1589 case 0:
1590 if (arm_feature(env, ARM_FEATURE_MPU))
1591 return simple_mpu_ap_bits(env->cp15.c5_data);
1592 return env->cp15.c5_data;
1593 case 1:
1594 if (arm_feature(env, ARM_FEATURE_MPU))
1595 return simple_mpu_ap_bits(env->cp15.c5_data);
1596 return env->cp15.c5_insn;
1597 case 2:
1598 if (!arm_feature(env, ARM_FEATURE_MPU))
1599 goto bad_reg;
1600 return env->cp15.c5_data;
1601 case 3:
1602 if (!arm_feature(env, ARM_FEATURE_MPU))
1603 goto bad_reg;
1604 return env->cp15.c5_insn;
1605 default:
1606 goto bad_reg;
1608 case 6: /* MMU Fault address. */
1609 if (arm_feature(env, ARM_FEATURE_MPU)) {
1610 if (crm >= 8)
1611 goto bad_reg;
1612 return env->cp15.c6_region[crm];
1613 } else {
1614 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1615 op2 = 0;
1616 switch (op2) {
1617 case 0:
1618 return env->cp15.c6_data;
1619 case 1:
1620 if (arm_feature(env, ARM_FEATURE_V6)) {
1621 /* Watchpoint Fault Adrress. */
1622 return 0; /* Not implemented. */
1623 } else {
1624 /* Instruction Fault Adrress. */
1625 /* Arm9 doesn't have an IFAR, but implementing it anyway
1626 shouldn't do any harm. */
1627 return env->cp15.c6_insn;
1629 case 2:
1630 if (arm_feature(env, ARM_FEATURE_V6)) {
1631 /* Instruction Fault Adrress. */
1632 return env->cp15.c6_insn;
1633 } else {
1634 goto bad_reg;
1636 default:
1637 goto bad_reg;
1640 case 7: /* Cache control. */
1641 /* ??? This is for test, clean and invaidate operations that set the
1642 Z flag. We can't represent N = Z = 1, so it also clears
1643 the N flag. Oh well. */
1644 env->NZF = 0;
1645 return 0;
1646 case 8: /* MMU TLB control. */
1647 goto bad_reg;
1648 case 9: /* Cache lockdown. */
1649 switch (op1) {
1650 case 0: /* L1 cache. */
1651 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1652 return 0;
1653 switch (op2) {
1654 case 0:
1655 return env->cp15.c9_data;
1656 case 1:
1657 return env->cp15.c9_insn;
1658 default:
1659 goto bad_reg;
1661 case 1: /* L2 cache */
1662 if (crm != 0)
1663 goto bad_reg;
1664 /* L2 Lockdown and Auxiliary control. */
1665 return 0;
1666 default:
1667 goto bad_reg;
1669 case 10: /* MMU TLB lockdown. */
1670 /* ??? TLB lockdown not implemented. */
1671 return 0;
1672 case 11: /* TCM DMA control. */
1673 case 12: /* Reserved. */
1674 goto bad_reg;
1675 case 13: /* Process ID. */
1676 switch (op2) {
1677 case 0:
1678 return env->cp15.c13_fcse;
1679 case 1:
1680 return env->cp15.c13_context;
1681 case 2:
1682 return env->cp15.c13_tls1;
1683 case 3:
1684 return env->cp15.c13_tls2;
1685 case 4:
1686 return env->cp15.c13_tls3;
1687 default:
1688 goto bad_reg;
1690 case 14: /* Reserved. */
1691 goto bad_reg;
1692 case 15: /* Implementation specific. */
1693 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1694 if (op2 == 0 && crm == 1)
1695 return env->cp15.c15_cpar;
1697 goto bad_reg;
1699 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1700 switch (crm) {
1701 case 0:
1702 return 0;
1703 case 1: /* Read TI925T configuration. */
1704 return env->cp15.c15_ticonfig;
1705 case 2: /* Read I_max. */
1706 return env->cp15.c15_i_max;
1707 case 3: /* Read I_min. */
1708 return env->cp15.c15_i_min;
1709 case 4: /* Read thread-ID. */
1710 return env->cp15.c15_threadid;
1711 case 8: /* TI925T_status */
1712 return 0;
1714 goto bad_reg;
1716 return 0;
1718 bad_reg:
1719 /* ??? For debugging only. Should raise illegal instruction exception. */
1720 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1721 (insn >> 16) & 0xf, crm, op1, op2);
1722 return 0;
1725 void helper_set_r13_banked(CPUState *env, int mode, uint32_t val)
1727 env->banked_r13[bank_number(mode)] = val;
1730 uint32_t helper_get_r13_banked(CPUState *env, int mode)
1732 return env->banked_r13[bank_number(mode)];
1735 uint32_t helper_v7m_mrs(CPUState *env, int reg)
1737 switch (reg) {
1738 case 0: /* APSR */
1739 return xpsr_read(env) & 0xf8000000;
1740 case 1: /* IAPSR */
1741 return xpsr_read(env) & 0xf80001ff;
1742 case 2: /* EAPSR */
1743 return xpsr_read(env) & 0xff00fc00;
1744 case 3: /* xPSR */
1745 return xpsr_read(env) & 0xff00fdff;
1746 case 5: /* IPSR */
1747 return xpsr_read(env) & 0x000001ff;
1748 case 6: /* EPSR */
1749 return xpsr_read(env) & 0x0700fc00;
1750 case 7: /* IEPSR */
1751 return xpsr_read(env) & 0x0700edff;
1752 case 8: /* MSP */
1753 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1754 case 9: /* PSP */
1755 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1756 case 16: /* PRIMASK */
1757 return (env->uncached_cpsr & CPSR_I) != 0;
1758 case 17: /* FAULTMASK */
1759 return (env->uncached_cpsr & CPSR_F) != 0;
1760 case 18: /* BASEPRI */
1761 case 19: /* BASEPRI_MAX */
1762 return env->v7m.basepri;
1763 case 20: /* CONTROL */
1764 return env->v7m.control;
1765 default:
1766 /* ??? For debugging only. */
1767 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1768 return 0;
1772 void helper_v7m_msr(CPUState *env, int reg, uint32_t val)
1774 switch (reg) {
1775 case 0: /* APSR */
1776 xpsr_write(env, val, 0xf8000000);
1777 break;
1778 case 1: /* IAPSR */
1779 xpsr_write(env, val, 0xf8000000);
1780 break;
1781 case 2: /* EAPSR */
1782 xpsr_write(env, val, 0xfe00fc00);
1783 break;
1784 case 3: /* xPSR */
1785 xpsr_write(env, val, 0xfe00fc00);
1786 break;
1787 case 5: /* IPSR */
1788 /* IPSR bits are readonly. */
1789 break;
1790 case 6: /* EPSR */
1791 xpsr_write(env, val, 0x0600fc00);
1792 break;
1793 case 7: /* IEPSR */
1794 xpsr_write(env, val, 0x0600fc00);
1795 break;
1796 case 8: /* MSP */
1797 if (env->v7m.current_sp)
1798 env->v7m.other_sp = val;
1799 else
1800 env->regs[13] = val;
1801 break;
1802 case 9: /* PSP */
1803 if (env->v7m.current_sp)
1804 env->regs[13] = val;
1805 else
1806 env->v7m.other_sp = val;
1807 break;
1808 case 16: /* PRIMASK */
1809 if (val & 1)
1810 env->uncached_cpsr |= CPSR_I;
1811 else
1812 env->uncached_cpsr &= ~CPSR_I;
1813 break;
1814 case 17: /* FAULTMASK */
1815 if (val & 1)
1816 env->uncached_cpsr |= CPSR_F;
1817 else
1818 env->uncached_cpsr &= ~CPSR_F;
1819 break;
1820 case 18: /* BASEPRI */
1821 env->v7m.basepri = val & 0xff;
1822 break;
1823 case 19: /* BASEPRI_MAX */
1824 val &= 0xff;
1825 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1826 env->v7m.basepri = val;
1827 break;
1828 case 20: /* CONTROL */
1829 env->v7m.control = val & 3;
1830 switch_v7m_sp(env, (val & 2) != 0);
1831 break;
1832 default:
1833 /* ??? For debugging only. */
1834 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1835 return;
1839 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1840 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1841 void *opaque)
1843 if (cpnum < 0 || cpnum > 14) {
1844 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1845 return;
1848 env->cp[cpnum].cp_read = cp_read;
1849 env->cp[cpnum].cp_write = cp_write;
1850 env->cp[cpnum].opaque = opaque;
1853 #endif