Update Sparc parts in documentation
[qemu/qemu_0_9_1_stable.git] / hw / sun4m.c
bloba12aec9e8a302c2542a6a8197026dca75745ecaa
1 /*
2 * QEMU Sun4m System Emulator
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
25 //#define DEBUG_IRQ
28 * Sun4m architecture was used in the following machines:
30 * SPARCserver 6xxMP/xx
31 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), SPARCclassic X (4/10)
32 * SPARCstation LX/ZX (4/30)
33 * SPARCstation Voyager
34 * SPARCstation 10/xx, SPARCserver 10/xx
35 * SPARCstation 5, SPARCserver 5
36 * SPARCstation 20/xx, SPARCserver 20
37 * SPARCstation 4
39 * See for example: http://www.sunhelp.org/faq/sunref1.html
42 #ifdef DEBUG_IRQ
43 #define DPRINTF(fmt, args...) \
44 do { printf("CPUIRQ: " fmt , ##args); } while (0)
45 #else
46 #define DPRINTF(fmt, args...)
47 #endif
49 #define KERNEL_LOAD_ADDR 0x00004000
50 #define CMDLINE_ADDR 0x007ff000
51 #define INITRD_LOAD_ADDR 0x00800000
52 #define PROM_SIZE_MAX (512 * 1024)
53 #define PROM_PADDR 0xff0000000ULL
54 #define PROM_VADDR 0xffd00000
55 #define PROM_FILENAME "openbios-sparc32"
57 #define MAX_CPUS 16
58 #define MAX_PILS 16
60 struct hwdef {
61 target_phys_addr_t iommu_base, slavio_base;
62 target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
63 target_phys_addr_t serial_base, fd_base;
64 target_phys_addr_t dma_base, esp_base, le_base;
65 target_phys_addr_t tcx_base, cs_base, power_base;
66 long vram_size, nvram_size;
67 // IRQ numbers are not PIL ones, but master interrupt controller register
68 // bit numbers
69 int intctl_g_intr, esp_irq, le_irq, clock_irq, clock1_irq;
70 int ser_irq, ms_kb_irq, fd_irq, me_irq, cs_irq;
71 int machine_id; // For NVRAM
72 uint32_t intbit_to_level[32];
75 /* TSC handling */
77 uint64_t cpu_get_tsc()
79 return qemu_get_clock(vm_clock);
82 int DMA_get_channel_mode (int nchan)
84 return 0;
86 int DMA_read_memory (int nchan, void *buf, int pos, int size)
88 return 0;
90 int DMA_write_memory (int nchan, void *buf, int pos, int size)
92 return 0;
94 void DMA_hold_DREQ (int nchan) {}
95 void DMA_release_DREQ (int nchan) {}
96 void DMA_schedule(int nchan) {}
97 void DMA_run (void) {}
98 void DMA_init (int high_page_enable) {}
99 void DMA_register_channel (int nchan,
100 DMA_transfer_handler transfer_handler,
101 void *opaque)
105 static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
107 m48t59_write(nvram, addr++, (value >> 8) & 0xff);
108 m48t59_write(nvram, addr++, value & 0xff);
111 static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
113 m48t59_write(nvram, addr++, value >> 24);
114 m48t59_write(nvram, addr++, (value >> 16) & 0xff);
115 m48t59_write(nvram, addr++, (value >> 8) & 0xff);
116 m48t59_write(nvram, addr++, value & 0xff);
119 static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
120 const unsigned char *str, uint32_t max)
122 unsigned int i;
124 for (i = 0; i < max && str[i] != '\0'; i++) {
125 m48t59_write(nvram, addr + i, str[i]);
127 m48t59_write(nvram, addr + max - 1, '\0');
130 static uint32_t nvram_set_var (m48t59_t *nvram, uint32_t addr,
131 const unsigned char *str)
133 uint32_t len;
135 len = strlen(str) + 1;
136 nvram_set_string(nvram, addr, str, len);
138 return addr + len;
141 static void nvram_finish_partition (m48t59_t *nvram, uint32_t start,
142 uint32_t end)
144 unsigned int i, sum;
146 // Length divided by 16
147 m48t59_write(nvram, start + 2, ((end - start) >> 12) & 0xff);
148 m48t59_write(nvram, start + 3, ((end - start) >> 4) & 0xff);
149 // Checksum
150 sum = m48t59_read(nvram, start);
151 for (i = 0; i < 14; i++) {
152 sum += m48t59_read(nvram, start + 2 + i);
153 sum = (sum + ((sum & 0xff00) >> 8)) & 0xff;
155 m48t59_write(nvram, start + 1, sum & 0xff);
158 extern int nographic;
160 static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
161 int boot_device, uint32_t RAM_size,
162 uint32_t kernel_size,
163 int width, int height, int depth,
164 int machine_id)
166 unsigned char tmp = 0;
167 unsigned int i, j;
168 uint32_t start, end;
170 // Try to match PPC NVRAM
171 nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
172 nvram_set_lword(nvram, 0x10, 0x00000001); /* structure v1 */
173 // NVRAM_size, arch not applicable
174 m48t59_write(nvram, 0x2D, smp_cpus & 0xff);
175 m48t59_write(nvram, 0x2E, 0);
176 m48t59_write(nvram, 0x2F, nographic & 0xff);
177 nvram_set_lword(nvram, 0x30, RAM_size);
178 m48t59_write(nvram, 0x34, boot_device & 0xff);
179 nvram_set_lword(nvram, 0x38, KERNEL_LOAD_ADDR);
180 nvram_set_lword(nvram, 0x3C, kernel_size);
181 if (cmdline) {
182 strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
183 nvram_set_lword(nvram, 0x40, CMDLINE_ADDR);
184 nvram_set_lword(nvram, 0x44, strlen(cmdline));
186 // initrd_image, initrd_size passed differently
187 nvram_set_word(nvram, 0x54, width);
188 nvram_set_word(nvram, 0x56, height);
189 nvram_set_word(nvram, 0x58, depth);
191 // OpenBIOS nvram variables
192 // Variable partition
193 start = 252;
194 m48t59_write(nvram, start, 0x70);
195 nvram_set_string(nvram, start + 4, "system", 12);
197 end = start + 16;
198 for (i = 0; i < nb_prom_envs; i++)
199 end = nvram_set_var(nvram, end, prom_envs[i]);
201 m48t59_write(nvram, end++ , 0);
202 end = start + ((end - start + 15) & ~15);
203 nvram_finish_partition(nvram, start, end);
205 // free partition
206 start = end;
207 m48t59_write(nvram, start, 0x7f);
208 nvram_set_string(nvram, start + 4, "free", 12);
210 end = 0x1fd0;
211 nvram_finish_partition(nvram, start, end);
213 // Sun4m specific use
214 start = i = 0x1fd8;
215 m48t59_write(nvram, i++, 0x01);
216 m48t59_write(nvram, i++, machine_id);
217 j = 0;
218 m48t59_write(nvram, i++, macaddr[j++]);
219 m48t59_write(nvram, i++, macaddr[j++]);
220 m48t59_write(nvram, i++, macaddr[j++]);
221 m48t59_write(nvram, i++, macaddr[j++]);
222 m48t59_write(nvram, i++, macaddr[j++]);
223 m48t59_write(nvram, i, macaddr[j]);
225 /* Calculate checksum */
226 for (i = start; i < start + 15; i++) {
227 tmp ^= m48t59_read(nvram, i);
229 m48t59_write(nvram, start + 15, tmp);
232 static void *slavio_intctl;
234 void pic_info()
236 slavio_pic_info(slavio_intctl);
239 void irq_info()
241 slavio_irq_info(slavio_intctl);
244 void cpu_check_irqs(CPUState *env)
246 if (env->pil_in && (env->interrupt_index == 0 ||
247 (env->interrupt_index & ~15) == TT_EXTINT)) {
248 unsigned int i;
250 for (i = 15; i > 0; i--) {
251 if (env->pil_in & (1 << i)) {
252 int old_interrupt = env->interrupt_index;
254 env->interrupt_index = TT_EXTINT | i;
255 if (old_interrupt != env->interrupt_index)
256 cpu_interrupt(env, CPU_INTERRUPT_HARD);
257 break;
260 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
261 env->interrupt_index = 0;
262 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
266 static void cpu_set_irq(void *opaque, int irq, int level)
268 CPUState *env = opaque;
270 if (level) {
271 DPRINTF("Raise CPU IRQ %d\n", irq);
272 env->halted = 0;
273 env->pil_in |= 1 << irq;
274 cpu_check_irqs(env);
275 } else {
276 DPRINTF("Lower CPU IRQ %d\n", irq);
277 env->pil_in &= ~(1 << irq);
278 cpu_check_irqs(env);
282 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
286 static void *slavio_misc;
288 void qemu_system_powerdown(void)
290 slavio_set_power_fail(slavio_misc, 1);
293 static void main_cpu_reset(void *opaque)
295 CPUState *env = opaque;
297 cpu_reset(env);
298 env->halted = 0;
301 static void secondary_cpu_reset(void *opaque)
303 CPUState *env = opaque;
305 cpu_reset(env);
306 env->halted = 1;
309 static void *sun4m_hw_init(const struct hwdef *hwdef, int RAM_size,
310 DisplayState *ds, const char *cpu_model)
313 CPUState *env, *envs[MAX_CPUS];
314 unsigned int i;
315 void *iommu, *espdma, *ledma, *main_esp, *nvram;
316 const sparc_def_t *def;
317 qemu_irq *cpu_irqs[MAX_CPUS], *slavio_irq, *slavio_cpu_irq,
318 *espdma_irq, *ledma_irq;
319 qemu_irq *esp_reset, *le_reset;
321 /* init CPUs */
322 sparc_find_by_name(cpu_model, &def);
323 if (def == NULL) {
324 fprintf(stderr, "Unable to find Sparc CPU definition\n");
325 exit(1);
328 for(i = 0; i < smp_cpus; i++) {
329 env = cpu_init();
330 cpu_sparc_register(env, def, i);
331 envs[i] = env;
332 if (i == 0) {
333 qemu_register_reset(main_cpu_reset, env);
334 } else {
335 qemu_register_reset(secondary_cpu_reset, env);
336 env->halted = 1;
338 register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
339 cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
342 for (i = smp_cpus; i < MAX_CPUS; i++)
343 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
345 /* allocate RAM */
346 cpu_register_physical_memory(0, RAM_size, 0);
348 iommu = iommu_init(hwdef->iommu_base);
349 slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
350 hwdef->intctl_base + 0x10000ULL,
351 &hwdef->intbit_to_level[0],
352 &slavio_irq, &slavio_cpu_irq,
353 cpu_irqs,
354 hwdef->clock_irq);
356 espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
357 iommu, &espdma_irq, &esp_reset);
359 ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
360 slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
361 &le_reset);
363 if (graphic_depth != 8 && graphic_depth != 24) {
364 fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
365 exit (1);
367 tcx_init(ds, hwdef->tcx_base, phys_ram_base + RAM_size, RAM_size,
368 hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
370 if (nd_table[0].model == NULL
371 || strcmp(nd_table[0].model, "lance") == 0) {
372 lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
373 } else if (strcmp(nd_table[0].model, "?") == 0) {
374 fprintf(stderr, "qemu: Supported NICs: lance\n");
375 exit (1);
376 } else {
377 fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
378 exit (1);
381 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
382 hwdef->nvram_size, 8);
384 slavio_timer_init_all(hwdef->counter_base, slavio_irq[hwdef->clock1_irq],
385 slavio_cpu_irq);
387 slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq]);
388 // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
389 // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
390 slavio_serial_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq],
391 serial_hds[1], serial_hds[0]);
392 fdctrl_init(slavio_irq[hwdef->fd_irq], 0, 1, hwdef->fd_base, fd_table);
394 main_esp = esp_init(bs_table, hwdef->esp_base, espdma, *espdma_irq,
395 esp_reset);
397 for (i = 0; i < MAX_DISKS; i++) {
398 if (bs_table[i]) {
399 esp_scsi_attach(main_esp, bs_table[i], i);
403 slavio_misc = slavio_misc_init(hwdef->slavio_base, hwdef->power_base,
404 slavio_irq[hwdef->me_irq]);
405 if (hwdef->cs_base != (target_phys_addr_t)-1)
406 cs_init(hwdef->cs_base, hwdef->cs_irq, slavio_intctl);
408 return nvram;
411 static void sun4m_load_kernel(long vram_size, int RAM_size, int boot_device,
412 const char *kernel_filename,
413 const char *kernel_cmdline,
414 const char *initrd_filename,
415 int machine_id,
416 void *nvram)
418 int ret, linux_boot;
419 char buf[1024];
420 unsigned int i;
421 long prom_offset, initrd_size, kernel_size;
423 linux_boot = (kernel_filename != NULL);
425 prom_offset = RAM_size + vram_size;
426 cpu_register_physical_memory(PROM_PADDR,
427 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK,
428 prom_offset | IO_MEM_ROM);
430 if (bios_name == NULL)
431 bios_name = PROM_FILENAME;
432 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
433 ret = load_elf(buf, PROM_PADDR - PROM_VADDR, NULL, NULL, NULL);
434 if (ret < 0 || ret > PROM_SIZE_MAX)
435 ret = load_image(buf, phys_ram_base + prom_offset);
436 if (ret < 0 || ret > PROM_SIZE_MAX) {
437 fprintf(stderr, "qemu: could not load prom '%s'\n",
438 buf);
439 exit(1);
442 kernel_size = 0;
443 if (linux_boot) {
444 kernel_size = load_elf(kernel_filename, -0xf0000000ULL, NULL, NULL,
445 NULL);
446 if (kernel_size < 0)
447 kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
448 if (kernel_size < 0)
449 kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
450 if (kernel_size < 0) {
451 fprintf(stderr, "qemu: could not load kernel '%s'\n",
452 kernel_filename);
453 exit(1);
456 /* load initrd */
457 initrd_size = 0;
458 if (initrd_filename) {
459 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
460 if (initrd_size < 0) {
461 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
462 initrd_filename);
463 exit(1);
466 if (initrd_size > 0) {
467 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
468 if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
469 == 0x48647253) { // HdrS
470 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
471 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
472 break;
477 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
478 boot_device, RAM_size, kernel_size, graphic_width,
479 graphic_height, graphic_depth, machine_id);
482 static const struct hwdef hwdefs[] = {
483 /* SS-5 */
485 .iommu_base = 0x10000000,
486 .tcx_base = 0x50000000,
487 .cs_base = 0x6c000000,
488 .slavio_base = 0x70000000,
489 .ms_kb_base = 0x71000000,
490 .serial_base = 0x71100000,
491 .nvram_base = 0x71200000,
492 .fd_base = 0x71400000,
493 .counter_base = 0x71d00000,
494 .intctl_base = 0x71e00000,
495 .dma_base = 0x78400000,
496 .esp_base = 0x78800000,
497 .le_base = 0x78c00000,
498 .power_base = 0x7a000000,
499 .vram_size = 0x00100000,
500 .nvram_size = 0x2000,
501 .esp_irq = 18,
502 .le_irq = 16,
503 .clock_irq = 7,
504 .clock1_irq = 19,
505 .ms_kb_irq = 14,
506 .ser_irq = 15,
507 .fd_irq = 22,
508 .me_irq = 30,
509 .cs_irq = 5,
510 .machine_id = 0x80,
511 .intbit_to_level = {
512 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
513 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
516 /* SS-10 */
518 .iommu_base = 0xfe0000000ULL,
519 .tcx_base = 0xe20000000ULL,
520 .cs_base = -1,
521 .slavio_base = 0xff0000000ULL,
522 .ms_kb_base = 0xff1000000ULL,
523 .serial_base = 0xff1100000ULL,
524 .nvram_base = 0xff1200000ULL,
525 .fd_base = 0xff1700000ULL,
526 .counter_base = 0xff1300000ULL,
527 .intctl_base = 0xff1400000ULL,
528 .dma_base = 0xef0400000ULL,
529 .esp_base = 0xef0800000ULL,
530 .le_base = 0xef0c00000ULL,
531 .power_base = 0xefa000000ULL,
532 .vram_size = 0x00100000,
533 .nvram_size = 0x2000,
534 .esp_irq = 18,
535 .le_irq = 16,
536 .clock_irq = 7,
537 .clock1_irq = 19,
538 .ms_kb_irq = 14,
539 .ser_irq = 15,
540 .fd_irq = 22,
541 .me_irq = 30,
542 .cs_irq = -1,
543 .machine_id = 0x72,
544 .intbit_to_level = {
545 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
546 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
551 static void sun4m_common_init(int RAM_size, int boot_device, DisplayState *ds,
552 const char *kernel_filename, const char *kernel_cmdline,
553 const char *initrd_filename, const char *cpu_model,
554 unsigned int machine, int max_ram)
556 void *nvram;
558 if ((unsigned int)RAM_size > (unsigned int)max_ram) {
559 fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n",
560 (unsigned int)RAM_size / (1024 * 1024),
561 (unsigned int)max_ram / (1024 * 1024));
562 exit(1);
564 nvram = sun4m_hw_init(&hwdefs[machine], RAM_size, ds, cpu_model);
566 sun4m_load_kernel(hwdefs[machine].vram_size, RAM_size, boot_device,
567 kernel_filename, kernel_cmdline, initrd_filename,
568 hwdefs[machine].machine_id, nvram);
571 /* SPARCstation 5 hardware initialisation */
572 static void ss5_init(int RAM_size, int vga_ram_size, int boot_device,
573 DisplayState *ds, const char **fd_filename, int snapshot,
574 const char *kernel_filename, const char *kernel_cmdline,
575 const char *initrd_filename, const char *cpu_model)
577 if (cpu_model == NULL)
578 cpu_model = "Fujitsu MB86904";
579 sun4m_common_init(RAM_size, boot_device, ds, kernel_filename,
580 kernel_cmdline, initrd_filename, cpu_model,
581 0, 0x10000000);
584 /* SPARCstation 10 hardware initialisation */
585 static void ss10_init(int RAM_size, int vga_ram_size, int boot_device,
586 DisplayState *ds, const char **fd_filename, int snapshot,
587 const char *kernel_filename, const char *kernel_cmdline,
588 const char *initrd_filename, const char *cpu_model)
590 if (cpu_model == NULL)
591 cpu_model = "TI SuperSparc II";
592 sun4m_common_init(RAM_size, boot_device, ds, kernel_filename,
593 kernel_cmdline, initrd_filename, cpu_model,
594 1, 0xffffffff); // XXX actually first 62GB ok
597 QEMUMachine ss5_machine = {
598 "SS-5",
599 "Sun4m platform, SPARCstation 5",
600 ss5_init,
603 QEMUMachine ss10_machine = {
604 "SS-10",
605 "Sun4m platform, SPARCstation 10",
606 ss10_init,