Register only valid register access widths
[qemu/qemu_0_9_1_stable.git] / hw / slavio_timer.c
blobc0d849ad38872d888462a228df7af770cd884339
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "qemu-timer.h"
28 //#define DEBUG_TIMER
30 #ifdef DEBUG_TIMER
31 #define DPRINTF(fmt, args...) \
32 do { printf("TIMER: " fmt , ##args); } while (0)
33 #else
34 #define DPRINTF(fmt, args...)
35 #endif
38 * Registers of hardware timer in sun4m.
40 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41 * produced as NCR89C105. See
42 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45 * are zero. Bit 31 is 1 when count has been reached.
47 * Per-CPU timers interrupt local CPU, system timer uses normal
48 * interrupt routing.
52 #define MAX_CPUS 16
54 typedef struct SLAVIO_TIMERState {
55 qemu_irq irq;
56 ptimer_state *timer;
57 uint32_t count, counthigh, reached;
58 uint64_t limit;
59 // processor only
60 int running;
61 struct SLAVIO_TIMERState *master;
62 int slave_index;
63 // system only
64 unsigned int num_slaves;
65 struct SLAVIO_TIMERState *slave[MAX_CPUS];
66 uint32_t slave_mode;
67 } SLAVIO_TIMERState;
69 #define TIMER_MAXADDR 0x1f
70 #define SYS_TIMER_SIZE 0x14
71 #define CPU_TIMER_SIZE 0x10
73 #define SYS_TIMER_OFFSET 0x10000ULL
74 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
76 #define TIMER_LIMIT 0
77 #define TIMER_COUNTER 1
78 #define TIMER_COUNTER_NORST 2
79 #define TIMER_STATUS 3
80 #define TIMER_MODE 4
82 #define TIMER_COUNT_MASK32 0xfffffe00
83 #define TIMER_LIMIT_MASK32 0x7fffffff
84 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
85 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
86 #define TIMER_REACHED 0x80000000
87 #define TIMER_PERIOD 500ULL // 500ns
88 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
89 #define PERIODS_TO_LIMIT(l) ((l) << 9)
91 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
93 return s->master && (s->master->slave_mode & (1 << s->slave_index));
96 // Update count, set irq, update expire_time
97 // Convert from ptimer countdown units
98 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
100 uint64_t count, limit;
102 if (s->limit == 0) /* free-run processor or system counter */
103 limit = TIMER_MAX_COUNT32;
104 else
105 limit = s->limit;
107 if (s->timer)
108 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
109 else
110 count = 0;
112 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
113 s->counthigh, s->count);
114 s->count = count & TIMER_COUNT_MASK32;
115 s->counthigh = count >> 32;
118 // timer callback
119 static void slavio_timer_irq(void *opaque)
121 SLAVIO_TIMERState *s = opaque;
123 slavio_timer_get_out(s);
124 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
125 if (!slavio_timer_is_user(s)) {
126 s->reached = TIMER_REACHED;
127 qemu_irq_raise(s->irq);
131 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
133 SLAVIO_TIMERState *s = opaque;
134 uint32_t saddr, ret;
136 saddr = (addr & TIMER_MAXADDR) >> 2;
137 switch (saddr) {
138 case TIMER_LIMIT:
139 // read limit (system counter mode) or read most signifying
140 // part of counter (user mode)
141 if (slavio_timer_is_user(s)) {
142 // read user timer MSW
143 slavio_timer_get_out(s);
144 ret = s->counthigh;
145 } else {
146 // read limit
147 // clear irq
148 qemu_irq_lower(s->irq);
149 s->reached = 0;
150 ret = s->limit & TIMER_LIMIT_MASK32;
152 break;
153 case TIMER_COUNTER:
154 // read counter and reached bit (system mode) or read lsbits
155 // of counter (user mode)
156 slavio_timer_get_out(s);
157 if (slavio_timer_is_user(s)) // read user timer LSW
158 ret = s->count & TIMER_COUNT_MASK32;
159 else // read limit
160 ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
161 break;
162 case TIMER_STATUS:
163 // only available in processor counter/timer
164 // read start/stop status
165 ret = s->running;
166 break;
167 case TIMER_MODE:
168 // only available in system counter
169 // read user/system mode
170 ret = s->slave_mode;
171 break;
172 default:
173 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
174 ret = 0;
175 break;
177 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
179 return ret;
182 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
183 uint32_t val)
185 SLAVIO_TIMERState *s = opaque;
186 uint32_t saddr;
188 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
189 saddr = (addr & TIMER_MAXADDR) >> 2;
190 switch (saddr) {
191 case TIMER_LIMIT:
192 if (slavio_timer_is_user(s)) {
193 // set user counter MSW, reset counter
194 qemu_irq_lower(s->irq);
195 s->limit = TIMER_MAX_COUNT64;
196 DPRINTF("processor %d user timer reset\n", s->slave_index);
197 if (s->timer)
198 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
199 } else {
200 // set limit, reset counter
201 qemu_irq_lower(s->irq);
202 s->limit = val & TIMER_MAX_COUNT32;
203 if (s->timer) {
204 if (s->limit == 0) /* free-run */
205 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
206 else
207 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
210 break;
211 case TIMER_COUNTER:
212 if (slavio_timer_is_user(s)) {
213 // set user counter LSW, reset counter
214 qemu_irq_lower(s->irq);
215 s->limit = TIMER_MAX_COUNT64;
216 DPRINTF("processor %d user timer reset\n", s->slave_index);
217 if (s->timer)
218 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
219 } else
220 DPRINTF("not user timer\n");
221 break;
222 case TIMER_COUNTER_NORST:
223 // set limit without resetting counter
224 s->limit = val & TIMER_MAX_COUNT32;
225 if (s->timer) {
226 if (s->limit == 0) /* free-run */
227 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
228 else
229 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
231 break;
232 case TIMER_STATUS:
233 if (slavio_timer_is_user(s)) {
234 // start/stop user counter
235 if ((val & 1) && !s->running) {
236 DPRINTF("processor %d user timer started\n", s->slave_index);
237 if (s->timer)
238 ptimer_run(s->timer, 0);
239 s->running = 1;
240 } else if (!(val & 1) && s->running) {
241 DPRINTF("processor %d user timer stopped\n", s->slave_index);
242 if (s->timer)
243 ptimer_stop(s->timer);
244 s->running = 0;
247 break;
248 case TIMER_MODE:
249 if (s->master == NULL) {
250 unsigned int i;
252 for (i = 0; i < s->num_slaves; i++) {
253 if (val & (1 << i)) {
254 qemu_irq_lower(s->slave[i]->irq);
255 s->slave[i]->limit = -1ULL;
256 } else {
257 ptimer_stop(s->slave[i]->timer);
259 if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
260 ptimer_stop(s->slave[i]->timer);
261 ptimer_set_limit(s->slave[i]->timer,
262 LIMIT_TO_PERIODS(s->slave[i]->limit), 1);
263 DPRINTF("processor %d timer changed\n",
264 s->slave[i]->slave_index);
265 ptimer_run(s->slave[i]->timer, 0);
268 s->slave_mode = val & ((1 << s->num_slaves) - 1);
269 } else
270 DPRINTF("not system timer\n");
271 break;
272 default:
273 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
274 break;
278 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
279 NULL,
280 NULL,
281 slavio_timer_mem_readl,
284 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
285 NULL,
286 NULL,
287 slavio_timer_mem_writel,
290 static void slavio_timer_save(QEMUFile *f, void *opaque)
292 SLAVIO_TIMERState *s = opaque;
294 qemu_put_be64s(f, &s->limit);
295 qemu_put_be32s(f, &s->count);
296 qemu_put_be32s(f, &s->counthigh);
297 qemu_put_be32s(f, &s->reached);
298 qemu_put_be32s(f, &s->running);
299 if (s->timer)
300 qemu_put_ptimer(f, s->timer);
303 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
305 SLAVIO_TIMERState *s = opaque;
307 if (version_id != 3)
308 return -EINVAL;
310 qemu_get_be64s(f, &s->limit);
311 qemu_get_be32s(f, &s->count);
312 qemu_get_be32s(f, &s->counthigh);
313 qemu_get_be32s(f, &s->reached);
314 qemu_get_be32s(f, &s->running);
315 if (s->timer)
316 qemu_get_ptimer(f, s->timer);
318 return 0;
321 static void slavio_timer_reset(void *opaque)
323 SLAVIO_TIMERState *s = opaque;
325 s->limit = 0;
326 s->count = 0;
327 s->reached = 0;
328 s->slave_mode = 0;
329 if (!s->master || s->slave_index < s->master->num_slaves) {
330 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
331 ptimer_run(s->timer, 0);
333 s->running = 1;
334 qemu_irq_lower(s->irq);
337 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
338 qemu_irq irq,
339 SLAVIO_TIMERState *master,
340 int slave_index)
342 int slavio_timer_io_memory;
343 SLAVIO_TIMERState *s;
344 QEMUBH *bh;
346 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
347 if (!s)
348 return s;
349 s->irq = irq;
350 s->master = master;
351 s->slave_index = slave_index;
352 if (!master || slave_index < master->num_slaves) {
353 bh = qemu_bh_new(slavio_timer_irq, s);
354 s->timer = ptimer_init(bh);
355 ptimer_set_period(s->timer, TIMER_PERIOD);
358 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
359 slavio_timer_mem_write, s);
360 if (master)
361 cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
362 slavio_timer_io_memory);
363 else
364 cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
365 slavio_timer_io_memory);
366 register_savevm("slavio_timer", addr, 3, slavio_timer_save,
367 slavio_timer_load, s);
368 qemu_register_reset(slavio_timer_reset, s);
369 slavio_timer_reset(s);
371 return s;
374 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
375 qemu_irq *cpu_irqs, unsigned int num_cpus)
377 SLAVIO_TIMERState *master;
378 unsigned int i;
380 master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
382 master->num_slaves = num_cpus;
384 for (i = 0; i < MAX_CPUS; i++) {
385 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
386 CPU_TIMER_OFFSET(i),
387 cpu_irqs[i], master, i);