Split DMA controller in two
[qemu/qemu_0_9_1_stable.git] / hw / slavio_intctl.c
blob7f93b22e3221593d3eb0b61e6a5f7302841b4c7e
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
25 //#define DEBUG_IRQ_COUNT
26 //#define DEBUG_IRQ
28 #ifdef DEBUG_IRQ
29 #define DPRINTF(fmt, args...) \
30 do { printf("IRQ: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
36 * Registers of interrupt controller in sun4m.
38 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * There is a system master controller and one for each cpu.
46 #define MAX_CPUS 16
48 typedef struct SLAVIO_INTCTLState {
49 uint32_t intreg_pending[MAX_CPUS];
50 uint32_t intregm_pending;
51 uint32_t intregm_disabled;
52 uint32_t target_cpu;
53 #ifdef DEBUG_IRQ_COUNT
54 uint64_t irq_count[32];
55 #endif
56 CPUState *cpu_envs[MAX_CPUS];
57 const uint32_t *intbit_to_level;
58 } SLAVIO_INTCTLState;
60 #define INTCTL_MAXADDR 0xf
61 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
62 #define INTCTLM_MAXADDR 0x13
63 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
64 #define INTCTLM_MASK 0x1f
65 static void slavio_check_interrupts(void *opaque);
67 // per-cpu interrupt controller
68 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
70 SLAVIO_INTCTLState *s = opaque;
71 uint32_t saddr;
72 int cpu;
74 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
75 saddr = (addr & INTCTL_MAXADDR) >> 2;
76 switch (saddr) {
77 case 0:
78 return s->intreg_pending[cpu];
79 default:
80 break;
82 return 0;
85 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
87 SLAVIO_INTCTLState *s = opaque;
88 uint32_t saddr;
89 int cpu;
91 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
92 saddr = (addr & INTCTL_MAXADDR) >> 2;
93 switch (saddr) {
94 case 1: // clear pending softints
95 if (val & 0x4000)
96 val |= 80000000;
97 val &= 0xfffe0000;
98 s->intreg_pending[cpu] &= ~val;
99 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
100 break;
101 case 2: // set softint
102 val &= 0xfffe0000;
103 s->intreg_pending[cpu] |= val;
104 slavio_check_interrupts(s);
105 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
106 break;
107 default:
108 break;
112 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
113 slavio_intctl_mem_readl,
114 slavio_intctl_mem_readl,
115 slavio_intctl_mem_readl,
118 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
119 slavio_intctl_mem_writel,
120 slavio_intctl_mem_writel,
121 slavio_intctl_mem_writel,
124 // master system interrupt controller
125 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
127 SLAVIO_INTCTLState *s = opaque;
128 uint32_t saddr;
130 saddr = (addr & INTCTLM_MAXADDR) >> 2;
131 switch (saddr) {
132 case 0:
133 return s->intregm_pending & 0x7fffffff;
134 case 1:
135 return s->intregm_disabled;
136 case 4:
137 return s->target_cpu;
138 default:
139 break;
141 return 0;
144 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
146 SLAVIO_INTCTLState *s = opaque;
147 uint32_t saddr;
149 saddr = (addr & INTCTLM_MASK) >> 2;
150 switch (saddr) {
151 case 2: // clear (enable)
152 // Force clear unused bits
153 val &= ~0x4fb2007f;
154 s->intregm_disabled &= ~val;
155 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
156 slavio_check_interrupts(s);
157 break;
158 case 3: // set (disable, clear pending)
159 // Force clear unused bits
160 val &= ~0x4fb2007f;
161 s->intregm_disabled |= val;
162 s->intregm_pending &= ~val;
163 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
164 break;
165 case 4:
166 s->target_cpu = val & (MAX_CPUS - 1);
167 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
168 break;
169 default:
170 break;
174 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
175 slavio_intctlm_mem_readl,
176 slavio_intctlm_mem_readl,
177 slavio_intctlm_mem_readl,
180 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
181 slavio_intctlm_mem_writel,
182 slavio_intctlm_mem_writel,
183 slavio_intctlm_mem_writel,
186 void slavio_pic_info(void *opaque)
188 SLAVIO_INTCTLState *s = opaque;
189 int i;
191 for (i = 0; i < MAX_CPUS; i++) {
192 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
194 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
197 void slavio_irq_info(void *opaque)
199 #ifndef DEBUG_IRQ_COUNT
200 term_printf("irq statistic code not compiled.\n");
201 #else
202 SLAVIO_INTCTLState *s = opaque;
203 int i;
204 int64_t count;
206 term_printf("IRQ statistics:\n");
207 for (i = 0; i < 32; i++) {
208 count = s->irq_count[i];
209 if (count > 0)
210 term_printf("%2d: %" PRId64 "\n", i, count);
212 #endif
215 static void slavio_check_interrupts(void *opaque)
217 CPUState *env;
218 SLAVIO_INTCTLState *s = opaque;
219 uint32_t pending = s->intregm_pending;
220 unsigned int i, j, max = 0;
222 pending &= ~s->intregm_disabled;
224 if (pending && !(s->intregm_disabled & 0x80000000)) {
225 for (i = 0; i < 32; i++) {
226 if (pending & (1 << i)) {
227 if (max < s->intbit_to_level[i])
228 max = s->intbit_to_level[i];
231 env = s->cpu_envs[s->target_cpu];
232 if (!env) {
233 DPRINTF("No CPU %d, not triggered (pending %x)\n", s->target_cpu, pending);
235 else {
236 if (env->halted)
237 env->halted = 0;
238 if (env->interrupt_index == 0) {
239 DPRINTF("Triggered CPU %d pil %d\n", s->target_cpu, max);
240 #ifdef DEBUG_IRQ_COUNT
241 s->irq_count[max]++;
242 #endif
243 env->interrupt_index = TT_EXTINT | max;
244 cpu_interrupt(env, CPU_INTERRUPT_HARD);
246 else
247 DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index);
250 else
251 DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
253 for (i = 0; i < MAX_CPUS; i++) {
254 max = 0;
255 env = s->cpu_envs[i];
256 if (!env)
257 continue;
258 for (j = 17; j < 32; j++) {
259 if (s->intreg_pending[i] & (1 << j)) {
260 if (max < j - 16)
261 max = j - 16;
264 if (max > 0) {
265 if (env->halted)
266 env->halted = 0;
267 if (env->interrupt_index == 0) {
268 DPRINTF("Triggered softint %d for cpu %d (pending %x)\n", max, i, pending);
269 #ifdef DEBUG_IRQ_COUNT
270 s->irq_count[max]++;
271 #endif
272 env->interrupt_index = TT_EXTINT | max;
273 cpu_interrupt(env, CPU_INTERRUPT_HARD);
280 * "irq" here is the bit number in the system interrupt register to
281 * separate serial and keyboard interrupts sharing a level.
283 void slavio_set_irq(void *opaque, int irq, int level)
285 SLAVIO_INTCTLState *s = opaque;
287 DPRINTF("Set cpu %d irq %d level %d\n", s->target_cpu, irq, level);
288 if (irq < 32) {
289 uint32_t mask = 1 << irq;
290 uint32_t pil = s->intbit_to_level[irq];
291 if (pil > 0) {
292 if (level) {
293 s->intregm_pending |= mask;
294 s->intreg_pending[s->target_cpu] |= 1 << pil;
295 slavio_check_interrupts(s);
297 else {
298 s->intregm_pending &= ~mask;
299 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
305 void pic_set_irq_cpu(void *opaque, int irq, int level, unsigned int cpu)
307 SLAVIO_INTCTLState *s = opaque;
309 DPRINTF("Set cpu %d local irq %d level %d\n", cpu, irq, level);
310 if (cpu == (unsigned int)-1) {
311 slavio_set_irq(opaque, irq, level);
312 return;
314 if (irq < 32) {
315 uint32_t pil = s->intbit_to_level[irq];
316 if (pil > 0) {
317 if (level) {
318 s->intreg_pending[cpu] |= 1 << pil;
320 else {
321 s->intreg_pending[cpu] &= ~(1 << pil);
325 slavio_check_interrupts(s);
328 static void slavio_intctl_save(QEMUFile *f, void *opaque)
330 SLAVIO_INTCTLState *s = opaque;
331 int i;
333 for (i = 0; i < MAX_CPUS; i++) {
334 qemu_put_be32s(f, &s->intreg_pending[i]);
336 qemu_put_be32s(f, &s->intregm_pending);
337 qemu_put_be32s(f, &s->intregm_disabled);
338 qemu_put_be32s(f, &s->target_cpu);
341 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
343 SLAVIO_INTCTLState *s = opaque;
344 int i;
346 if (version_id != 1)
347 return -EINVAL;
349 for (i = 0; i < MAX_CPUS; i++) {
350 qemu_get_be32s(f, &s->intreg_pending[i]);
352 qemu_get_be32s(f, &s->intregm_pending);
353 qemu_get_be32s(f, &s->intregm_disabled);
354 qemu_get_be32s(f, &s->target_cpu);
355 return 0;
358 static void slavio_intctl_reset(void *opaque)
360 SLAVIO_INTCTLState *s = opaque;
361 int i;
363 for (i = 0; i < MAX_CPUS; i++) {
364 s->intreg_pending[i] = 0;
366 s->intregm_disabled = ~0xffb2007f;
367 s->intregm_pending = 0;
368 s->target_cpu = 0;
371 void slavio_intctl_set_cpu(void *opaque, unsigned int cpu, CPUState *env)
373 SLAVIO_INTCTLState *s = opaque;
374 s->cpu_envs[cpu] = env;
377 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
378 const uint32_t *intbit_to_level,
379 qemu_irq **irq)
381 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
382 SLAVIO_INTCTLState *s;
384 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
385 if (!s)
386 return NULL;
388 s->intbit_to_level = intbit_to_level;
389 for (i = 0; i < MAX_CPUS; i++) {
390 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
391 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
392 slavio_intctl_io_memory);
395 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
396 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
398 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
399 qemu_register_reset(slavio_intctl_reset, s);
400 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
401 slavio_intctl_reset(s);
402 return s;