Split DMA controller in two
[qemu/qemu_0_9_1_stable.git] / hw / slavio_timer.c
blob6bc293e672fc264854253ccd0cf52deed83bcef4
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 //#define DEBUG_TIMER
28 #ifdef DEBUG_TIMER
29 #define DPRINTF(fmt, args...) \
30 do { printf("TIMER: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
36 * Registers of hardware timer in sun4m.
38 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43 * are zero. Bit 31 is 1 when count has been reached.
45 * Per-CPU timers interrupt local CPU, system timer uses normal
46 * interrupt routing.
50 typedef struct SLAVIO_TIMERState {
51 ptimer_state *timer;
52 uint32_t count, counthigh, reached;
53 uint64_t limit;
54 int irq;
55 int stopped;
56 int mode; // 0 = processor, 1 = user, 2 = system
57 unsigned int cpu;
58 void *intctl;
59 } SLAVIO_TIMERState;
61 #define TIMER_MAXADDR 0x1f
62 #define TIMER_SIZE (TIMER_MAXADDR + 1)
64 // Update count, set irq, update expire_time
65 // Convert from ptimer countdown units
66 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
68 uint64_t count;
70 count = s->limit - (ptimer_get_count(s->timer) << 9);
71 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
72 s->count);
73 s->count = count & 0xfffffe00;
74 s->counthigh = count >> 32;
77 // timer callback
78 static void slavio_timer_irq(void *opaque)
80 SLAVIO_TIMERState *s = opaque;
82 slavio_timer_get_out(s);
83 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
84 s->reached = 0x80000000;
85 if (s->mode != 1)
86 pic_set_irq_cpu(s->intctl, s->irq, 1, s->cpu);
89 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
91 SLAVIO_TIMERState *s = opaque;
92 uint32_t saddr, ret;
94 saddr = (addr & TIMER_MAXADDR) >> 2;
95 switch (saddr) {
96 case 0:
97 // read limit (system counter mode) or read most signifying
98 // part of counter (user mode)
99 if (s->mode != 1) {
100 // clear irq
101 pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
102 s->reached = 0;
103 ret = s->limit & 0x7fffffff;
105 else {
106 slavio_timer_get_out(s);
107 ret = s->counthigh & 0x7fffffff;
109 break;
110 case 1:
111 // read counter and reached bit (system mode) or read lsbits
112 // of counter (user mode)
113 slavio_timer_get_out(s);
114 if (s->mode != 1)
115 ret = (s->count & 0x7fffffff) | s->reached;
116 else
117 ret = s->count;
118 break;
119 case 3:
120 // read start/stop status
121 ret = s->stopped;
122 break;
123 case 4:
124 // read user/system mode
125 ret = s->mode & 1;
126 break;
127 default:
128 ret = 0;
129 break;
131 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
133 return ret;
136 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
138 SLAVIO_TIMERState *s = opaque;
139 uint32_t saddr;
140 int reload = 0;
142 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
143 saddr = (addr & TIMER_MAXADDR) >> 2;
144 switch (saddr) {
145 case 0:
146 // set limit, reset counter
147 reload = 1;
148 pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
149 // fall through
150 case 2:
151 // set limit without resetting counter
152 s->limit = val & 0x7ffffe00ULL;
153 if (!s->limit)
154 s->limit = 0x7ffffe00ULL;
155 ptimer_set_limit(s->timer, s->limit >> 9, reload);
156 break;
157 case 3:
158 // start/stop user counter
159 if (s->mode == 1) {
160 if (val & 1) {
161 ptimer_stop(s->timer);
162 s->stopped = 1;
164 else {
165 ptimer_run(s->timer, 0);
166 s->stopped = 0;
169 break;
170 case 4:
171 // bit 0: user (1) or system (0) counter mode
172 if (s->mode == 0 || s->mode == 1)
173 s->mode = val & 1;
174 if (s->mode == 1) {
175 pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
176 s->limit = -1ULL;
178 ptimer_set_limit(s->timer, s->limit >> 9, 1);
179 break;
180 default:
181 break;
185 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
186 slavio_timer_mem_readl,
187 slavio_timer_mem_readl,
188 slavio_timer_mem_readl,
191 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
192 slavio_timer_mem_writel,
193 slavio_timer_mem_writel,
194 slavio_timer_mem_writel,
197 static void slavio_timer_save(QEMUFile *f, void *opaque)
199 SLAVIO_TIMERState *s = opaque;
201 qemu_put_be64s(f, &s->limit);
202 qemu_put_be32s(f, &s->count);
203 qemu_put_be32s(f, &s->counthigh);
204 qemu_put_be32s(f, &s->irq);
205 qemu_put_be32s(f, &s->reached);
206 qemu_put_be32s(f, &s->stopped);
207 qemu_put_be32s(f, &s->mode);
208 qemu_put_ptimer(f, s->timer);
211 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
213 SLAVIO_TIMERState *s = opaque;
215 if (version_id != 2)
216 return -EINVAL;
218 qemu_get_be64s(f, &s->limit);
219 qemu_get_be32s(f, &s->count);
220 qemu_get_be32s(f, &s->counthigh);
221 qemu_get_be32s(f, &s->irq);
222 qemu_get_be32s(f, &s->reached);
223 qemu_get_be32s(f, &s->stopped);
224 qemu_get_be32s(f, &s->mode);
225 qemu_get_ptimer(f, s->timer);
227 return 0;
230 static void slavio_timer_reset(void *opaque)
232 SLAVIO_TIMERState *s = opaque;
234 s->limit = 0x7ffffe00ULL;
235 s->count = 0;
236 s->reached = 0;
237 s->mode &= 2;
238 ptimer_set_limit(s->timer, s->limit >> 9, 1);
239 ptimer_run(s->timer, 0);
240 s->stopped = 1;
241 slavio_timer_irq(s);
244 void slavio_timer_init(target_phys_addr_t addr, int irq, int mode,
245 unsigned int cpu, void *intctl)
247 int slavio_timer_io_memory;
248 SLAVIO_TIMERState *s;
249 QEMUBH *bh;
251 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
252 if (!s)
253 return;
254 s->irq = irq;
255 s->mode = mode;
256 s->cpu = cpu;
257 bh = qemu_bh_new(slavio_timer_irq, s);
258 s->timer = ptimer_init(bh);
259 ptimer_set_period(s->timer, 500ULL);
260 s->intctl = intctl;
262 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
263 slavio_timer_mem_write, s);
264 cpu_register_physical_memory(addr, TIMER_SIZE, slavio_timer_io_memory);
265 register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
266 qemu_register_reset(slavio_timer_reset, s);
267 slavio_timer_reset(s);