fixed PPC state reloading
[qemu/qemu_0_9_1_stable.git] / exec.c
blob9cc251f959f6060080a54cac75482fa8cb5973dc
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <stdarg.h>
23 #include <string.h>
24 #include <errno.h>
25 #include <unistd.h>
26 #include <inttypes.h>
27 #include <sys/mman.h>
29 #include "config.h"
30 #include "cpu.h"
31 #include "exec-all.h"
33 //#define DEBUG_TB_INVALIDATE
34 //#define DEBUG_FLUSH
36 /* make various TB consistency checks */
37 //#define DEBUG_TB_CHECK
39 /* threshold to flush the translated code buffer */
40 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
42 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / 64)
44 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
45 TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
46 int nb_tbs;
47 /* any access to the tbs or the page table must use this lock */
48 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
50 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
51 uint8_t *code_gen_ptr;
53 /* XXX: pack the flags in the low bits of the pointer ? */
54 typedef struct PageDesc {
55 unsigned long flags;
56 TranslationBlock *first_tb;
57 } PageDesc;
59 #define L2_BITS 10
60 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
62 #define L1_SIZE (1 << L1_BITS)
63 #define L2_SIZE (1 << L2_BITS)
65 static void tb_invalidate_page(unsigned long address);
66 static void io_mem_init(void);
68 unsigned long real_host_page_size;
69 unsigned long host_page_bits;
70 unsigned long host_page_size;
71 unsigned long host_page_mask;
73 static PageDesc *l1_map[L1_SIZE];
75 /* io memory support */
76 static unsigned long *l1_physmap[L1_SIZE];
77 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
78 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
79 static int io_mem_nb;
81 /* log support */
82 char *logfilename = "/tmp/qemu.log";
83 FILE *logfile;
84 int loglevel;
86 static void page_init(void)
88 /* NOTE: we can always suppose that host_page_size >=
89 TARGET_PAGE_SIZE */
90 real_host_page_size = getpagesize();
91 if (host_page_size == 0)
92 host_page_size = real_host_page_size;
93 if (host_page_size < TARGET_PAGE_SIZE)
94 host_page_size = TARGET_PAGE_SIZE;
95 host_page_bits = 0;
96 while ((1 << host_page_bits) < host_page_size)
97 host_page_bits++;
98 host_page_mask = ~(host_page_size - 1);
101 /* dump memory mappings */
102 void page_dump(FILE *f)
104 unsigned long start, end;
105 int i, j, prot, prot1;
106 PageDesc *p;
108 fprintf(f, "%-8s %-8s %-8s %s\n",
109 "start", "end", "size", "prot");
110 start = -1;
111 end = -1;
112 prot = 0;
113 for(i = 0; i <= L1_SIZE; i++) {
114 if (i < L1_SIZE)
115 p = l1_map[i];
116 else
117 p = NULL;
118 for(j = 0;j < L2_SIZE; j++) {
119 if (!p)
120 prot1 = 0;
121 else
122 prot1 = p[j].flags;
123 if (prot1 != prot) {
124 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
125 if (start != -1) {
126 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
127 start, end, end - start,
128 prot & PAGE_READ ? 'r' : '-',
129 prot & PAGE_WRITE ? 'w' : '-',
130 prot & PAGE_EXEC ? 'x' : '-');
132 if (prot1 != 0)
133 start = end;
134 else
135 start = -1;
136 prot = prot1;
138 if (!p)
139 break;
144 static inline PageDesc *page_find_alloc(unsigned int index)
146 PageDesc **lp, *p;
148 lp = &l1_map[index >> L2_BITS];
149 p = *lp;
150 if (!p) {
151 /* allocate if not found */
152 p = malloc(sizeof(PageDesc) * L2_SIZE);
153 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
154 *lp = p;
156 return p + (index & (L2_SIZE - 1));
159 static inline PageDesc *page_find(unsigned int index)
161 PageDesc *p;
163 p = l1_map[index >> L2_BITS];
164 if (!p)
165 return 0;
166 return p + (index & (L2_SIZE - 1));
169 int page_get_flags(unsigned long address)
171 PageDesc *p;
173 p = page_find(address >> TARGET_PAGE_BITS);
174 if (!p)
175 return 0;
176 return p->flags;
179 /* modify the flags of a page and invalidate the code if
180 necessary. The flag PAGE_WRITE_ORG is positionned automatically
181 depending on PAGE_WRITE */
182 void page_set_flags(unsigned long start, unsigned long end, int flags)
184 PageDesc *p;
185 unsigned long addr;
187 start = start & TARGET_PAGE_MASK;
188 end = TARGET_PAGE_ALIGN(end);
189 if (flags & PAGE_WRITE)
190 flags |= PAGE_WRITE_ORG;
191 spin_lock(&tb_lock);
192 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
193 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
194 /* if the write protection is set, then we invalidate the code
195 inside */
196 if (!(p->flags & PAGE_WRITE) &&
197 (flags & PAGE_WRITE) &&
198 p->first_tb) {
199 tb_invalidate_page(addr);
201 p->flags = flags;
203 spin_unlock(&tb_lock);
206 void cpu_exec_init(void)
208 if (!code_gen_ptr) {
209 code_gen_ptr = code_gen_buffer;
210 page_init();
211 io_mem_init();
215 /* set to NULL all the 'first_tb' fields in all PageDescs */
216 static void page_flush_tb(void)
218 int i, j;
219 PageDesc *p;
221 for(i = 0; i < L1_SIZE; i++) {
222 p = l1_map[i];
223 if (p) {
224 for(j = 0; j < L2_SIZE; j++)
225 p[j].first_tb = NULL;
230 /* flush all the translation blocks */
231 /* XXX: tb_flush is currently not thread safe */
232 void tb_flush(void)
234 int i;
235 #ifdef DEBUG_FLUSH
236 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
237 code_gen_ptr - code_gen_buffer,
238 nb_tbs,
239 (code_gen_ptr - code_gen_buffer) / nb_tbs);
240 #endif
241 nb_tbs = 0;
242 for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
243 tb_hash[i] = NULL;
244 page_flush_tb();
245 code_gen_ptr = code_gen_buffer;
246 /* XXX: flush processor icache at this point if cache flush is
247 expensive */
250 #ifdef DEBUG_TB_CHECK
252 static void tb_invalidate_check(unsigned long address)
254 TranslationBlock *tb;
255 int i;
256 address &= TARGET_PAGE_MASK;
257 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
258 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
259 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
260 address >= tb->pc + tb->size)) {
261 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
262 address, tb->pc, tb->size);
268 /* verify that all the pages have correct rights for code */
269 static void tb_page_check(void)
271 TranslationBlock *tb;
272 int i, flags1, flags2;
274 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
275 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
276 flags1 = page_get_flags(tb->pc);
277 flags2 = page_get_flags(tb->pc + tb->size - 1);
278 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
279 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
280 tb->pc, tb->size, flags1, flags2);
286 void tb_jmp_check(TranslationBlock *tb)
288 TranslationBlock *tb1;
289 unsigned int n1;
291 /* suppress any remaining jumps to this TB */
292 tb1 = tb->jmp_first;
293 for(;;) {
294 n1 = (long)tb1 & 3;
295 tb1 = (TranslationBlock *)((long)tb1 & ~3);
296 if (n1 == 2)
297 break;
298 tb1 = tb1->jmp_next[n1];
300 /* check end of list */
301 if (tb1 != tb) {
302 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
306 #endif
308 /* invalidate one TB */
309 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
310 int next_offset)
312 TranslationBlock *tb1;
313 for(;;) {
314 tb1 = *ptb;
315 if (tb1 == tb) {
316 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
317 break;
319 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
323 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
325 TranslationBlock *tb1, **ptb;
326 unsigned int n1;
328 ptb = &tb->jmp_next[n];
329 tb1 = *ptb;
330 if (tb1) {
331 /* find tb(n) in circular list */
332 for(;;) {
333 tb1 = *ptb;
334 n1 = (long)tb1 & 3;
335 tb1 = (TranslationBlock *)((long)tb1 & ~3);
336 if (n1 == n && tb1 == tb)
337 break;
338 if (n1 == 2) {
339 ptb = &tb1->jmp_first;
340 } else {
341 ptb = &tb1->jmp_next[n1];
344 /* now we can suppress tb(n) from the list */
345 *ptb = tb->jmp_next[n];
347 tb->jmp_next[n] = NULL;
351 /* reset the jump entry 'n' of a TB so that it is not chained to
352 another TB */
353 static inline void tb_reset_jump(TranslationBlock *tb, int n)
355 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
358 static inline void tb_invalidate(TranslationBlock *tb, int parity)
360 PageDesc *p;
361 unsigned int page_index1, page_index2;
362 unsigned int h, n1;
363 TranslationBlock *tb1, *tb2;
365 tb_invalidated_flag = 1;
367 /* remove the TB from the hash list */
368 h = tb_hash_func(tb->pc);
369 tb_remove(&tb_hash[h], tb,
370 offsetof(TranslationBlock, hash_next));
371 /* remove the TB from the page list */
372 page_index1 = tb->pc >> TARGET_PAGE_BITS;
373 if ((page_index1 & 1) == parity) {
374 p = page_find(page_index1);
375 tb_remove(&p->first_tb, tb,
376 offsetof(TranslationBlock, page_next[page_index1 & 1]));
378 page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
379 if ((page_index2 & 1) == parity) {
380 p = page_find(page_index2);
381 tb_remove(&p->first_tb, tb,
382 offsetof(TranslationBlock, page_next[page_index2 & 1]));
385 /* suppress this TB from the two jump lists */
386 tb_jmp_remove(tb, 0);
387 tb_jmp_remove(tb, 1);
389 /* suppress any remaining jumps to this TB */
390 tb1 = tb->jmp_first;
391 for(;;) {
392 n1 = (long)tb1 & 3;
393 if (n1 == 2)
394 break;
395 tb1 = (TranslationBlock *)((long)tb1 & ~3);
396 tb2 = tb1->jmp_next[n1];
397 tb_reset_jump(tb1, n1);
398 tb1->jmp_next[n1] = NULL;
399 tb1 = tb2;
401 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
404 /* invalidate all TBs which intersect with the target page starting at addr */
405 static void tb_invalidate_page(unsigned long address)
407 TranslationBlock *tb_next, *tb;
408 unsigned int page_index;
409 int parity1, parity2;
410 PageDesc *p;
411 #ifdef DEBUG_TB_INVALIDATE
412 printf("tb_invalidate_page: %lx\n", address);
413 #endif
415 page_index = address >> TARGET_PAGE_BITS;
416 p = page_find(page_index);
417 if (!p)
418 return;
419 tb = p->first_tb;
420 parity1 = page_index & 1;
421 parity2 = parity1 ^ 1;
422 while (tb != NULL) {
423 tb_next = tb->page_next[parity1];
424 tb_invalidate(tb, parity2);
425 tb = tb_next;
427 p->first_tb = NULL;
430 /* add the tb in the target page and protect it if necessary */
431 static inline void tb_alloc_page(TranslationBlock *tb, unsigned int page_index)
433 PageDesc *p;
434 unsigned long host_start, host_end, addr, page_addr;
435 int prot;
437 p = page_find_alloc(page_index);
438 tb->page_next[page_index & 1] = p->first_tb;
439 p->first_tb = tb;
440 if (p->flags & PAGE_WRITE) {
441 /* force the host page as non writable (writes will have a
442 page fault + mprotect overhead) */
443 page_addr = (page_index << TARGET_PAGE_BITS);
444 host_start = page_addr & host_page_mask;
445 host_end = host_start + host_page_size;
446 prot = 0;
447 for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
448 prot |= page_get_flags(addr);
449 #if !defined(CONFIG_SOFTMMU)
450 mprotect((void *)host_start, host_page_size,
451 (prot & PAGE_BITS) & ~PAGE_WRITE);
452 #endif
453 #if !defined(CONFIG_USER_ONLY)
454 /* suppress soft TLB */
455 /* XXX: must flush on all processor with same address space */
456 tlb_flush_page_write(cpu_single_env, host_start);
457 #endif
458 #ifdef DEBUG_TB_INVALIDATE
459 printf("protecting code page: 0x%08lx\n",
460 host_start);
461 #endif
462 p->flags &= ~PAGE_WRITE;
466 /* Allocate a new translation block. Flush the translation buffer if
467 too many translation blocks or too much generated code. */
468 TranslationBlock *tb_alloc(unsigned long pc)
470 TranslationBlock *tb;
472 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
473 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
474 return NULL;
475 tb = &tbs[nb_tbs++];
476 tb->pc = pc;
477 return tb;
480 /* link the tb with the other TBs */
481 void tb_link(TranslationBlock *tb)
483 unsigned int page_index1, page_index2;
485 /* add in the page list */
486 page_index1 = tb->pc >> TARGET_PAGE_BITS;
487 tb_alloc_page(tb, page_index1);
488 page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
489 if (page_index2 != page_index1) {
490 tb_alloc_page(tb, page_index2);
492 #ifdef DEBUG_TB_CHECK
493 tb_page_check();
494 #endif
495 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
496 tb->jmp_next[0] = NULL;
497 tb->jmp_next[1] = NULL;
499 /* init original jump addresses */
500 if (tb->tb_next_offset[0] != 0xffff)
501 tb_reset_jump(tb, 0);
502 if (tb->tb_next_offset[1] != 0xffff)
503 tb_reset_jump(tb, 1);
506 /* called from signal handler: invalidate the code and unprotect the
507 page. Return TRUE if the fault was succesfully handled. */
508 int page_unprotect(unsigned long address)
510 unsigned int page_index, prot, pindex;
511 PageDesc *p, *p1;
512 unsigned long host_start, host_end, addr;
514 host_start = address & host_page_mask;
515 page_index = host_start >> TARGET_PAGE_BITS;
516 p1 = page_find(page_index);
517 if (!p1)
518 return 0;
519 host_end = host_start + host_page_size;
520 p = p1;
521 prot = 0;
522 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
523 prot |= p->flags;
524 p++;
526 /* if the page was really writable, then we change its
527 protection back to writable */
528 if (prot & PAGE_WRITE_ORG) {
529 pindex = (address - host_start) >> TARGET_PAGE_BITS;
530 if (!(p1[pindex].flags & PAGE_WRITE)) {
531 #if !defined(CONFIG_SOFTMMU)
532 mprotect((void *)host_start, host_page_size,
533 (prot & PAGE_BITS) | PAGE_WRITE);
534 #endif
535 p1[pindex].flags |= PAGE_WRITE;
536 /* and since the content will be modified, we must invalidate
537 the corresponding translated code. */
538 tb_invalidate_page(address);
539 #ifdef DEBUG_TB_CHECK
540 tb_invalidate_check(address);
541 #endif
542 return 1;
545 return 0;
548 /* call this function when system calls directly modify a memory area */
549 void page_unprotect_range(uint8_t *data, unsigned long data_size)
551 unsigned long start, end, addr;
553 start = (unsigned long)data;
554 end = start + data_size;
555 start &= TARGET_PAGE_MASK;
556 end = TARGET_PAGE_ALIGN(end);
557 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
558 page_unprotect(addr);
562 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
563 tb[1].tc_ptr. Return NULL if not found */
564 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
566 int m_min, m_max, m;
567 unsigned long v;
568 TranslationBlock *tb;
570 if (nb_tbs <= 0)
571 return NULL;
572 if (tc_ptr < (unsigned long)code_gen_buffer ||
573 tc_ptr >= (unsigned long)code_gen_ptr)
574 return NULL;
575 /* binary search (cf Knuth) */
576 m_min = 0;
577 m_max = nb_tbs - 1;
578 while (m_min <= m_max) {
579 m = (m_min + m_max) >> 1;
580 tb = &tbs[m];
581 v = (unsigned long)tb->tc_ptr;
582 if (v == tc_ptr)
583 return tb;
584 else if (tc_ptr < v) {
585 m_max = m - 1;
586 } else {
587 m_min = m + 1;
590 return &tbs[m_max];
593 static void tb_reset_jump_recursive(TranslationBlock *tb);
595 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
597 TranslationBlock *tb1, *tb_next, **ptb;
598 unsigned int n1;
600 tb1 = tb->jmp_next[n];
601 if (tb1 != NULL) {
602 /* find head of list */
603 for(;;) {
604 n1 = (long)tb1 & 3;
605 tb1 = (TranslationBlock *)((long)tb1 & ~3);
606 if (n1 == 2)
607 break;
608 tb1 = tb1->jmp_next[n1];
610 /* we are now sure now that tb jumps to tb1 */
611 tb_next = tb1;
613 /* remove tb from the jmp_first list */
614 ptb = &tb_next->jmp_first;
615 for(;;) {
616 tb1 = *ptb;
617 n1 = (long)tb1 & 3;
618 tb1 = (TranslationBlock *)((long)tb1 & ~3);
619 if (n1 == n && tb1 == tb)
620 break;
621 ptb = &tb1->jmp_next[n1];
623 *ptb = tb->jmp_next[n];
624 tb->jmp_next[n] = NULL;
626 /* suppress the jump to next tb in generated code */
627 tb_reset_jump(tb, n);
629 /* suppress jumps in the tb on which we could have jump */
630 tb_reset_jump_recursive(tb_next);
634 static void tb_reset_jump_recursive(TranslationBlock *tb)
636 tb_reset_jump_recursive2(tb, 0);
637 tb_reset_jump_recursive2(tb, 1);
640 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
641 breakpoint is reached */
642 int cpu_breakpoint_insert(CPUState *env, uint32_t pc)
644 #if defined(TARGET_I386)
645 int i;
647 for(i = 0; i < env->nb_breakpoints; i++) {
648 if (env->breakpoints[i] == pc)
649 return 0;
652 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
653 return -1;
654 env->breakpoints[env->nb_breakpoints++] = pc;
655 tb_invalidate_page(pc);
656 return 0;
657 #else
658 return -1;
659 #endif
662 /* remove a breakpoint */
663 int cpu_breakpoint_remove(CPUState *env, uint32_t pc)
665 #if defined(TARGET_I386)
666 int i;
667 for(i = 0; i < env->nb_breakpoints; i++) {
668 if (env->breakpoints[i] == pc)
669 goto found;
671 return -1;
672 found:
673 memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
674 (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
675 env->nb_breakpoints--;
676 tb_invalidate_page(pc);
677 return 0;
678 #else
679 return -1;
680 #endif
683 /* enable or disable single step mode. EXCP_DEBUG is returned by the
684 CPU loop after each instruction */
685 void cpu_single_step(CPUState *env, int enabled)
687 #if defined(TARGET_I386)
688 if (env->singlestep_enabled != enabled) {
689 env->singlestep_enabled = enabled;
690 /* must flush all the translated code to avoid inconsistancies */
691 tb_flush();
693 #endif
696 /* enable or disable low levels log */
697 void cpu_set_log(int log_flags)
699 loglevel = log_flags;
700 if (loglevel && !logfile) {
701 logfile = fopen(logfilename, "w");
702 if (!logfile) {
703 perror(logfilename);
704 _exit(1);
706 setvbuf(logfile, NULL, _IOLBF, 0);
710 void cpu_set_log_filename(const char *filename)
712 logfilename = strdup(filename);
715 /* mask must never be zero */
716 void cpu_interrupt(CPUState *env, int mask)
718 TranslationBlock *tb;
720 env->interrupt_request |= mask;
721 /* if the cpu is currently executing code, we must unlink it and
722 all the potentially executing TB */
723 tb = env->current_tb;
724 if (tb) {
725 tb_reset_jump_recursive(tb);
730 void cpu_abort(CPUState *env, const char *fmt, ...)
732 va_list ap;
734 va_start(ap, fmt);
735 fprintf(stderr, "qemu: fatal: ");
736 vfprintf(stderr, fmt, ap);
737 fprintf(stderr, "\n");
738 #ifdef TARGET_I386
739 cpu_x86_dump_state(env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
740 #endif
741 va_end(ap);
742 abort();
745 #ifdef TARGET_I386
746 /* unmap all maped pages and flush all associated code */
747 void page_unmap(void)
749 PageDesc *pmap;
750 int i;
752 for(i = 0; i < L1_SIZE; i++) {
753 pmap = l1_map[i];
754 if (pmap) {
755 #if !defined(CONFIG_SOFTMMU)
756 PageDesc *p;
757 unsigned long addr;
758 int j, ret, j1;
760 p = pmap;
761 for(j = 0;j < L2_SIZE;) {
762 if (p->flags & PAGE_VALID) {
763 addr = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
764 /* we try to find a range to make less syscalls */
765 j1 = j;
766 p++;
767 j++;
768 while (j < L2_SIZE && (p->flags & PAGE_VALID)) {
769 p++;
770 j++;
772 ret = munmap((void *)addr, (j - j1) << TARGET_PAGE_BITS);
773 if (ret != 0) {
774 fprintf(stderr, "Could not unmap page 0x%08lx\n", addr);
775 exit(1);
777 } else {
778 p++;
779 j++;
782 #endif
783 free(pmap);
784 l1_map[i] = NULL;
787 tb_flush();
789 #endif
791 void tlb_flush(CPUState *env)
793 #if !defined(CONFIG_USER_ONLY)
794 int i;
795 for(i = 0; i < CPU_TLB_SIZE; i++) {
796 env->tlb_read[0][i].address = -1;
797 env->tlb_write[0][i].address = -1;
798 env->tlb_read[1][i].address = -1;
799 env->tlb_write[1][i].address = -1;
801 #endif
804 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, uint32_t addr)
806 if (addr == (tlb_entry->address &
807 (TARGET_PAGE_MASK | TLB_INVALID_MASK)))
808 tlb_entry->address = -1;
811 void tlb_flush_page(CPUState *env, uint32_t addr)
813 #if !defined(CONFIG_USER_ONLY)
814 int i;
816 addr &= TARGET_PAGE_MASK;
817 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
818 tlb_flush_entry(&env->tlb_read[0][i], addr);
819 tlb_flush_entry(&env->tlb_write[0][i], addr);
820 tlb_flush_entry(&env->tlb_read[1][i], addr);
821 tlb_flush_entry(&env->tlb_write[1][i], addr);
822 #endif
825 /* make all write to page 'addr' trigger a TLB exception to detect
826 self modifying code */
827 void tlb_flush_page_write(CPUState *env, uint32_t addr)
829 #if !defined(CONFIG_USER_ONLY)
830 int i;
832 addr &= TARGET_PAGE_MASK;
833 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
834 tlb_flush_entry(&env->tlb_write[0][i], addr);
835 tlb_flush_entry(&env->tlb_write[1][i], addr);
836 #endif
839 static inline unsigned long *physpage_find_alloc(unsigned int page)
841 unsigned long **lp, *p;
842 unsigned int index, i;
844 index = page >> TARGET_PAGE_BITS;
845 lp = &l1_physmap[index >> L2_BITS];
846 p = *lp;
847 if (!p) {
848 /* allocate if not found */
849 p = malloc(sizeof(unsigned long) * L2_SIZE);
850 for(i = 0; i < L2_SIZE; i++)
851 p[i] = IO_MEM_UNASSIGNED;
852 *lp = p;
854 return p + (index & (L2_SIZE - 1));
857 /* return NULL if no page defined (unused memory) */
858 unsigned long physpage_find(unsigned long page)
860 unsigned long *p;
861 unsigned int index;
862 index = page >> TARGET_PAGE_BITS;
863 p = l1_physmap[index >> L2_BITS];
864 if (!p)
865 return IO_MEM_UNASSIGNED;
866 return p[index & (L2_SIZE - 1)];
869 /* register physical memory. 'size' must be a multiple of the target
870 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
871 io memory page */
872 void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
873 long phys_offset)
875 unsigned long addr, end_addr;
876 unsigned long *p;
878 end_addr = start_addr + size;
879 for(addr = start_addr; addr < end_addr; addr += TARGET_PAGE_SIZE) {
880 p = physpage_find_alloc(addr);
881 *p = phys_offset;
882 if ((phys_offset & ~TARGET_PAGE_MASK) == 0)
883 phys_offset += TARGET_PAGE_SIZE;
887 static uint32_t unassigned_mem_readb(uint32_t addr)
889 return 0;
892 static void unassigned_mem_writeb(uint32_t addr, uint32_t val)
896 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
897 unassigned_mem_readb,
898 unassigned_mem_readb,
899 unassigned_mem_readb,
902 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
903 unassigned_mem_writeb,
904 unassigned_mem_writeb,
905 unassigned_mem_writeb,
909 static void io_mem_init(void)
911 io_mem_nb = 1;
912 cpu_register_io_memory(0, unassigned_mem_read, unassigned_mem_write);
915 /* mem_read and mem_write are arrays of functions containing the
916 function to access byte (index 0), word (index 1) and dword (index
917 2). All functions must be supplied. If io_index is non zero, the
918 corresponding io zone is modified. If it is zero, a new io zone is
919 allocated. The return value can be used with
920 cpu_register_physical_memory(). (-1) is returned if error. */
921 int cpu_register_io_memory(int io_index,
922 CPUReadMemoryFunc **mem_read,
923 CPUWriteMemoryFunc **mem_write)
925 int i;
927 if (io_index <= 0) {
928 if (io_index >= IO_MEM_NB_ENTRIES)
929 return -1;
930 io_index = io_mem_nb++;
931 } else {
932 if (io_index >= IO_MEM_NB_ENTRIES)
933 return -1;
936 for(i = 0;i < 3; i++) {
937 io_mem_read[io_index][i] = mem_read[i];
938 io_mem_write[io_index][i] = mem_write[i];
940 return io_index << IO_MEM_SHIFT;
943 #if !defined(CONFIG_USER_ONLY)
945 #define MMUSUFFIX _cmmu
946 #define GETPC() NULL
947 #define env cpu_single_env
949 #define SHIFT 0
950 #include "softmmu_template.h"
952 #define SHIFT 1
953 #include "softmmu_template.h"
955 #define SHIFT 2
956 #include "softmmu_template.h"
958 #define SHIFT 3
959 #include "softmmu_template.h"
961 #undef env
963 #endif